
A New Hybrid Salp Swarm-simulated Annealing Algorithm
for the Container Stacking Problem

Mohamed ElWakil1 a, Mohamed Gheith1,2 b and Amr Eltawil1 c
1Department of Industrial and Manufacturing Engineering, School of Innovative Design Engineering,

Egypt-Japan University of Science and Technology (E-JUST), Egypt
2Faculty of Engineering, Alexandria University, Egypt

Keywords: Salp Swarm Algorithm, Container Terminals, Container Stacking Problem, Simulated Annealing.

Abstract: In container terminals, the shipping containers are stored temporarily in yards in the form of bays composed
of vertical stacks and horizontal rows. When there is a need to retrieve a target container, it may not be located
on the top of its stack, in such a case, the containers above it are called blocking containers. These blocking
containers should be relocated first in order to retrieve the target container. These relocations introduce an
extra workload and a challenge to the container terminal efficiency. In the Container Stacking Problem (CSP),
a group of containers are to be stacked in a given bay, while considering the future retrieval of these containers
with minimum number of relocations. In this paper, a new hybrid Salp Swarm-Simulated Annealing
Algorithm (SSSA) is proposed for solving the NP hard CSP. The contributions of this paper are as follows,
first, and for the first time, a discrete optimization version of the Salp Swarm Algorithm (SSA) is proposed.
The algorithm is different from the original continuous optimization one. Second, the SSA performance is
enhanced with a simulated annealing algorithm to improve its exploration capability. In order to examine the
performance of the proposed algorithm, computational experiments were performed on benchmark instances
that illustrated the competitive performance of the SSSA with respect to the optimal solutions of the instances.

1 INTRODUCTION

The global seaborne trade was about 11 billion tons
in 2018 and expected to increase at an average annual
growth rate of 3.5 per cent over the 2019–2024
period, (UNCTAD 2019). In 2018, a total of 793
million TEUs were handled in container ports around
the world. The increase in the number of containers
handled annually will need more efficient CTs that
can accommodate these high workloads. As CTs have
limited infrastructure, the high workloads will take
from the CT efficiency (Deng 2013).

A container terminal has three main areas; the
quay side, the yard side, and the land side. Containers
are stored in the yard side, coming from either the
quay side or the land side. Containers are stacked
above each other, forming blocks, each block has a
set of bays, each bay has a set of stacks and each stack
consists of a set of rows. The intersection between a

a https://orcid.org/0000-0002-6066-6547
b https://orcid.org/0000-0003-2092-2697
c https://orcid.org/0000-0001-6073-8240

stack and a row results in a slot. A slot can hold only
one container. Each container in the yard area has a
designated slot to be stored in (Gheith et al., 2014a).

One of the performance measures of the CTs is the
container dwell time. It is the time that the import
container – as an example – spent at the CT starting
from the vessel’s arrival time to unload the container
and ending with the departure time of the External
Truck (ET) carrying the container out of the CT. CTs
always aim to minimize this dwell time to receive
more containers to gain more profits (Merckx, 2005).

Between the vessel unloading and external trucks
loading processes, the import containers are stored
temporarily in the CT’s yard. The CT’s yard receives
the unloaded containers from the vessels ordered by
their unloading sequence. Each container’s waiting
time is affected by the arrival time of the ET which
will deliver this container to the customer. Such
pickups are recently scheduled using Truck
Appointment Systems (TAS) (Azab et al 2017).

ElWakil, M., Gheith, M. and Eltawil, A.
A New Hybrid Salp Swarm-simulated Annealing Algorithm for the Container Stacking Problem.
DOI: 10.5220/0008974700890099
In Proceedings of the 9th International Conference on Operations Research and Enterprise Systems (ICORES 2020), pages 89-99
ISBN: 978-989-758-396-4; ISSN: 2184-4372
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

89

When a Target Container (TC) is scheduled to be
retrieved and it is not stored at the top of its stack, the
containers above it are called Blocking Containers
(BCs). These BCs need to be relocated first to retrieve
the target container. These relocations increase the
dwell time of the container. As relocations are time
consuming movements in CTs, they must be
minimized (ElWakil et al 2019).

One of the methods to minimize the relocations is
to initially store the containers while considering their
pickup orders. This will result in a better space
utilization and decrease containers dwell times (Böse,
2011). Thus, in the Container Stacking Problem (CSP)
a group of containers are to be stacked in a given bay
while considering the future retrieval of these
containers with minimum number of relocations. The
input of the CSP is the retrieval sequence of containers
from the vessel, in addition to the pickup sequence of
these containers from the yard which is provided by the
TAS. Whilst, the output will be the staking position of
each container in the bay (i.e. bay layout).

In this paper, a new Salp Swarm Algorithm is
proposed for discrete optimization problems. Then,
hybridization of this new version with Simulated
Annealing is proposed for solving the CSP. The new
hybrid algorithm is called the “Salp Swarm-
Simulated Annealing Algorithm” (SSSAA). The
algorithm performance was tested, and its results
were compared with optimal solutions of benchmark
instances from the literature.

2 RELATED WORK

The CT is an aggregate of container handling
operational processes, where all processes are
interconnected. Steeken et al., 2004 outlined these
operations while Schwarze et al., 2012 presented the
operations’ principles. The largest portion of these
processes is performed in the yard area. It is the main
storage area for containers in the CT (Covic, 2018).
Considering the yard area operations, three main
types of problems exist. The objective of them is to
increase the yard area productivity by minimizing the
number of relocations during pickups. However, the
method for achieving this objective is different for
each type. Formally, the three types are:

1. Stacking problems; they deal with the initial
storage of containers in the yard area (Zhang et
al., 2003; Dekker et al., 2007)

2. Relocation problems; they are dynamic
optimization problems which aim to find the
minimum number of relocations while
retrieving a set of containers (Forster and

Bortfeldt, 2012; Tang et al., 2015; Covic,
2017).

3. Marshalling problems: they are searching for
the optimal sequence of movements to be
performed on BCs to pickup a TC. (Lee and
Hsu, 2007; Caserta et al., 2012; Gheith et al.,
2014b; ElWakil et al., 2019).

The container stacking problem (CSP) is an
optimization problem that belongs to type one. The
CSP is to assign slots to the incoming containers such
that the number of future relocations is minimized.

The CSP is solved optimally by exact methods
(cf. e.g., Lehnfeld and Knust, 2014) or by heuristic
methods. In this paper, the literature review is limited
to the heuristics developed for solving the CSP.

Kim and Park, 2003 proposed two heuristics to
solve the CSP after proposing a formulated mixed
integer programming model for the problem.

Genetic Algorithms (GA) were used to solve the
CSP (Preston and Kozan, 2001; Bazzazi, 2009; Park
and Seo, 2009). Whilst, a simulation model based on
a genetic algorithm was proposed by Sriphrabu et al.,
2013. The aim was to find the best bay layout to
minimize the lifting time. A Tabu Search (TS)
algorithm and a hybrid algorithm between TS and GA
was proposed by Kozan and Preston, 2006 to solve
the problem. Park et al., 2011 developed an online
search algorithm to optimize the stacking policy in an
automated terminal. They also introduced a set of
criteria that must be considered to obtain a good
stacking position for each incoming container.

Chen and Lu, 2012 proposed for the CSP a Hybrid
Sequence Stacking Algorithm (HSSA) that determines
the exact location for each individual container upon
its arrival at the terminal. HSSA proved to be better
than random stacking algorithm and vertical stacking
algorithm. Moussi et al., 2012 proposed a hybrid
genetic simulated annealing algorithm to solve the
CSP. Ndiaye et al., 2014 proposed a hybrid ant colony-
bee algorithm to solve the CSP.

Gharehgozli et al., 2014 developed a decision-tree
heuristic that was efficient for the small-scale CSP
problems where the dynamic programming was used
for solving the large-scale ones. Hu et al., 2014 used
an outer-inner cellular automaton method to solve the
problem of choosing a certain bay and stacking
containers in this bay. The two problems were used
as an integrated optimization process.

Guerra-Olivares et al., 2015 proposed a Smart
Relocation (SR) heuristic to stack the outbound
containers in the yard considering the number of
relocations. Rekik et al., 2018 proposed a case-based
heuristic for the online container stacking
management system in seaport terminals. This

ICORES 2020 - 9th International Conference on Operations Research and Enterprise Systems

90

heuristic is sensitive to unexpected issues or
disturbances. Rekik and Elkosantini, 2019 proposed a
container terminal operating system that can capture,
store and reuse knowledge to detect disturbances for
selecting the most appropriate storage strategy and
determine the most suitable container location.

He et al., 2019 solved the CSP with a particle
swarm optimization algorithm. They applied the
neighbourhood-based mutation operator and
intermediate disturbance strategy to enhance the
exploration of the algorithm.

Boge and Knust 2020 discussed the CSP from a
general point of view as what so called the parallel
stack loading problem considering different fitness
functions. They first introduced a mixed integer
programming modelling of the problem adapted from
Boysen and Emde 2016. Then they presented a new
MIP model and a simulated annealing algorithm for
minimizing the total number of reshuffles in the
unloading stage.

This paper focuses on solving the CSP for
minimizing the future relocation to empty a bay. The
CSP is a combinatorial optimization problem with NP
hard nature (Bruns et al., 2016). So, the Salp Swarm
Algorithm (SSA) (Mirjalili et al., 2017) was adopted
to get better solutions for this problem. SSA is a
relatively new metaheuristic. It has been successfully
applied to solve such a combinatorial optimization
problem and has been proved to have an efficient
performance (Elkassas and ElWakil, 2019). SSA
hasn’t been applied for solving any kind of the CT
optimization problem yet.

Although, SSA has good convergence rate, but
there are still some disadvantages, such as the fall into
local optima and exploitation propensity (Sayed et al.,
2018). Hybridization of nature-inspired algorithms is
a popular approach to merge merits and strength of
standalone algorithms for handling those deficiencies
(Cheng and Prayogo, 2014). So, this paper proposes
a new hybrid salp swarm-simulated annealing
algorithm for solving the CSP.

3 THE CONTAINER STACKING
PROBLEM

In the container stacking problem (CSP), a set of
containers is to be stacked into a bay, for minimizing
the number of future relocations needed to empty this
bay. In other words, it is the problem of assigning the
proper slot for each container with the objective of
minimizing the number of future relocations needed
to empty the bay. The arrival sequence of the

containers to the bay and the retrieval sequence of the
containers from the bay is known in advance.

Each group of containers is represented by a set ܩ
consists of number of ݊ containers where 	
ܩ ൌ ሼ݃ଵ, ݃ଶ, … , ݃௡ሽ. Each container takes a value of
௜݃ which provide two-necessary information; the

value of ݃௜ defines the container’s pickup order, and
the position of ௜݃ in the set represent the container’s
arrival sequence to the bay. As an example, if 	
ܩ ൌ ሼ2, 5, 9, 1, 8, 6, 7, 3, 4ሽ , then the first container
that will be retrieved is the fourth arrived container,
while the last to be retrieved is the third arrived one.

A bay consists of vertical stacks numbered by
ሼ1, 2, … , ,௡ሽ, and horizontal rows ሼ1ݏ 2, … , ௡ሽ. A bayݎ
layout ሺߨሻ is shown in Fig. 1 of the containers in
set ܩ . Any ߨ generated for ܩ has a feasibility
condition that must be met. The condition is that any
incoming container can’t be stacked beneath its
predecessor. Formally, the feasibility condition can
be stated as: for any two containers ௜݃ , ݃௝ ∈ ݅ if ,ܩ ൏
݆ then ݎሺ݃௜ሻ ൐ ሺ݃ሻ is the row numberݎ ሺ݃௝ሻ, whereݎ
of container ݃.

Figure 1: A representation of a bay layout.

In the proposed method for the CSP, a solution of
a given set ܩ is to specify a stack for each container
and the containers belonging to the same stack will be
stored according to their arrival sequence (the
feasibility condition). Formally, the solution is
	݈݋ݏ ൌ ሼݏሺ݃ଵሻ, ,ሺ݃ଶሻݏ ,ሺ݃ଷሻݏ … , ሺ݃௡ሻሽݏ . So, for the
bay layout ሺߨሻ shown in Fig. 1, the solution is
గ݈݋ݏ ൌ ሼ3, 3, 1, 2, 2, 3, 2, 1, 1ሽ. For sure, any solution
would be infeasible if the number of containers
assigned to specific stack exceeds the number of rows
in the bay. The bay layout ሺߨሻ is equivalent to ݈݋ݏగ
and provides a more obvious form for evaluating
 whereas the feasibility ߨ has only one ݈݋ݏ గ. Each݈݋ݏ
condition is held.

During pickups, Last-In-First-Out policy is
applied. So, if the TC is not on the top of its stack, all
the BCs must be relocated prior to picking up the TC.

A New Hybrid Salp Swarm-simulated Annealing Algorithm for the Container Stacking Problem

91

These relocations are unproductive moves and should
be minimized. Therefore, to evaluate any ݈݋ݏ
considering the number of blocking containers and
number of relocations, the following criteria have
been proposed:
 ܷܲ: Number of unordered pairs in all stacks.

Every couple of adjacent containers in a stack
is considered unordered if the upper container
is blocking the other one (Boysen and Emde,
2016; Lehnfeld and Knust, 2014).

 ܫܤ : Number of badly placed containers. A
container is considered badly placed if it blocks
the container below it through all the stack not
only the adjacent one (Bacci et al., 2017; Boge
and Knust, 2020).

 ܴܰ : total number of relocations needed to
empty the bay, according to their pickup order.
It considers the relocations only and excludes
the retrieval ones (Ndiaye et al., 2014).

If the bay layout ሺߨሻ in Fig. 1 is considered, the
values of the ܷܲሺߨሻ	is 4 (container 4, 8, 6 and 5),
whilst the ܴܫሺߨሻ is 5 (container 4, 7, 8, 6 and 5). In
this paper, only the ܷܲ measure is considered.

So, formally the CSP can be described as: Find
ሺ݈݋ݏሻ for a given set ܩ , so that ܷܲሺ݈݋ݏగሻ is
minimum. Where, ݊ ൑ ௡ݏ ∗ .௡ݎ

4 THE PROPOSED APPROACH

The proposed approach is based on hybridization
between the Salp Swarm Algorithm (SSA) and the
Simulated Annealing (SA) algorithm to solve the CSP.
As the CSP is a discrete optimization problem, a new
version of the SSA is proposed for solving the discrete
optimization problems. To the best of our knowledge,
there is no reference to a discrete optimization version
of the SSA in current literature. Before presenting the
proposed approach, a brief about each of the
algorithms will be presented first, then the reason for
why hybridizing both algorithms is explained. Finally,
the proposed approach is presented.

4.1 Motivation of the Proposed
Approach

Although SSA has been proved to solve optimization
problems efficiently in comparison with other
metaheuristics, but in most cases, it is trapped in local
optima (Sayed et al., 2018). Therefore, to overcome this
challenge and enhance the SSA performance, a new
hybrid algorithm called hybrid salp swarm-simulated
annealing algorithm is proposed to solve the CSP.

During this work SA controls the acceptance of
bad generated leaders through the discrete version of
the SSA. By this hybridization, a balance between
exploration done by the followers and exploitation by
the leader is achieved without trapping the leader and
the swarm into the local optima. The performance of
the proposed algorithm for solving the CSP has been
assessed by benchmark instances from the literature.
Experimental results illustrate that the proposed
algorithm is efficient and robust for the CSP.

4.2 Salp Swarm Algorithm

4.2.1 Salp Swarm Algorithm for Continuous
Optimization

Salp Swarm Algorithm (SSA) has been proposed
recently by a biological inspiration of the salp’s food
search mission in deep seas (Mirjalili et al., 2017). It
is developed mainly for solving continuous
optimization problems. SSA showed a good and
robust converging to the optimum solution. The
concept of the leader and followers are the main idea
of the SSA performance (Fig. 2) (Mirjalili et al.,
2017). The leader is the best agent of the swarm and
it is the first salp in the swarm chain. The leader salp
is updated with respect to the food source (the best
solution ever found). The leader guides the swarm as
every follower follows its superior (the adjacent
preceding salp) (Mirjalili et al., 2017).

(a) (b)

Figure 2: (a) a salp agent (b) swarm of salps.

Every salp agent ݔ is a candidate solution to the
optimization problem. So, the salp’s size (number of
dimensions) is equal to the number of variables
needed to be optimized. So, if the swarm consists of
ܰܲ salps where every salp has ݊ dimensions, ݔ௝

௜ is
the ݆௧௛ dimension of the ݅௧௛ salp, where ݅	 ൑ ܰܲ and
݆ ൑ ݊.

The SSA algorithm can be summarized as
follows: Initially, a number of ܰܲ salps are generated
randomly and evaluated based on the evaluation
criteria of the solution. The salp with the best fitness

Leader

ICORES 2020 - 9th International Conference on Operations Research and Enterprise Systems

92

after evaluation is promoted to be the leader ݔଵ. The
food source ܨ is the stored value of the best salp (i.e.
solution) ever found. So, in the beginning, it takes the
value of the leader salp.

Then, until reaching the termination condition, the
swarm is updated using numerical equations. As
stated earlier, the leader salp agent is updated with
respect to the food source ܨ. Equation (1) is used for
updating the leader position.

௝ݔ
ଵ ൌ ቐ

௝ܨ ൅ ܿଵ ቀ൫ݑ ௝ܾ െ ݈ ௝ܾ൯ܿଶ ൅ ݈ ௝ܾቁ , ܿଷ ൒ 0.5

௝ܨ െ ܿଵ ቀ൫ݑ ௝ܾ െ ݈ ௝ܾ൯ܿଶ ൅ ݈ ௝ܾቁ , ܿଷ ൏ 0.5
 (1)

The exploration effectiveness of the SSA depends

mainly on the coefficient ܿଵ and it is generated in
each iteration by Equation (2), where ݐ is the current
time and ܶ is the maximum run time which after it the
algorithm stops. The value of ܿଵ decreases
exponentially with time leading to explore more
spaces at the beginning of the search and then limit
the search gradually iteration after iteration.

The upper and lower values for each dimension ݆
are represented as ݑ ௝ܾ and ݈ ௝ܾ respectively.
Parameters ܿଶ and ܿଷ control the search direction to
be balanced between both sides of the food source.
They are random number generated every iteration in
the interval [0, 1].

ܿଵ ൌ 2݁ିቀ
ସ௧
் ቁ

మ

 (2)

The followers are updated using Newton’s law of

motion. Equation (3) updates the value of each
follower agent, where ݅	 ൒ 	2. The new follower salp
value will be as the halfway between the new superior
salp agent ݔ௜ିଵ and the old salp agent.

௝ݔ́
௜ ൌ

1
2
൫ݔ௝

௜ ൅ ௝ݔ
௜ିଵ൯ (3)

After each iteration, the food source is updated

when a new better solution is found. At the end the,
the food source value is returned as the best solution.

4.1.2 Salp Swarm Algorithm for Discrete
Optimization

In SSA, Equation (1) and (3) are responsible for
updating the leader and the follower agents. These
two equations can be applied to continuous
optimization problems only when the values of
solutions are continuous numbers.

As stated earlier, the solution of CSP is an
assignment of each container ݃ ∈ ܩ to a stack ݏ ∈
ܵ ൌ ሼ1, 2, … , ௡ሽݏ satisfying that ݓ௦௢௟ሺݏሻ ൑ ௡ݎ where
ݏ ሻ is the number of occurrences of stackݏ௦௢௟ሺݓ in
 .݈݋ݏ

The CSP is a Combinatorial Optimization
Problem (COP). Considering Fig. 1, a solution ݈݋ݏగ
associated with the problem input ܩ is illustrated
again in Fig. 3. A new solution ݈݋ݏగሖ can be generated
by swapping any two stacks’ positions which means
assigning new two stacks to the corresponding two
containers. As an example, ݈݋ݏగሖ means that ݏሺ5ሻ ൌ 1
and ݏሺ9ሻ ൌ 3	 instead of ݏሺ5ሻ ൌ 3 and ݏሺ9ሻ ൌ 1 in
the previous solution ݈݋ݏగ.

In the original SSA, Equation (1) updates the
leader salp ݔଵ to search around the food source ܨ .
The coefficient ܿଶ guarantees the random search
around the food source ܨ while the coefficient ܿଵ
determine how far the leader salp ݔଵ go from the food
source ܨ to find new solutions (i.e. exploration). The
coefficient ܿଷ balances the search direction to
positive infinity or negative infinity which has no
meaning for COP.

 4 3 7 6 8 1 9 5 2 ܩ

 గ 3 3 1 2 2 3 2 1 1݈݋ݏ

గሖ݈݋ݏ 3 1 3 2 2 3 2 1 1

Figure 3: a representation of CSP solutions with its input ܩ.

Considering any COP generally, a new strategy is
proposed to update the leader salp agent with respect
to the food source instead of Equation (1).

Leader Update
Strategy (LUS)

Update ݔଵ by performing a
number of ܿଵ pair swap of any
two random dimensions of the
food source ܨ.

By using LUS, the same concept of updating the

leader salp ݔଵ is preserved. The coefficient ܿଵ is the
same while ܿଶ is represented in the LUS by the
random pair selected for the pair swap process.

However, based on trial experiments, a
modification to Equation (1) is performed and ܿଵ will
be updated according to Equation (4). Equation (4) is
plotted in Fig. 4 for a value of ܶ ൌ 30. Fig. 4 depicts
that Equation (4) allows the SSA to expand its search
space gradually until reaching a maximum value in
about the third of the maximum time. Then, it

A New Hybrid Salp Swarm-simulated Annealing Algorithm for the Container Stacking Problem

93

intensifies the search space be limiting the search
space gradually until the end.

ܿଵ ൌ ቀି݁ݐ2
ଶ௧
் ቁ

మ

 (4)

Figure 4: Plot of Equation 4 for ܶ ൌ 30.

After performing a number of ܿଵ random pair
swaps on the food source ܨ , a new leader salp is
generated. Also, a number of ܿଵ െ 1 new salps are
generated through the updating process. As every pair
swap performed, a new salp will be generated until
performing all the ܿଵ pair swaps.

In this paper, during updating the leader salp, the
evaluation of each generated salp is considered. If any
generated salp is better than the old leader, it is
assigned as a new leader salp on the spot and the
updating process is completed by updating this new
leader salp.

For updating the follower salps, a new strategy is
also proposed producing the same effect that
Equation (3) does.

For any two salps with ݊ size, one of them can be
transformed into the other by performing at most ݊
pair swaps. This is applicable since the constituents
of the salp (i.e. number of stacks repeated ݎ௡ times)
are the same, the only change will be the assignment
of these stacks to containers.

Equation (3) generates the new follower salp ́ݔ௜
by taking the average of the values of its new superior
 ௜. The followerݔ ௜ିଵ salp and the old follower salpݔ
update strategy (FUS) suggests performing half of the
pair swaps needed to move from the old ݔ௜ to the new
 .௜ିଵݔ

Follower Update
Strategy (FUS)

Update ݔ௜ by performing
half of the pair swaps to
move from the old salp to the
new superior salp.

Fig. 5 illustrate the follower update strategy

(FUS). The target is to move half the way from the
old salp ݔ௜ to the new superior salp ݔ௜ିଵ. So, the first

half of the old salp ݔ௜ is considered to have pair swaps
to generate the first half of the new superior salp ݔ௜ିଵ.
In each step, the necessary pair swap is filled with
grey.

 ௜ିଵ 3 2 1 2 2 1 3 1 3ݔ

 ௜ 1 3 3 2 2 3 2 1 2ݔ

 ⇩

 3 1 3 2 2 3 2 1 2

 ⇩

 3 2 3 1 2 3 2 1 2

 ⇩

 3 2 1 3 1 1 2 1 2

 ⇩

ݓ݁݊ ௜ 3 2 1 2 3 3 2 1 2ݔ

Figure 5: Illustration of the FUS.

The original SSA is accepting the new generating
salps (leader and follower) even the solution is not
improved.

In this paper, the generated salps will be accepted
even if they are not better solutions except the leader.
The leader is replaced only by a better salp generated
from updating any salp of the swarm. Trail
experiments showed that accepting bad leader salp
directs the swarm away from the food source even
with updating the leader with respect to the food
source. Also, accepting bad followers can’t be
abandoned for investigating the way from the old
search space to the new one through iterations.

By using this approach, the acceleration of the
SSA is increased by updating rapidly the leader salp.
And that will direct all the swarm to the global
optima. Accepting the new generated follower salps
increase the exploration range for the swarm, but that
was not enough to escape from the local optima. That
was solved using the SA.

4.2 Simulated Annealing

Simulated Annealing (SA) is a powerful
metaheuristic that used for solving large COPs based
on the simulation of the annealing of solids process
(Van Laarhoven and Aarts, 1987).

The basic idea of SA is to accept bad solutions at
the beginning of the search by a given probability,
which may lead to better solutions after a while. This
acceptance probability decreases with time utilizing
the concept of solids cooling during annealing
process. The temperature value ሺܶ݁ሻ controls the

0

5

10

15

0 5 10 15 20 25 30

c 1

t

ICORES 2020 - 9th International Conference on Operations Research and Enterprise Systems

94

acceptance probability of bad solutions during the
search process as in Equation (5), where ሺΔሻ is the
difference between the finesses of the considered
solutions.

ܲ ൌ ݁ିቀ
∆
்௘ቁ (5)

At the beginning of the search process, a higher

relatively temperature value is assigned. This initial
temperature ܶ݁௜௡௧ is reduced by the so called
“cooling procedure” through every cooling step. The
cooling procedure is executed by Equation (6), where
 is the cooling factor. The temperature is reduced ߙ
after a number of ܿݏ iterations.

ܶ݁ ൌ ߙ ∗ ܶ݁ (6)

A reheating process may be needed. If the

temperature value drops below a specific value ܶ ௙݁௜௡,
the temperature is set to its initial value (Hussin and
Stützle, 2014).

4.3 The Proposed SSSAA Algorithm

New hybrids of the existing algorithms are being
developed to solve different optimization problems.
In this paper, our new version of the salp swarm
algorithm for COPs is hybridized with the simulated
annealing algorithm. It is called by SSSAA which
merges the salp swarm algorithm (SSA) with the
simulated annealing (SA) for updating the leader salp
only. Further, the new hybrid algorithm is detailed as
follows:

Step 1: Population Initialization.

A population of a number of ܰܲ salps is
randomly generated. Each salp ݔ௜ is a random vector
of ݊ dimensions. For the CSP, the values of the salp
are a random assignment of bay stacks to the
containers of ܩ.

Step 2: Evaluation.

Every salp is evaluated based on the fitness
function used for the problem. For the CSP, the
fitness of every salp is measured by ܷܲሺߨ௫ሻ as
explained earlier. The swarm is sorted and the salp
with the best fitness function so far is assigned to
be the leader salp and the rest are followers with
descending superiority. The food source is
assigned as the best salp ever found. At the end of
this step, the leader salp’s value is stored.

Step 3: Main Loop.

The main loop is started after the initialization and
evaluation steps. It begins with defining the food
source ሺܨሻ as the best salp found through the
execution. After that, the salp swarm is updated until
reaching the stopping condition.

Step 4: Updating the Leader Salp.

All the salps are updated at each iteration through
the main loop. The leader salp ሺݔଵሻ is updated with
respect to the food source ሺܨሻ. The ሺܿଵሻ coefficient
value is calculated first using Equation (4). Then, the
LUS is used.

The LUS performs a number of pair swaps equal
to ܿଵ . After each pair swap a new leader salp is
generated. The corresponding fitness function of this
new leader salp is evaluated. This new leader salp is
accepted instantly if it has a lower fitness value than
the previous one. If it hasn’t, it is rejected or accepted
based on the SA probability. A leader with higher
fitness is accepted as a new leader salp not a food
source ܨ of course. This evaluation and accepting or
not process is repeated until all the ܿଵ pair swaps is
finished.

Step 5: Updating the Follower Salps.

Each follower salp is updated with respect to its
superior. The updated follower salp ሺ݊݁ݓ	ݔ௜ሻ is
generated from the old value follower salp ሺݔ௜ሻ by
performing the FUS with respect to the its new
superior ሺݔ௜ିଵሻ where ݅ ൑ 2.

Step 6: Stopping Condition.

The main loop is repeated updating the swarm
based on Step 3 and 4 until the time of execution
exceed the value of ܶ . ܶ	 is set to equal to the ݊
seconds (i.e. number of containers). So, if an instance
has a dimension of 30 containers, the algorithm will
stop after 30 seconds. The food source is returned as
the best solution found for the problem.

All the parameters’ values of SSSAA are
summarized in Table 1.

Table 1: SSSAA parameters’ values.

Parameter Value

ܰܲ 10

௙ܶ௜௡ 0.01

 100 ݏܿ

 0.9 ߙ

A New Hybrid Salp Swarm-simulated Annealing Algorithm for the Container Stacking Problem

95

The pseudo code of the SSSAA is as follows:

SSSAA
1: For ݅ ൌ 1:ܰܲ
௜ݔ :2 ൌ containers	݊	of	stacking	݉݋݀݊ܽݎ
௜ݐ݅ܨ :4 	ൌ ௜ሻݔሺ	݁ݐܽݑ݈ܽݒ݁	
5: End
6: ܶ݁ ൌ ܶ݁௜௡௧
7: While ݐ ൏ ܶ
ܨ :8 ൌ ݐ݅ܨwithmin	௜ݔ
ிݐ݅ܨ :9 ൌ minݐ݅ܨ
10: Update ܿଵ with Equation (4)
11: For ݅ ൌ 1:ܰܲ
12: If ݅ ൌൌ 1
݆	ܚܗ۴ :13 ൌ 1: ܿଵ
14: ܿଶ ൌ stacks	of	pair	݉݋݀݊ܽݎ
15: new	ݔଵ ൌ ܿଶ	swap	ଵafterݔ
ଵݐ݅ܨ_ݓ݁݊ :16 	ൌ ଵሻݔ	ሺnew	݁ݐܽݑ݈ܽݒ݁	
17: If ݊݁ݐ݅ܨ_ݓଵ< ݐ݅ܨଵ
ଵݔ :18 ൌ 	new	ݔଵ
ଵݐ݅ܨ :19 ൌ ଵݐ݅ܨ_ݓ݁݊
20: Else
21: Δ ൌ ଵݐ݅ܨ -ଵݐ݅ܨ_ݓ݁݊
22: Calculate ܲ	with Equation (5)
23: If rand < ܲ
ଵݔ :24 ൌ 	new	ݔଵ
ଵݐ݅ܨ :25 ൌ ଵݐ݅ܨ_ݓ݁݊
26: End
27: End
ݏܿ :28 ൌ ݏܿ ൅ 1
29: IF ܿݏ ൌ 100 ∗ ݊
ݏܿ :30 ൌ 0
31: Update ܶ݁ with Equation (6)
32: IF ܶ݁ ൏ ܶ ௙݁௜௡
33: ܶ݁ ൌ ܶ݁௜௡௧
34: End
35: End
36: End
37: Else
38: update ݔ௜ using FLU
୧ݐ݅ܨ :39 	ൌ ௜ሻݔሺ݁ݐܽݑ݈ܽݒ݁	
40: End
41: End
42: End
43: Return ܨ

5 COMPUTATIONAL RESULTS

The SSSAA was coded using MATLAB 2017b and
was run on a PC equipped with an Intel(R) Core(TM)
i5-4200M CPU @ 2.5 GHz and 8 GB RAM under the
Windows 10 operating system.

To test the performance of the SSSAA, the set of
benchmark instances from Boge and Knust, 2020
were considered. They solved each instance with a
MIP formulation for the fitness function ܷܲ
imposing a time limit of 30 minutes. They stated that
only some of these instances were solved to
optimality within the time limit.

The characteristics of the benchmark instances are
as shown in Table 2. The number of containers to be
stacked is ݊, while ݏ௡ and ݎ௡ determine the size of the
target bay. When the bay isn’t filled completely with
the ݊ containers i.e. ݊ ൏ ௡ݏ ∗ ௡, ݊ is marked with anݎ
asterisk (∗). Each row in the table represents a group of
20 instances having the same characteristics. The
fourth column in the table defines the number of
instances that have been verified to be solved to
optimally out of the 20 instances according to Boge
and Knust, 2020. They also have reported the average
times of getting the optimal solution. For some of the
instances, the maximum of 30 minutes wasn’t enough
to reach the optimal solutions. The average fitness
function ሺܷܲሻ and the average times in seconds of
each 20 instances are reported in the fifth columns. The
larger instances with ݊	 ൌ 	120 are discarded through
our experiments as practicality, the maximum bay
dimensions are 8 stacks with 6 rows corresponding to
the yard crane reachability (Gheith et al., 2016).

In the sixth column of Table 2, the results of the
new version of the SSA and the corresponding times
are reported. It is evident that the SSA results were so
far from the optimal solutions due to the reasons
stated earlier in section 4.

The SSSAA robust performance can be observed
from the results in the seventh column of Table 2. The
hybrid algorithm results are so close to the optimal
solutions. Hybridization of the new version of SSA
with SA has improved its performance. The average
times of the SSSAA is challenging for large instances
(݊ ൌ 60) and they may be considered high compared
to the MIP times especially for the small size instance
where݊	 ∈ ሼ30, 40ሽ. As the average values can’t be
guaranteed as a performance measure, a second
evaluation may be needed.

The second evaluation was performed for the
individual instances of the same instance groups.
Table 3 reported the difference in the fitness function
value between the SSSAA value and the best value
reported by MIP in Boge and Knust, 2020. This
difference is underlined if it is more than zero.

Table 3 demonstrates the SSSAA capability of
finding the reported best solution for most of the
instances in a challenging time.

In Table 2, the MIP average times were lower than
the SSSAA ones especially for ݊ ∈ ሼ30, 40ሽ .
However, there are some individual instances needed
times to be solved by MIP more than the SSSAA and
the resulted fitness function values ሺܷܲሻ were the
same. Each such instance was highlighted by grey in
Table 3 illustrates that sometimes SSSAA can find
the same solutions produced by MIP but in less time.

ICORES 2020 - 9th International Conference on Operations Research and Enterprise Systems

96

Table 2: The average solutions’ UP fitness for SSSAA compared with optimal solutions.

 ௡ Verݎ ௡ݏ ݊

MIP (Boge and
Knust, 2020)

SSA

SSSAA

ܷܲ time

ܷܲ time

ܷܲ time

30 5 6 20 4 1.4 5.30 30 4 30

30 6 5 20 2.9 0.1 5.00 30 2.95 30

∗30 8 4 20 1.05 0.1 3.15 30 1.1 30

30 10 3 20 0.4 9.9 1.50 30 0.4 30

40 5 8 20 4.9 0.2 7.55 40 4.9 40

∗40 7 6 20 2.7 0.4 5.9 40 2.75 40

40 8 5 20 1.8 2.5 5.25 40 1.95 40

40 10 4 20 0.75 254.0 3.4 40 0.85 40

60 6 10 20 6.8 0.9 11.4 60 7.15 60

60 10 6 18 2.4 183.8 8.85 60 3.25 60

60 12 5 13 1.05 664.3 7.95 60 1.6 60

60 15 4 11 0.5 811.5 4.85 60 0.8 60

60 20 3 17 0.15 270.9 1.35 60 0.15 60

Table 3: Performance of SSSAA for individual instances.

Instances group Difference between SSSAA and the optimal solution for every instance

 ௡ 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20ݎ ௡ݏ ݊

30 5 6 0

30 6 5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

∗30 8 4 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

30 10 3 0

40 5 8 0

∗40 7 6 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

40 8 5 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 0 0

40 10 4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0

60 6 10 0 0 0 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0

60 10 6 0 1 1 0 1 1 1 1 1 1 0 2 1 1 1 1 1 1 0 1

60 12 5 0 0 1 0 1 0 0 1 0 1 0 0 2 1 1 0 0 1 1 1

60 15 4 0 0 0 0 0 0 1 1 1 0 0 0 0 1 1 0 1 0 0 0

60 20 3 0

A New Hybrid Salp Swarm-simulated Annealing Algorithm for the Container Stacking Problem

97

6 CONCLUSIONS

In this paper, a new version of the salp swarm
algorithm for discrete optimisation problems is
propose. Then it is hybridized to develop a new
hybrid salp swarm simulated annealing algorithm
(SSSAA). It integrated the simulated annealing (SA)
with the new version of the salp swarm algorithm
(SSA) for overcoming the local optima trapping. The
SA enhanced the exploitation while updating the
leader salp of the swarm. The SSSAA performance
was tested by comparison to the best reported
solutions of the container stacking problem (CSP). As
the CSP is an operational process, it needed to be
performed frequently in a relatively fast time. The
SSSAA was capable of finding the optimal solution
for most of the tested instances in a relatively very
short time with respect to the mixed integer
programming reported in the literature. The
computational results reveal that SSSAA is a very
fast, efficient and capable tool for the CSP.

REFERENCES

Azab, A., Karam, A., and Eltawil, A., 2017. Impact of
collaborative external truck scheduling on yard
efficiency in container terminals. In International
Conference on Operations Research and Enterprise
Systems, 105-128, Springer, Cham.

Bacci, T., Mattia, S., and Ventura, P., 2017. Some
complexity results for the minimum blocking items
problem. In International Conference on Optimization
and Decision Science (pp. 475-483). Springer, Cham.

Bazzazi, M., Safaei, N., and Javadian, N., 2009. A genetic
algorithm to solve the storage space allocation problem
in a container terminal. Computers & Industrial
Engineering, 56(1), 44-52.

Boge, S., and Knust, S., 2020. The parallel stack loading
problem minimizing the number of reshuffles in the
retrieval stage. European Journal of Operational
Research, 280(3), 940-952.

Böse, J. W., 2011. General considerations on container
terminal planning. In Handbook of terminal planning,
3-22, Springer, New York, NY.

Boysen, N., and Emde, S., 2016. The parallel stack loading
problem to minimize blockages. European Journal of
Operational Research, 249(2), 618-627.

Bruns, F., Knust, S., and Shakhlevich, N. V., 2016.
Complexity results for storage loading problems with
stacking constraints. European Journal of Operational
Research, 249(3), 1074-1081.

Caserta, M., Schwarze, S., and Voß, S., 2012. A
mathematical formulation and complexity
considerations for the blocks relocation problem.
European Journal of Operational Research, 219(1),
96-104.

Chen, L., and Lu, Z., 2012. The storage location assignment
problem for outbound containers in a maritime
terminal. International Journal of Production
Economics, 135(1), 73-80.

Cheng, M. Y., and Prayogo, D., 2014. Symbiotic organisms
search: a new metaheuristic optimization algorithm.
Computers & Structures, 139, 98-112.

Covic, F., 2017. Re-marshalling in automated container
yards with terminal appointment systems. Flexible
Services and Manufacturing Journal, 29(3-4), 433-503.

Covic, F., 2018. A literature review on container handling
in yard blocks. In International Conference on
Computational Logistics (pp. 139-167). Springer,
Cham.

Dekker, R., Voogd, P., and van Asperen, E., 2007.
Advanced methods for container stacking. In Container
terminals and cargo systems (pp. 131-154). Springer,
Berlin, Heidelberg.

Deng, T., 2013. Impacts of transport infrastructure on
productivity and economic growth: Recent advances
and research challenges. Transport Reviews, 33(6),
686-699.

Elkassas, A. M., and ElWakil, M., 2019. Facility Layout
Problem Using Salp Swarm Algorithm. In 2019 6th
International Conference on Control, Decision and
Information Technologies (CoDIT) (pp. 1859-1864).
IEEE.

ElWakil, M., Gheith, M., and Eltawil, A., 2019. A New
Simulated Annealing Based Method for the Container
Relocation Problem. In 2019 6th International
Conference on Control, Decision and Information
Technologies (CoDIT), (pp. 1432-1437). IEEE.

Forster, F., and Bortfeldt, A., 2012. A tree search procedure
for the container relocation problem. Computers &
Operations Research, 39(2), 299-309.

Gharehgozli, A. H., Yu, Y., de Koster, R., and Udding, J.
T., 2014. A decision-tree stacking heuristic minimising
the expected number of reshuffles at a container
terminal. International Journal of Production
Research, 52(9), 2592-2611.

Gheith, M. S., Eltawil, A. B., and Harraz, N. A., 2014a. A
rule-based heuristic procedure for the container pre-
marshalling problem. In 2014 IEEE International
Conference on Industrial Engineering and Engineering
Management (pp. 662-666). IEEE.

Gheith, M. S., Eltawil, A. B., and Harraz, N. A., 2014b. A
rule-based heuristic procedure for the container pre-
marshalling problem. In 2014 IEEE International
Conference on Industrial Engineering and Engineering
Management (pp. 662-666). IEEE.

Gheith, M., Eltawil, A. B., and Harraz, N. A., 2016. Solving
the container pre-marshalling problem using variable
length genetic algorithms. Engineering Optimization,
48(4), 687-705.

Guerra-Olivares, R., González-Ramírez, R. G., and Smith,
N. R., 2015. A heuristic procedure for the outbound
container relocation problem during export loading
operations. Mathematical Problems in Engineering.

He, Y., Wang, A., Su, H., and Wang, M. (2019). Particle
Swarm Optimization Using Neighborhood-Based

ICORES 2020 - 9th International Conference on Operations Research and Enterprise Systems

98

Mutation Operator and Intermediate Disturbance
Strategy for Outbound Container Storage Location
Assignment Problem. Mathematical Problems in
Engineering, 2019.

Hu, W., Wang, H., and Min, Z., 2014. A storage allocation
algorithm for outbound containers based on the outer–
inner cellular automaton. Information Sciences, 281,
147-171.

Hussin, M. S., and Stützle, T., 2014. Tabu search vs.
simulated annealing as a function of the size of
quadratic assignment problem instances. Computers &
operations research, 43, 286-291.

Kang, J., Oh, M. S., Ahn, E. Y., Ryu, K. R., and Kim, K.
H., 2006. Planning for intra-block remarshalling in a
container terminal. In International Conference on
Industrial, Engineering and Other Applications of
Applied Intelligent Systems (pp. 1211-1220). Springer,
Berlin, Heidelberg.

Kim, K. H., and Park, K. T., 2003. A note on a dynamic
space-allocation method for outbound containers.
European Journal of Operational Research, 148(1),
92-101.

Kozan, E., and Preston, P., 2006. Mathematical modelling
of container transfers and storage locations at seaport
terminals. OR Spectrum: Quantitative Approaches in
Management, 28(4), 519-537.

Lee, Y., and Hsu, N. Y., 2007. An optimization model for
the container pre-marshalling problem. Computers &
Operations Research, 34(11), 3295-3313.

Lehnfeld, J., and Knust, S., 2014. Loading, unloading and
premarshalling of stacks in storage areas: Survey and
classification. European Journal of Operational
Research, 239(2), 297-312.

Merckx, F., 2005. The issue of dwell time charges to
optimize container terminal capacity. In Proceedings
IAME 2005 Annual Conference, Limassol, Cyprus, 23-
25 June 2005.

Mirjalili, S., Gandomi, A. H., Mirjalili, S. Z., Saremi, S.,
Faris, H., and Mirjalili, S. M., 2017. Salp Swarm
Algorithm: A bio-inspired optimizer for engineering
design problems. Advances in Engineering Software,
114, 163-191.

Moussi, R., Ndiaye, N. F., and Yassine, A. (2012, March).
Hybrid genetic simulated annealing algorithm
(HGSAA) to solve storage container problem in port. In
Asian Conference on Intelligent Information and
Database Systems (pp. 301-310). Springer, Berlin,
Heidelberg.

Ndiaye, N. F., Yassine, A., and Diarrassouba, I., 2014.
Hybrid Algorithms to Solve the Container Stacking
Problem at Seaport. GSTF Journal of Mathematics,
Statistics & Operations Research, 2(2).

Park, C., and Seo, J., 2009. Mathematical modeling and
solving procedure of the planar storage location
assignment problem. Computers & Industrial
Engineering, 57(3), 1062-1071.

Park, T., Choe, R., Kim, Y. H., and Ryu, K. R. (2011).
Dynamic adjustment of container stacking policy in an
automated container terminal. International Journal of
Production Economics, 133(1), 385-392.

Preston, P., and Kozan, E., 2001. An approach to determine
storage locations of containers at seaport terminals.
Computers & Operations Research, 28(10), 983-995.

Rekik, I., and Elkosantini, S., 2019. A Multi Agent System
for the online Container Stacking in Seaport terminals.
Journal of Computational Science.

Rekik, I., Elkosantini, S., and Chabchoub, H., 2018. A case
based heuristic for container stacking in seaport
terminals. Advanced Engineering Informatics, 38, 658-
669.

Sayed, G. I., Khoriba, G., and Haggag, M. H, 2018. A novel
chaotic salp swarm algorithm for global optimization
and feature selection. Applied Intelligence, 48(10),
3462-3481.

Schwarze, S., Voß, S., Zhou, G., and Zhou, G., 2012.
Scientometric analysis of container terminals and ports
literature and interaction with publications on
distribution networks. In International Conference on
Computational Logistics, (pp. 33-52). Springer, Berlin,
Heidelberg.

Sriphrabu, P., Sethanan, K., and Arnonkijpanich, B., 2013.
A solution of the container stacking problem by genetic
algorithm. International Journal of Engineering and
Technology, 5(1), 45.

Steenken, D., Voß, S., and Stahlbock, R, 2004. Container
terminal operation and operations research-a
classification and literature review. OR spectrum,
26(1), 3-49.

Tang, L., Jiang, W., Liu, J., and Dong, Y., 2015. Research
into container reshuffling and stacking problems in
container terminal yards. IIE Transactions, 47(7), 751-
766.

UNCTAD/RMT, 2019. Review of Maritime Transport
2019, United Nations publications. New York.

Van Laarhoven, P. J., and Aarts, E. H., 1987. Simulated
annealing. In Simulated annealing: Theory and
applications, 7-15, Springer, Dordrecht.

Zhang, C., Liu, J., Wan, Y. W., Murty, K. G., and Linn, R.
J., 2003. Storage space allocation in container
terminals. Transportation Research Part B:
Methodological, 37(10), 883-903.

A New Hybrid Salp Swarm-simulated Annealing Algorithm for the Container Stacking Problem

99

