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Abstract: In container terminals, the shipping containers are stored temporarily in yards in the form of bays composed 
of vertical stacks and horizontal rows. When there is a need to retrieve a target container, it may not be located 
on the top of its stack, in such a case, the containers above it are called blocking containers. These blocking 
containers should be relocated first in order to retrieve the target container. These relocations introduce an 
extra workload and a challenge to the container terminal efficiency. In the Container Stacking Problem (CSP), 
a group of containers are to be stacked in a given bay, while considering the future retrieval of these containers 
with minimum number of relocations.  In this paper, a new hybrid Salp Swarm-Simulated Annealing 
Algorithm (SSSA) is proposed for solving the NP hard CSP. The contributions of this paper are as follows, 
first, and for the first time, a discrete optimization version of the Salp Swarm Algorithm (SSA) is proposed. 
The algorithm is different from the original continuous optimization one. Second, the SSA performance is 
enhanced with a simulated annealing algorithm to improve its exploration capability. In order to examine the 
performance of the proposed algorithm, computational experiments were performed on benchmark instances 
that illustrated the competitive performance of the SSSA with respect to the optimal solutions of the instances.   

1 INTRODUCTION 

The global seaborne trade was about 11 billion tons 
in 2018 and expected to increase at an average annual 
growth rate of 3.5 per cent over the 2019–2024 
period, (UNCTAD 2019). In 2018, a total of 793 
million TEUs were handled in container ports around 
the world. The increase in the number of containers 
handled annually will need more efficient CTs that 
can accommodate these high workloads. As CTs have 
limited infrastructure, the high workloads will take 
from the CT efficiency (Deng 2013). 

A container terminal has three main areas; the 
quay side, the yard side, and the land side. Containers 
are stored in the yard side, coming from either the 
quay side or the land side. Containers are stacked 
above each other, forming blocks, each block has a 
set of bays, each bay has a set of stacks and each stack 
consists of a set of rows. The intersection between a 
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stack and a row results in a slot. A slot can hold only 
one container. Each container in the yard area has a 
designated slot to be stored in (Gheith et al., 2014a). 

One of the performance measures of the CTs is the 
container dwell time. It is the time that the import 
container – as an example – spent at the CT starting 
from the vessel’s arrival time to unload the container 
and ending with the departure time of the External 
Truck (ET) carrying the container out of the CT. CTs 
always aim to minimize this dwell time to receive 
more containers to gain more profits (Merckx, 2005).  

Between the vessel unloading and external trucks 
loading processes, the import containers are stored 
temporarily in the CT’s yard. The CT’s yard receives 
the unloaded containers from the vessels ordered by 
their unloading sequence. Each container’s waiting 
time is affected by the arrival time of the ET which 
will deliver this container to the customer. Such 
pickups are recently scheduled using Truck 
Appointment Systems (TAS) (Azab et al 2017).  
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When a Target Container (TC) is scheduled to be 
retrieved and it is not stored at the top of its stack, the 
containers above it are called Blocking Containers 
(BCs). These BCs need to be relocated first to retrieve 
the target container. These relocations increase the 
dwell time of the container. As relocations are time 
consuming movements in CTs, they must be 
minimized (ElWakil et al 2019).  

One of the methods to minimize the relocations is 
to initially store the containers while considering their 
pickup orders. This will result in a better space 
utilization and decrease containers dwell times (Böse, 
2011). Thus, in the Container Stacking Problem (CSP) 
a group of containers are to be stacked in a given bay 
while considering the future retrieval of these 
containers with minimum number of relocations. The 
input of the CSP is the retrieval sequence of containers 
from the vessel, in addition to the pickup sequence of 
these containers from the yard which is provided by the 
TAS. Whilst, the output will be the staking position of 
each container in the bay (i.e. bay layout).  

In this paper, a new Salp Swarm Algorithm is 
proposed for discrete optimization problems. Then, 
hybridization of this new version with Simulated 
Annealing is proposed for solving the CSP. The new 
hybrid algorithm is called the “Salp Swarm-
Simulated Annealing Algorithm” (SSSAA). The 
algorithm performance was tested, and its results 
were compared with optimal solutions of benchmark 
instances from the literature. 

2 RELATED WORK 

The CT is an aggregate of container handling 
operational processes, where all processes are 
interconnected. Steeken et al., 2004 outlined these 
operations while Schwarze et al., 2012 presented the 
operations’ principles. The largest portion of these 
processes is performed in the yard area. It is the main 
storage area for containers in the CT (Covic, 2018). 
Considering the yard area operations, three main 
types of problems exist. The objective of them is to 
increase the yard area productivity by minimizing the 
number of relocations during pickups. However, the 
method for achieving this objective is different for 
each type. Formally, the three types are:  

1. Stacking problems; they deal with the initial 
storage of containers in the yard area (Zhang et 
al., 2003; Dekker et al., 2007) 

2. Relocation problems; they are dynamic 
optimization problems which aim to find the 
minimum number of relocations while 
retrieving a set of containers (Forster and 

Bortfeldt, 2012; Tang et al., 2015; Covic, 
2017).   

3. Marshalling problems: they are searching for 
the optimal sequence of movements to be 
performed on BCs to pickup a TC. (Lee and 
Hsu, 2007; Caserta et al., 2012; Gheith et al., 
2014b; ElWakil et al., 2019). 

The container stacking problem (CSP) is an 
optimization problem that belongs to type one. The 
CSP is to assign slots to the incoming containers such 
that the number of future relocations is minimized. 

The CSP is solved optimally by exact methods  
(cf. e.g., Lehnfeld and Knust, 2014) or by heuristic 
methods. In this paper, the literature review is limited 
to the heuristics developed for solving the CSP.  

Kim and Park, 2003 proposed two heuristics to 
solve the CSP after proposing a formulated mixed 
integer programming model for the problem.  

Genetic Algorithms (GA) were used to solve the 
CSP (Preston and Kozan, 2001; Bazzazi, 2009; Park 
and Seo, 2009). Whilst, a simulation model based on 
a genetic algorithm was proposed by Sriphrabu et al., 
2013. The aim was to find the best bay layout to 
minimize the lifting time. A Tabu Search (TS) 
algorithm and a hybrid algorithm between TS and GA 
was proposed by Kozan and Preston, 2006 to solve 
the problem. Park et al., 2011 developed an online 
search algorithm to optimize the stacking policy in an 
automated terminal. They also introduced a set of 
criteria that must be considered to obtain a good 
stacking position for each incoming container.  

Chen and Lu, 2012 proposed for the CSP a Hybrid 
Sequence Stacking Algorithm (HSSA) that determines 
the exact location for each individual container upon 
its arrival at the terminal. HSSA proved to be better 
than random stacking algorithm and vertical stacking 
algorithm. Moussi et al., 2012 proposed a hybrid 
genetic simulated annealing algorithm to solve the 
CSP. Ndiaye et al., 2014 proposed a hybrid ant colony-
bee algorithm to solve the CSP. 

Gharehgozli et al., 2014 developed a decision-tree 
heuristic that was efficient for the small-scale CSP 
problems where the dynamic programming was used 
for solving the large-scale ones. Hu et al., 2014 used 
an outer-inner cellular automaton method to solve the 
problem of choosing a certain bay and stacking 
containers in this bay. The two problems were used 
as an integrated optimization process.  

Guerra-Olivares et al., 2015 proposed a Smart 
Relocation (SR) heuristic to stack the outbound 
containers in the yard considering the number of 
relocations. Rekik et al., 2018 proposed a case-based 
heuristic for the online container stacking 
management system in seaport terminals. This 
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heuristic is sensitive to unexpected issues or 
disturbances. Rekik and Elkosantini, 2019 proposed a 
container terminal operating system that can capture, 
store and reuse knowledge to detect disturbances for 
selecting the most appropriate storage strategy and 
determine the most suitable container location.  

He et al., 2019 solved the CSP with a particle 
swarm optimization algorithm. They applied the 
neighbourhood-based mutation operator and 
intermediate disturbance strategy to enhance the 
exploration of the algorithm.  

Boge and Knust 2020 discussed the CSP from a 
general point of view as what so called the parallel 
stack loading problem considering different fitness 
functions. They first introduced a mixed integer 
programming modelling of the problem adapted from 
Boysen and Emde 2016. Then they presented a new 
MIP model and a simulated annealing algorithm for 
minimizing the total number of reshuffles in the 
unloading stage. 

This paper focuses on solving the CSP for 
minimizing the future relocation to empty a bay. The 
CSP is a combinatorial optimization problem with NP 
hard nature (Bruns et al., 2016). So, the Salp Swarm 
Algorithm (SSA) (Mirjalili et al., 2017) was adopted 
to get better solutions for this problem. SSA is a 
relatively new metaheuristic. It has been successfully 
applied to solve such a combinatorial optimization 
problem and has been proved to have an efficient 
performance (Elkassas and ElWakil, 2019). SSA 
hasn’t been applied for solving any kind of the CT 
optimization problem yet.  

Although, SSA has good convergence rate, but 
there are still some disadvantages, such as the fall into 
local optima and exploitation propensity (Sayed et al., 
2018). Hybridization of nature-inspired algorithms is 
a popular approach to merge merits and strength of 
standalone algorithms for handling those deficiencies 
(Cheng and Prayogo, 2014). So, this paper proposes 
a new hybrid salp swarm-simulated annealing 
algorithm for solving the CSP.  

3 THE CONTAINER STACKING 
PROBLEM 

In the container stacking problem (CSP), a set of 
containers is to be stacked into a bay, for minimizing 
the number of future relocations needed to empty this 
bay. In other words, it is the problem of assigning the 
proper slot for each container with the objective of 
minimizing the number of future relocations needed 
to empty the bay. The arrival sequence of the 

containers to the bay and the retrieval sequence of the 
containers from the bay is known in advance.  

Each group of containers is represented by a set ܩ 
consists of number of ݊  containers where 	
ܩ ൌ ሼ݃ଵ, ݃ଶ, … , ݃௡ሽ. Each container takes a value of 
௜݃  which provide two-necessary information; the 

value of ݃௜ defines the container’s pickup order, and 
the position of ௜݃ in the set represent the container’s 
arrival sequence to the bay. As an example, if 	
ܩ ൌ ሼ2, 5, 9, 1, 8, 6, 7, 3, 4ሽ , then the first container 
that will be retrieved is the fourth arrived container, 
while the last to be retrieved is the third arrived one. 

A bay consists of vertical stacks numbered by 
ሼ1, 2, … , ,௡ሽ, and horizontal rows ሼ1ݏ 2, … ,  ௡ሽ. A bayݎ
layout ሺߨሻ  is shown in Fig. 1 of the containers in  
set ܩ . Any ߨ  generated for ܩ  has a feasibility 
condition that must be met. The condition is that any 
incoming container can’t be stacked beneath its 
predecessor. Formally, the feasibility condition can 
be stated as: for any two containers ௜݃ , ݃௝ ∈ ݅ if ,ܩ ൏
݆ then ݎሺ݃௜ሻ ൐  ሺ݃ሻ is the row numberݎ ሺ݃௝ሻ, whereݎ
of container ݃. 

 

Figure 1: A representation of a bay layout. 

In the proposed method for the CSP, a solution of 
a given set ܩ is to specify a stack for each container 
and the containers belonging to the same stack will be 
stored according to their arrival sequence (the 
feasibility condition). Formally, the solution is  
	݈݋ݏ ൌ ሼݏሺ݃ଵሻ, ,ሺ݃ଶሻݏ ,ሺ݃ଷሻݏ … , ሺ݃௡ሻሽݏ . So, for the 
bay layout ሺߨሻ   shown in Fig. 1, the solution is  
గ݈݋ݏ ൌ ሼ3, 3, 1, 2, 2, 3, 2, 1, 1ሽ. For sure, any solution 
would be infeasible if the number of containers 
assigned to specific stack exceeds the number of rows 
in the bay. The bay layout ሺߨሻ is equivalent to ݈݋ݏగ 
and provides a more obvious form for evaluating 
 whereas the feasibility ߨ has only one ݈݋ݏ గ. Each݈݋ݏ
condition is held.  

During pickups, Last-In-First-Out policy is 
applied. So, if the TC is not on the top of its stack, all 
the BCs must be relocated prior to picking up the TC. 
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These relocations are unproductive moves and should 
be minimized. Therefore, to evaluate any ݈݋ݏ 
considering the number of blocking containers and 
number of relocations, the following criteria have 
been proposed:  
 ܷܲ: Number of unordered pairs in all stacks. 

Every couple of adjacent containers in a stack 
is considered unordered if the upper container 
is blocking the other one (Boysen and Emde, 
2016; Lehnfeld and Knust, 2014). 

 ܫܤ : Number of badly placed containers. A 
container is considered badly placed if it blocks 
the container below it through all the stack not 
only the adjacent one (Bacci et al., 2017; Boge 
and Knust, 2020).  

 ܴܰ : total number of relocations needed to 
empty the bay, according to their pickup order. 
It considers the relocations only and excludes 
the retrieval ones (Ndiaye et al., 2014). 

If the bay layout ሺߨሻ in Fig. 1 is considered, the 
values of the ܷܲሺߨሻ	is 4 (container 4, 8, 6 and 5), 
whilst the ܴܫሺߨሻ is 5 (container 4, 7, 8, 6 and 5). In 
this paper, only the ܷܲ measure is considered. 

So, formally the CSP can be described as: Find 
ሺ݈݋ݏሻ  for a given set ܩ , so that ܷܲሺ݈݋ݏగሻ  is 
minimum. Where, ݊ ൑ ௡ݏ ∗  .௡ݎ

4 THE PROPOSED APPROACH 

The proposed approach is based on hybridization 
between the Salp Swarm Algorithm (SSA) and the 
Simulated Annealing (SA) algorithm to solve the CSP. 
As the CSP is a discrete optimization problem, a new 
version of the SSA is proposed for solving the discrete 
optimization problems. To the best of our knowledge, 
there is no reference to a discrete optimization version 
of the SSA in current literature.  Before presenting the 
proposed approach, a brief about each of the 
algorithms will be presented first, then the reason for 
why hybridizing both algorithms is explained. Finally, 
the proposed approach is presented. 

4.1 Motivation of the Proposed 
Approach 

Although SSA has been proved to solve optimization 
problems efficiently in comparison with other 
metaheuristics, but in most cases, it is trapped in local 
optima (Sayed et al., 2018). Therefore, to overcome this 
challenge and enhance the SSA performance, a new 
hybrid algorithm called hybrid salp swarm-simulated 
annealing algorithm is proposed to solve the CSP.  

During this work SA controls the acceptance of 
bad generated leaders through the discrete version of 
the SSA. By this hybridization, a balance between 
exploration done by the followers and exploitation by 
the leader is achieved without trapping the leader and 
the swarm into the local optima. The performance of 
the proposed algorithm for solving the CSP has been 
assessed by benchmark instances from the literature. 
Experimental results illustrate that the proposed 
algorithm is efficient and robust for the CSP. 

4.2 Salp Swarm Algorithm 

4.2.1 Salp Swarm Algorithm for Continuous 
Optimization  

Salp Swarm Algorithm (SSA) has been proposed 
recently by a biological inspiration of the salp’s food 
search mission in deep seas (Mirjalili et al., 2017). It 
is developed mainly for solving continuous 
optimization problems. SSA showed a good and 
robust converging to the optimum solution. The 
concept of the leader and followers are the main idea 
of the SSA performance (Fig. 2) (Mirjalili et al., 
2017). The leader is the best agent of the swarm and 
it is the first salp in the swarm chain. The leader salp 
is updated with respect to the food source (the best 
solution ever found). The leader guides the swarm as 
every follower follows its superior (the adjacent 
preceding salp) (Mirjalili et al., 2017).  

 

(a) (b) 

Figure 2: (a) a salp agent (b) swarm of salps. 

Every salp agent ݔ is a candidate solution to the 
optimization problem. So, the salp’s size (number of 
dimensions) is equal to the number of variables 
needed to be optimized. So, if the swarm consists of 
ܰܲ  salps where every salp has ݊  dimensions, ݔ௝

௜  is 
the ݆௧௛ dimension of the ݅௧௛ salp, where ݅	 ൑ ܰܲ and 
݆ ൑ ݊. 

The SSA algorithm can be summarized as 
follows: Initially, a number of ܰܲ salps are generated 
randomly and evaluated based on the evaluation 
criteria of the solution. The salp with the best fitness 

Leader

ICORES 2020 - 9th International Conference on Operations Research and Enterprise Systems

92



after evaluation is promoted to be the leader ݔଵ. The 
food source ܨ is the stored value of the best salp (i.e. 
solution) ever found. So, in the beginning, it takes the 
value of the leader salp.   

Then, until reaching the termination condition, the 
swarm is updated using numerical equations. As 
stated earlier, the leader salp agent is updated with 
respect to the food source ܨ. Equation (1) is used for 
updating the leader position.  

 

௝ݔ
ଵ ൌ ቐ

௝ܨ ൅ ܿଵ ቀ൫ݑ ௝ܾ െ ݈ ௝ܾ൯ܿଶ ൅ ݈ ௝ܾቁ , ܿଷ ൒ 0.5

௝ܨ െ ܿଵ ቀ൫ݑ ௝ܾ െ ݈ ௝ܾ൯ܿଶ ൅ ݈ ௝ܾቁ , ܿଷ ൏ 0.5
 (1)

 
The exploration effectiveness of the SSA depends 

mainly on the coefficient ܿଵ  and it is generated in 
each iteration by Equation (2), where ݐ is the current 
time and ܶ is the maximum run time which after it the 
algorithm stops. The value of ܿଵ  decreases 
exponentially with time leading to explore more 
spaces at the beginning of the search and then limit 
the search gradually iteration after iteration. 

The upper and lower values for each dimension ݆ 
are represented as ݑ ௝ܾ  and ݈ ௝ܾ  respectively. 
Parameters ܿଶ and ܿଷ control the search direction to 
be balanced between both sides of the food source. 
They are random number generated every iteration in 
the interval [0, 1].  

 

ܿଵ ൌ 2݁ିቀ
ସ௧
் ቁ

మ

 (2)

 
The followers are updated using Newton’s law of 

motion. Equation (3) updates the value of each 
follower agent, where ݅	 ൒ 	2. The new follower salp 
value will be as the halfway between the new superior 
salp agent ݔ௜ିଵ and the old salp agent.  

 

௝ݔ́
௜ ൌ

1
2
൫ݔ௝

௜ ൅ ௝ݔ
௜ିଵ൯ (3)

  
After each iteration, the food source is updated 

when a new better solution is found. At the end the, 
the food source value is returned as the best solution.  

4.1.2 Salp Swarm Algorithm for Discrete 
Optimization  

In SSA, Equation (1) and (3) are responsible for 
updating the leader and the follower agents. These 
two equations can be applied to continuous 
optimization problems only when the values of 
solutions are continuous numbers.  

As stated earlier, the solution of CSP is an 
assignment of each container ݃ ∈ ܩ   to a stack ݏ ∈
ܵ ൌ ሼ1, 2, … , ௡ሽݏ  satisfying that ݓ௦௢௟ሺݏሻ ൑ ௡ݎ  where 
ݏ ሻ is the number of occurrences of stackݏ௦௢௟ሺݓ  in 
  .݈݋ݏ

The CSP is a Combinatorial Optimization 
Problem (COP). Considering Fig. 1, a solution ݈݋ݏగ 
associated with the problem input ܩ  is illustrated 
again in Fig. 3. A new solution ݈݋ݏగሖ  can be generated 
by swapping any two stacks’ positions which means 
assigning new two stacks to the corresponding two 
containers. As an example, ݈݋ݏగሖ  means that ݏሺ5ሻ ൌ 1 
and ݏሺ9ሻ ൌ 3	 instead of ݏሺ5ሻ ൌ 3  and ݏሺ9ሻ ൌ 1  in 
the previous solution ݈݋ݏగ. 

In the original SSA, Equation (1) updates the 
leader salp ݔଵ  to search around the food source ܨ . 
The coefficient ܿଶ  guarantees the random search 
around the food source ܨ  while the coefficient ܿଵ 
determine how far the leader salp ݔଵ go from the food 
source ܨ to find new solutions (i.e. exploration).  The 
coefficient ܿଷ  balances the search direction to 
positive infinity or negative infinity which has no 
meaning for COP.  

 4 3 7 6 8 1 9 5 2 ܩ
          

 గ 3 3 1 2 2 3 2 1 1݈݋ݏ

   

 

      

గሖ݈݋ݏ  3 1 3 2 2 3 2 1 1 

Figure 3: a representation of CSP solutions with its input ܩ. 

Considering any COP generally, a new strategy is 
proposed to update the leader salp agent with respect 
to the food source instead of Equation (1).   

  
Leader Update 
Strategy (LUS) 

Update ݔଵ by performing a 
number of ܿଵ pair swap of any 
two random dimensions of the 
food source ܨ.  

 
By using LUS, the same concept of updating the 

leader salp ݔଵ is preserved. The coefficient ܿଵ is the 
same while ܿଶ  is represented in the LUS by the 
random pair selected for the pair swap process.   

However, based on trial experiments, a 
modification to Equation (1) is performed and ܿଵ will 
be updated according to Equation (4).  Equation (4) is 
plotted in Fig. 4 for a value of ܶ ൌ 30. Fig. 4 depicts 
that Equation (4) allows the SSA to expand its search 
space gradually until reaching a maximum value in 
about the third of the maximum time. Then, it 
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intensifies the search space be limiting the search 
space gradually until the end.   
 

ܿଵ ൌ ቀି݁ݐ2
ଶ௧
் ቁ

మ

 (4)

 

Figure 4: Plot of Equation 4 for ܶ ൌ 30. 

After performing a number of ܿଵ  random pair 
swaps on the food source ܨ , a new leader salp is 
generated. Also, a number of ܿଵ െ 1 new salps are 
generated through the updating process. As every pair 
swap performed, a new salp will be generated until 
performing all the ܿଵ pair swaps.  

In this paper, during updating the leader salp, the 
evaluation of each generated salp is considered. If any 
generated salp is better than the old leader, it is 
assigned as a new leader salp on the spot and the 
updating process is completed by updating this new 
leader salp.   

For updating the follower salps, a new strategy is 
also proposed producing the same effect that 
Equation (3) does.  

For any two salps with ݊ size, one of them can be 
transformed into the other by performing at most ݊ 
pair swaps. This is applicable since the constituents 
of the salp (i.e. number of stacks repeated ݎ௡ times) 
are the same, the only change will be the assignment 
of these stacks to containers.  

Equation (3) generates the new follower salp ́ݔ௜ 
by taking the average of the values of its new superior 
 ௜. The followerݔ ௜ିଵ salp and the old follower salpݔ
update strategy (FUS) suggests performing half of the 
pair swaps needed to move from the old ݔ௜ to the new 
 .௜ିଵݔ

 
Follower Update 
Strategy (FUS) 

Update ݔ௜  by performing 
half of the pair swaps to 
move from the old salp to the 
new superior salp.  

 
Fig. 5 illustrate the follower update strategy 

(FUS). The target is to move half the way from the 
old salp ݔ௜ to the new superior salp ݔ௜ିଵ. So, the first 

half of the old salp ݔ௜ is considered to have pair swaps 
to generate the first half of the new superior salp ݔ௜ିଵ. 
In each step, the necessary pair swap is filled with 
grey. 

 ௜ିଵ 3 2 1 2 2 1 3 1 3ݔ
          

 ௜ 1 3 3 2 2 3 2 1 2ݔ

    ⇩      

 3 1 3 2 2 3 2 1 2 

    ⇩      

 3 2 3 1 2 3 2 1 2 

    ⇩      

 3 2 1 3 1 1 2 1 2 

    ⇩      

ݓ݁݊  ௜ 3 2 1 2 3 3 2 1 2ݔ

Figure 5: Illustration of the FUS. 

The original SSA is accepting the new generating 
salps (leader and follower) even the solution is not 
improved.  

In this paper, the generated salps will be accepted 
even if they are not better solutions except the leader. 
The leader is replaced only by a better salp generated 
from updating any salp of the swarm. Trail 
experiments showed that accepting bad leader salp 
directs the swarm away from the food source even 
with updating the leader with respect to the food 
source. Also, accepting bad followers can’t be 
abandoned for investigating the way from the old 
search space to the new one through iterations.  

By using this approach, the acceleration of the 
SSA is increased by updating rapidly the leader salp. 
And that will direct all the swarm to the global 
optima. Accepting the new generated follower salps 
increase the exploration range for the swarm, but that 
was not enough to escape from the local optima. That 
was solved using the SA. 

4.2 Simulated Annealing  

Simulated Annealing (SA) is a powerful 
metaheuristic that used for solving large COPs based 
on the simulation of the annealing of solids process 
(Van Laarhoven and Aarts, 1987).  

The basic idea of SA is to accept bad solutions at 
the beginning of the search by a given probability, 
which may lead to better solutions after a while. This 
acceptance probability decreases with time utilizing 
the concept of solids cooling during annealing 
process. The temperature value ሺܶ݁ሻ  controls the 
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acceptance probability of bad solutions during the 
search process as in Equation (5), where ሺΔሻ is the 
difference between the finesses of the considered 
solutions. 
 

ܲ ൌ ݁ିቀ
∆
்௘ቁ (5)

 
At the beginning of the search process, a higher 

relatively temperature value is assigned. This initial 
temperature ܶ݁௜௡௧  is reduced by the so called 
“cooling procedure” through every cooling step. The 
cooling procedure is executed by Equation (6), where  
 is the cooling factor. The temperature is reduced ߙ
after a number of ܿݏ iterations. 
 

ܶ݁ ൌ ߙ ∗ ܶ݁ (6)
 
A reheating process may be needed. If the 

temperature value drops below a specific value ܶ ௙݁௜௡, 
the temperature is set to its initial value (Hussin and 
Stützle, 2014).   

4.3 The Proposed SSSAA Algorithm 

New hybrids of the existing algorithms are being 
developed to solve different optimization problems. 
In this paper, our new version of the salp swarm 
algorithm for COPs is hybridized with the simulated 
annealing algorithm. It is called by SSSAA which 
merges the salp swarm algorithm (SSA) with the 
simulated annealing (SA) for updating the leader salp 
only.  Further, the new hybrid algorithm is detailed as 
follows:  

Step 1: Population Initialization. 

A population of a number of ܰܲ  salps is 
randomly generated. Each salp ݔ௜ is a random vector 
of ݊ dimensions. For the CSP, the values of the salp 
are a random assignment of bay stacks to the 
containers of ܩ.  

Step 2: Evaluation. 

Every salp is evaluated based on the fitness 
function used for the problem.  For the CSP, the 
fitness of every salp is measured by ܷܲሺߨ௫ሻ as 
explained earlier. The swarm is sorted and the salp 
with the best fitness function so far is assigned to 
be the leader salp and the rest are followers with 
descending superiority. The food source is 
assigned as the best salp ever found. At the end of 
this step, the leader salp’s value is stored. 

Step 3: Main Loop.  

The main loop is started after the initialization and 
evaluation steps. It begins with defining the food 
source ሺܨሻ  as the best salp found through the 
execution. After that, the salp swarm is updated until 
reaching the stopping condition.  

Step 4: Updating the Leader Salp.  

All the salps are updated at each iteration through 
the main loop. The leader salp ሺݔଵሻ is updated with 
respect to the food source ሺܨሻ. The ሺܿଵሻ coefficient 
value is calculated first using Equation (4). Then, the 
LUS is used.  

The LUS performs a number of pair swaps equal 
to ܿଵ . After each pair swap a new leader salp is 
generated. The corresponding fitness function of this 
new leader salp is evaluated. This new leader salp is 
accepted instantly if it has a lower fitness value than 
the previous one. If it hasn’t, it is rejected or accepted 
based on the SA probability. A leader with higher 
fitness is accepted as a new leader salp not a food 
source ܨ of course. This evaluation and accepting or 
not process is repeated until all the ܿଵ pair swaps is 
finished.  

Step 5: Updating the Follower Salps. 

Each follower salp is updated with respect to its 
superior. The updated follower salp ሺ݊݁ݓ	ݔ௜ሻ  is 
generated from the old value follower salp ሺݔ௜ሻ by 
performing the FUS with respect to the its new 
superior ሺݔ௜ିଵሻ where ݅ ൑ 2. 

Step 6: Stopping Condition.  

The main loop is repeated updating the swarm 
based on Step 3 and 4 until the time of execution 
exceed the value of ܶ . ܶ	 is set to equal to the ݊ 
seconds (i.e. number of containers). So, if an instance 
has a dimension of 30 containers, the algorithm will 
stop after 30 seconds. The food source is returned as 
the best solution found for the problem.  

All the parameters’ values of SSSAA are 
summarized in Table 1. 

Table 1: SSSAA parameters’ values. 

Parameter Value 

ܰܲ 10 

௙ܶ௜௡ 0.01 

 100 ݏܿ

 0.9 ߙ

  

A New Hybrid Salp Swarm-simulated Annealing Algorithm for the Container Stacking Problem

95



The pseudo code of the SSSAA is as follows: 

SSSAA 
1:  For ݅ ൌ 1:ܰܲ 
௜ݔ   :2 ൌ   containers	݊	of	stacking	݉݋݀݊ܽݎ
௜ݐ݅ܨ   :4 	ൌ  ௜ሻݔሺ	݁ݐܽݑ݈ܽݒ݁	
5: End  
6: ܶ݁ ൌ ܶ݁௜௡௧ 
7:  While ݐ ൏ ܶ 
ܨ   :8 ൌ  ݐ݅ܨwithmin	௜ݔ
ிݐ݅ܨ  :9 ൌ minݐ݅ܨ 
10:   Update ܿଵ with Equation (4) 
11:   For ݅ ൌ 1:ܰܲ 
12:    If ݅ ൌൌ 1 
݆	ܚܗ۴    :13 ൌ 1: ܿଵ 
14:     ܿଶ ൌ  stacks	of	pair	݉݋݀݊ܽݎ
15:     new	ݔଵ ൌ   ܿଶ	swap	ଵafterݔ
ଵݐ݅ܨ_ݓ݁݊     :16 	ൌ  ଵሻݔ	ሺnew	݁ݐܽݑ݈ܽݒ݁	
17:     If ݊݁ݐ݅ܨ_ݓଵ< ݐ݅ܨଵ 
ଵݔ      :18 ൌ 	new	ݔଵ 
ଵݐ݅ܨ      :19 ൌ  ଵݐ݅ܨ_ݓ݁݊
20:     Else 
21:      Δ ൌ  ଵݐ݅ܨ -ଵݐ݅ܨ_ݓ݁݊
22:      Calculate ܲ	with Equation (5) 
23:      If  rand < ܲ 
ଵݔ       :24 ൌ 	new	ݔଵ 
ଵݐ݅ܨ       :25 ൌ  ଵݐ݅ܨ_ݓ݁݊
26:      End 
27:     End 
ݏܿ     :28 ൌ ݏܿ ൅ 1 
29:     IF  ܿݏ ൌ 100 ∗ ݊  
ݏܿ      :30 ൌ 0 
31:      Update ܶ݁ with Equation (6) 
32:      IF ܶ݁ ൏ ܶ ௙݁௜௡ 
33:       ܶ݁ ൌ ܶ݁௜௡௧ 
34:      End 
35:     End 
36:    End 
37:    Else  
38:    update ݔ௜ using FLU 
୧ݐ݅ܨ    :39 	ൌ  ௜ሻݔሺ݁ݐܽݑ݈ܽݒ݁	
40:    End  
41:  End 
42: End  
43:  Return ܨ 

5 COMPUTATIONAL RESULTS  

The SSSAA was coded using MATLAB 2017b and 
was run on a PC equipped with an Intel(R) Core(TM) 
i5-4200M CPU @ 2.5 GHz and 8 GB RAM under the 
Windows 10 operating system. 

To test the performance of the SSSAA, the set of 
benchmark instances from Boge and Knust, 2020 
were considered. They solved each instance with a 
MIP formulation for the fitness function ܷܲ 
imposing a time limit of 30 minutes. They stated that 
only some of these instances were solved to 
optimality within the time limit.  

The characteristics of the benchmark instances are 
as shown in Table 2. The number of containers to be 
stacked is ݊, while ݏ௡ and ݎ௡ determine the size of the 
target bay. When the bay isn’t filled completely with 
the ݊ containers i.e. ݊ ൏ ௡ݏ ∗  ௡, ݊ is marked with anݎ
asterisk (∗). Each row in the table represents a group of 
20 instances having the same characteristics. The 
fourth column in the table defines the number of 
instances that have been verified to be solved to 
optimally out of the 20 instances according to Boge 
and Knust, 2020. They also have reported the average 
times of getting the optimal solution. For some of the 
instances, the maximum of 30 minutes wasn’t enough 
to reach the optimal solutions. The average fitness 
function ሺܷܲሻ  and the average times in seconds of 
each 20 instances are reported in the fifth columns. The 
larger instances with ݊	 ൌ 	120 are discarded through 
our experiments as practicality, the maximum bay 
dimensions are 8 stacks with 6 rows corresponding to 
the yard crane reachability (Gheith et al., 2016).  

In the sixth column of Table 2, the results of the 
new version of the SSA and the corresponding times 
are reported. It is evident that the SSA results were so 
far from the optimal solutions due to the reasons 
stated earlier in section 4.  

The SSSAA robust performance can be observed 
from the results in the seventh column of Table 2. The 
hybrid algorithm results are so close to the optimal 
solutions. Hybridization of the new version of SSA 
with SA has improved its performance. The average 
times of the SSSAA is challenging for large instances 
(݊ ൌ 60) and they may be considered high compared 
to the MIP times especially for the small size instance 
where݊	 ∈ ሼ30, 40ሽ. As the average values can’t be 
guaranteed as a performance measure, a second 
evaluation may be needed.  

The second evaluation was performed for the 
individual instances of the same instance groups. 
Table 3 reported the difference in the fitness function 
value between the SSSAA value and the best value 
reported by MIP in Boge and Knust, 2020. This 
difference is underlined if it is more than zero.   

Table 3 demonstrates the SSSAA capability of 
finding the reported best solution for most of the 
instances in a challenging time.  

In Table 2, the MIP average times were lower than 
the SSSAA ones especially for ݊ ∈ ሼ30, 40ሽ . 
However, there are some individual instances needed 
times to be solved by MIP more than the SSSAA and 
the resulted fitness function values ሺܷܲሻ  were the 
same. Each such instance was highlighted by grey in 
Table 3 illustrates that sometimes SSSAA can find 
the same solutions produced by MIP but in less time. 
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Table 2: The average solutions’ UP fitness for SSSAA compared with optimal solutions. 

 ௡ Verݎ ௡ݏ ݊

MIP (Boge and 
Knust, 2020) 

 
SSA 

 
SSSAA 

ܷܲ time 
 

ܷܲ time 
 

ܷܲ time 

30 5 6 20 4 1.4  5.30 30  4 30 

30 6 5 20 2.9 0.1  5.00 30  2.95 30 

∗30 8 4 20 1.05 0.1  3.15 30  1.1 30 

30 10 3 20 0.4 9.9  1.50 30  0.4 30 

            

40 5 8 20 4.9 0.2  7.55 40  4.9 40 

∗40 7 6 20 2.7 0.4  5.9 40  2.75 40 

40 8 5 20 1.8 2.5  5.25 40  1.95 40 

40 10 4 20 0.75 254.0  3.4 40  0.85 40 

            

60 6 10 20 6.8 0.9  11.4 60  7.15 60 

60 10 6 18 2.4 183.8  8.85 60  3.25 60 

60 12 5 13 1.05 664.3  7.95 60  1.6 60 

60 15 4 11 0.5 811.5  4.85 60  0.8 60 

60 20 3 17 0.15 270.9  1.35 60  0.15 60 

Table 3: Performance of SSSAA for individual instances.

Instances group Difference between SSSAA and the optimal solution for every instance 

 ௡ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20ݎ ௡ݏ ݊

30 5 6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 6 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

∗30 8 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

30 10 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
            

40 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

∗40 7 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

40 8 5 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0 

40 10 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
            

60 6 10 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 

60 10 6 0 1 1 0 1 1 1 1 1 1 0 2 1 1 1 1 1 1 0 1 

60 12 5 0 0 1 0 1 0 0 1 0 1 0 0 2 1 1 0 0 1 1 1 

60 15 4 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0 

60 20 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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6  CONCLUSIONS 

In this paper, a new version of the salp swarm 
algorithm for discrete optimisation problems is 
propose. Then it is hybridized to develop a new 
hybrid salp swarm simulated annealing algorithm 
(SSSAA). It integrated the simulated annealing (SA) 
with the new version of the salp swarm algorithm 
(SSA) for overcoming the local optima trapping. The 
SA enhanced the exploitation while updating the 
leader salp of the swarm. The SSSAA performance 
was tested by comparison to the best reported 
solutions of the container stacking problem (CSP). As 
the CSP is an operational process, it needed to be 
performed frequently in a relatively fast time. The 
SSSAA was capable of finding the optimal solution 
for most of the tested instances in a relatively very 
short time with respect to the mixed integer 
programming reported in the literature. The 
computational results reveal that SSSAA is a very 
fast, efficient and capable tool for the CSP. 
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