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Abstract: This paper proposes a new approach for the identification of hand movements in order to control prosthetic 
hand. sEMG signals were used to identify movements by using two time frequency transforms: Short Time 
Fourier Transform and Stockwell transform. Then, we apply Singular Value Decomposition (SVD) to 
decrease the features dimension and to form the final features’ vector. These extracted features were used by 
two kinds of classifiers: K nearest neighbours and linear discriminant analysis. Finally, we numerically study 
these methods on a database of 10 subjects and 17 hand gestures. 

1 INTRODUCTION 

Prosthetic hand is an important help for people who 
lost their upper limb in order to restore their 
biological hand functionality. 

Recognizing multiple hand movements 
depending on sEMG signals coming from 
electromyography sensors is a challenging task 
especially with adding more movements to study 
which makes classification rate worse significantly. 

Surface electromyography signal (sEMG) is a 
bio-electrical signal generated along with skeletal 
muscles activities, and it differs according to 
movement controlled by these muscles, and that 
makes this signal very useful in many applications as 
human-machine interaction, rehabilitation of 
handicapped people, and controlling limb prosthetic 
(Raez et al., 2006). 

The sEMG signal has been widely studied in the 
literature. However, it is still difficult to apply it to 
control prosthetic arm. That comes from the 
complexity in human hand movements which has 
more than 20 degrees of freedom and from the non- 
stationary nature of the signal. The sEMG amplitude 
ranges from 50 μV to 10 mV and frequency spec-trum 
lies between 20 Hz and 500 Hz (Meselmani et al., 
2016). 

Recording sEMG is performed by placing several 
electrodes on the skin, and different studies were done 
to obtain better results in this area. Over the past 
decades, different electrode placement strategies have 
been investigated. Some researchers study the use of 
multichannel electrode arrays or high-density EMG 

(large number of electrodes) strategy, while others 
explore the precise anatomical positioning approach 
(Hermens et al., 1997). 

In pattern recognition based control, the most 
important steps are feature extraction and 
classification. Feature extraction involves 
transforming raw sEMG data into feature vector that 
is used to represent specific movement. Several 
features extractions methods were studied in this area 
which can be divided into three major domains: time 
domain features, frequency features, and time-
frequency features. Some of time domain features 
include mean absolute value (Zecca et al., 2002), zero 
crossings (ZC), slope sign changes (SSC) (Englehart 
et al., 2003). These methods are effective but they are 
unable to detect the high frequency variations which 
occur in EMG signals due to dynamic movements, 
and that limits their ability for improvements of 
movements’ recognition. Thus time-frequency 
domain methods came into picture. 

Time-frequency domain features contains the 
combination of temporal and frequency information 
(Sejdi et al., 2009; Chowdhury et al., 2013; Nazmi et 
al., 2016). These features characterize the signal in 
time-frequency plane which allows an accurate 
description of the variability of frequency over time, 
providing plentiful non-stationary information of the 
EMG signals. 

Short Time Fourier Transform (STFT) is a well-
known time-frequency method which performs a 
mono-resolution analysis by applying a fixed size 
window on the signal. This can be considered as 
limitation in term of time-frequency resolution in 
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some cases of non-stationary signals. The Continuous 
Wavelet transform is another time-frequency method 
which perform a multi-resolution analysis by varying 
the scale of the mother wavelet according the 
analyzed frequency (Sun et al., 2015). The Discrete 
Wavelet Transform (DWT) performs a series of bank 
filter in order to explore the time-frequency content 
of the signal. CWT and DWT has been successfully 
applied on EMG signals (Sejdi et al., 2009; Canal et 
al., 2010). In this study, we apply the Stockwell 
Transform (ST) which can be considered as hybrid 
version between the STFT and the CWT (Stockwell 
et al., 1996). 

Classification of hand motions based on the 
extracted features can be performed by a large variety 
of methods such as linear discriminant analysis (Negi 
et al., 2016), support vector machines (Leon et al., 
2011), or artificial neural networks (Gonzalez-Ibarra 
et al., 2012). 

In this paper, we aim to use sEMG to identify 
hand movements patterns based on time-frequency 
features. We will use recorded sEMG signals from 
Ninapro Project (Atzori et al., 2014), and apply two 
time-frequency transforms on several data sets that 
belong to different subjects. Then we will decrease 
dimension of extracted features by applying singular 
value decomposition (SVD) method. Our features’ 
vector contains singular values and the most 
prominent time and frequency features, based on 
SVD (Hassanpour et al., 2004). Finally we will 
classify extracted features using two kinds of 
classifiers, and compare results achieved from each 
one. 

2 MATERIALS AND METHODS 

Data used in this study is recorded by surface 
electrodes placed on the arm of the subject, and each 
movement repeated several times, data is saved in 
matrix of dimension NxM, where N is the number of 
samples, and M is number of channels (electrodes) 

In this section, we will give a brief description 
about used time-frequency methods, then we will 
present the used SVD methodology to decrease 
features’ dimension. 

2.1 Features Extraction 

We applied two time-frequency transforms: the STFT 
and the ST. For each movement we apply this time-
frequency transform on every channel (electrode) 
signal, then after decreasing feature dimension, we 

combine all values in one features’ vector, and this 
vector will be used for classification. 

2.1.1 STFT 

Short-Time Fourier transform overcomes 
disadvantages of time domain by considering 
frequency variations over the time which is necessary 
for sEMG as it is stochastic and non-stationary signal. 
The STFT is applied in this paper in order to explore 
the frequency variation of the sEMG signal over the 
time. It applies a sliding window to the analyzed 
signal in which we consider the signal inside this 
window as stationary. Therefore, the Fourier 
transform can be applied in order to obtain the local 
spectrum: 

STFT(τ,f) = න ℎ(𝑡)𝑔(𝑡 − 𝜏)𝑒ିଶπft

ାஶ
ିஶ 𝑑𝑡   (1)

Where h is the original signal, t is time, τ and f 
presents time of local spectrum and Fourier 
frequency, respectively, and g(t) is the used window 
function. 

For comparison purposes, we chose a Gaussian 
window for STFT transform, in order to compare with 
ST. In addition the Gaussian window minimize the 
Heisenberg-Gabor relation which describes the 
compromise between the time and frequency 
resolution. Using the standard deviation σ, g(t) can be 
given as: 

𝑔(𝑡) = 1𝜎√2𝜋 𝑒ି௧మଶఙమ (2)

2.1.2 ST 

The Stockwell transform is a hybrid version between 
the STFT and the Continuous Wavelet Transform 
(CWT). It uses a multi-resolution Gaussian window 
by varying its standard deviation over the analysed 
frequencies (Moukadem et al., 2015). 

The ST can be derived from formula (1) by re- 
placing σ in equation (2) by 1/f. Then the window 
function can be expressed as follow: 

𝑔(𝑡) = 𝑓√2𝜋 𝑒ି௧మమଶ  (3)

Then the ST is defined as: 
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𝑆(τ,f) = න ℎ(𝑡) 𝑓√2𝜋 𝑒ି(௧ିఛ)మమଶ 𝑒ିଶπftdt
ାஶ
ିஶ  (4)

For each movement repetition, we get window of 
movement as matrix of size NxM where N is the 
number of samples, and M is number of electrodes. 
That gives M signals for each movement. 

To summarize, for an electrode k, we have one 
signal [Ck], on which we apply time-frequency 
transform T(Ck), and this will be our initial features’ 
matrix related to specific movement on specific 
channel. 

2.1.3 SVD 

The initial features’ matrix we get from time- 
frequency domain is high dimension, and to be useful 
in movement identification, we still need to re- duce 
its dimension and extract the most valuable 
components in it (Wolczowski et al., 2017). 

As we saw in initial features extraction, we get 
T(Ck) as initial time-frequency features on certain 
channel, and here we at first calculate SVD for this 
matrix: 𝑈𝛴𝑉* = 𝑆𝑉𝐷(𝑇(𝐶)) (5)

In order to keep the most important values of Vk 
and Uk, we compute their histogram over X bins 
denoted by Ṽk, Ũk and keep the two most important 
values. 

Then for each channel, the feature vector is Fk will 
be defined as: 𝐹 = {𝑠ଵ, 𝑠ଶ, ṽଵ , ṽଶ, ũଵ , ũଶ} (6)

Where s1
k, s2

k are first two singular values, and 
ṽ1

k, ṽ2
k are first two bins in Ṽk, also ũ1

k , ũ2
k are first 

two bins in Ũk. Finally the final feature vector of the 
observation will be: 𝐹 = {𝐹ଵ, 𝐹ଶ, . . . 𝐹ே} (7)

 
 
 

2.2 Classification 

We use our built features’ vector for identifying 
movements, this vector has 6xM values in different 
scales, so at first we normalize this vector so all 
values will be on scale [-1, +1]. In this study we use 
two kinds of classifiers to evaluate our extracted 
features; first one is K Nearest Neighbor (KNN) and 
second is Linear Discriminant Analysis (LDA). 

2.3 Main Algorithm 

The main algorithm is shown in figure 1, starting 
from raw sEMG data, 
 Data normalization: we first normalize the data so 

we get standard deviation 1, and mean values 0. 
The normalized data matrix D will be used in 
features extraction. 

 Time-frequency features extraction: we extract 
initial features on each channel. Tk=T(Ck) where 
T is the time-frequency transform we use, and Ck 
is signal coming from channel k. 

 Build feature vector: we calculate final partial 
feature vector Fk=SVD(Tk) on each channel based 
on singular values and histogram of left and right 
SVs, and then we get the final constructed feature 
vector of the movement F=[F1 F2 … Fm], 
compound of features’ vectors of movement on 
each channel. 

 Classification: use collected observations, to feed 
chosen classifiers and evaluated extracted 
features. We apply this process on two different 
time-frequency domains (STFT, ST) and two 
classifiers (KNN, LDA). 

3 RESULTS 

3.1 Data Acquisition 

In order to compare STFT with ST and KNN with 
LDA in the purpose of classifying hand gestures, we 
used database provided by Ninapro Project (Atzori et 
al., 2014). We chose exercise 1  from  database  2  as 
it  contains  17  different  basic  movements  of  fingers 

 
Figure 1: Main algorithm. 
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and wrist. The sEMG signals are provided together 
with their hand gestures. 

Each movement in exercise is repeated 6 times, 
where each subject was asked to repeat movement 
and hold position for 5 second, followed by 3 second 
of rest. The muscular activity is recorded by 12 
electrodes placed on subject’s arm, so the recorded 
sEMG data were saved into matrix D of size Nx12 
were N is recorded samples on channel. The sEMG 
signals are sampled at a rate of 2 kHz. 

3.2 Features and Classification 

Using the data described above, we will apply both 
STFT and ST on the raw data, and then we will build 
feature vector based on singular values and histogram 
of left and right SVs. 

In order to test the accuracy of our proposed 
method, we applied it on 10 subjects. The raw sEMG 
contains recorded samples on each channel for each 
movement. 

 
Figure 2: physical movement. On the left is movement 3. 
On the right is Movement 4 (Atzori et al., 2014). 

 
Figure 3: raw sEMG signal. On the left is movement 3 on 
channel 1. On the right is movement 4 on channel 1. 

For each channel signal, we calculate time- 
frequency transform. We use sampling frequency 2 
kHz, and with frequency rate between 1 and 200 Hz, 
as most sufficient sEMG frequencies varies in this 
range. For the STFT we choose value σ = 0. 005 
(equation (2)). 

 
Figure 4: STFT. On the left is movement 3 on channel 1. 
On the right is movement 4 on channel 1. 

 
Figure 5: ST. On the left is ST for movement 3 on channel 
1. On the right is ST for movement 4 on channel 1. 

The chosen value σ = 0. 005 promoted time 
resolution, while in the case of ST, it gives lower 
time- resolution for low frequencies (as you can see 
in figure 4 and 5) since the standard deviation of the 
Gaussian window in the time-domain varies as 1/f. 

We construct final features’ vector from SVD 
singular values and histogram of left and right values, 
then we combine results from all channels into one 
vector. 

As a result from previous steps, we get features’ 
vector of dimension 72 for each observation (as we 
have 12 channels, and for each we get 6 feature 
values). We use these observations’ features to train 
both KNN and LDA classifiers. 

Results are given in table 1. We use k-fold cross-
validation (with k=5) and record the mean accuracy 
of classifications. 

By using STFT as time-frequency transform we 
get mean accuracy rate 92.60% with KNN classifier, 
and we get 88.57% accuracy with LDA classifier. 

For S-Transform, we get mean accuracy 81.80% 
by using KNN classifier and 84.93% by using LDA. 

Table 1: Classification results, with best result for each 
subject in bold. 

Subject STFT ST 

Classification KNN LDA KNN LDA

Right Handed Male 93.14 87.25 77.45 75.49

Left Handed Female 90.19 88.24 78.63 83.53

Right Handed Male 96.08 91.18 87.25 90.20

Right Handed Male 91.18 92.16 85.29 85.29

Right Handed Male 92.16 88.24 78.43 87.25

Right Handed Male 90.39 82.35 76.47 88.23

Right Handed Male 96.08 94.12 78.43 82.35

Right Handed Male 94.20 88.24 88.47 86.39

Right Handed Male 92.44 85.25 80.67 84.40

Right Handed Female 90.20 88.64 86.82 86.59

Average 92.60 88.57 81.80 84.93
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For KNN classifier, we tried different values of K, 
where K in {1,3,5}, and we got best mean accuracy 
when K=1 with classification accuracy 92.60% then 
when K=3 with accuracy 88.16% when applied with 
STFT method. 

By looking on confusion matrix for classification 
of subject 3 dataset, we notice that classification fails 
to distinguish between two movements (4 and 5) and 
that increases error rate, as shown in figure 6. 

 
Figure 6: Confusion matrix, subject 3. 

In movement number 4 subject opens four fingers 
and in movement number 5 he opens five fingers, so 
these two movements are near to each other’s, and in 
fact it could be hard to classify unless we focus on 
getting more distinguished signals while doing data 
acquisitions. 

As result, with STFT time-frequency transform, 
we get better classification, and with adding 
histogram of SVD, classification results were 
significantly improved compared to similar study on 
this database (Anti et al., 2014) with classification 
rate 82.77% for 12 different movements. 

4 CONCLUSION 

In this study, we used two different time-frequency 
transforms to extract features of different movements 
of hand. The extracted features are evaluated by using 
two classifiers. 

For features extraction, we used novel method in 
dimension reduction and put both left and right SVs 

into consideration, by using first two bins in their 
histograms. 

Results show that using STFT with KNN has 
better results with improved classification accuracy 
92.60%. We improved classification accuracy 
obtained on same database, and we showed 
comparison between using two time-frequency 
transforms for features extraction. 

Future work will focus on adding more subjects to 
evaluate the proposed method. Another optimized 
time-frequency representation can be also applied and 
compared with current results. 
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