
An OAuth-based Authentication Mechanism for Open Messaging
Interface Standard

Hitesh Chander Monga1, Tuomas Kinnunen1, Avleen Malhi1 a, Asad Javed1 and Kary Främling1,2

1Department of Computer Science, Aalto University, Finland
2Department of Computer Science, Umeå University, Sweden

Keywords: Internet of Things, Open Messaging Interface, Open Data Format, Authentication, Authorization, OAuth2.

Abstract: The Internet of Things (IoT) security and privacy remain a major challenge, especially due to the highly
scalable and distributed nature of IoT networks. IoT security has an exceptionally wide scope which also
leads to the most demanding requirements needed for the widespread realization of many IoT visions. It
includes the tasks such as trusted sensing, computation, communication, privacy in terms of security scope. A
large number of industry-driven domain specific standards has been developed which hinder the development
of a single IoT ecosystem. O-MI and O-DF standards were previously proposed to address the challenge of
interoperability in IoT devices. This paper highlights and discusses the measures taken to enhance the security
of these standards by integration of OAuth 2.0 service provider functionality with the O-MI authentication
module along with the existing security module. The security architecture has been proposed which enhances
the security features by providing authorization without use of certificates. The implementation details of
the plug-in module for envisioned security model developed for the O-MI and O-DF standards have been
discussed.

1 INTRODUCTION

The Internet of Things (IoT) has become an inevitable
part of our daily lives by drawing an attention of many
researchers and industrialists. The latest press release
by Gartner1 forecasts that the enterprise and automo-
tive IoT market will expand to 5.8 billion endpoints
in 2020, which is about 21% increase from 2019. By
the end of 2019, around 4.8 billion endpoints are ex-
pected to be in use, with an increase of 21.5% from
2018. As IoT deployments increase continuously, the
need for handling the authentication and authorization
tasks to improve the data security in IoT communica-
tions also increase. Recently, many IoT frameworks
such as IBM BlueMix, AWS IoT, and Azure IoT have
been launched, and most of the industry-driven do-
main specific standards hinder the development of a
single IoT ecosystem. As discussed in (Yousefnezhad
et al., 2017), requiring a new web browser for each
website would be complicated. In the similar context,
it would be hard to imagine the current approach of
IoT connectivity. The authors (Yousefnezhad et al.,

a https://orcid.org/0000-0002-9303-655X
1[Online]. Available: https://www.gartner.com/en/

newsroom/press-releases/

2017) state that the IoT community must follow the
example of the World Wide Web, in which the unified
protocols, TCP/IP and HTTP/HTML boosted the In-
ternet to spread all over the world. The Open Group
platform has developed the open messaging standards
for solving the interoperability problem in communi-
cations among different IoT devices. The Open Mes-
saging Interface (O-MI) and Open Data Format (O-
DF) standards are proposed as the application-level
interface to make a complete and flexible standard to
support a variety of organizational needs and struc-
tures (Kubler et al., 2014). The security model for
these standards provide the suitable access control
and authentication mechanisms. As stated in (Onl,
d), the OAuth 2.0 authorization protocol enables a
third-party application to obtain restricted access to
an HTTP service mainly by two methods, either on
behalf of a resource owner or on an end user by set-
ting up an approval interaction for user between the
resource owner/end user and the HTTP service, or by
allowing the third-party application to obtain access
on its own behalf. Various roles, grants and termi-
nologies of the OAuth 2.0 flow have been discussed
in Subsection 4.

The main contribution of this paper is to enhance

216
Monga, H., Kinnunen, T., Malhi, A., Javed, A. and Främling, K.
An OAuth-based Authentication Mechanism for Open Messaging Interface Standard.
DOI: 10.5220/0008970902160225
In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 1, pages 216-225
ISBN: 978-989-758-395-7; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



the existing security for O-MI/O-DF standards, pro-
viding better authentication plug-in module, access
control, and authorization. We can use this new pro-
posed security module without any external provider,
specifically with the OAuth 2.0 authentication proto-
col. In contrast to the earlier security module which
uses client certificates, there is a wider user commu-
nity for OAuth 2.0 (used in the new version of secu-
rity module) instead of client certificates to support
the new development in IoT domain.

The rest of the paper is organized as follows. Sec-
tion II describes the background and related work.
Section III explains O-MI/O-DF standards along with
comparison between various standards, the existing
security module and the vision for enhancing it. Sec-
tion IV presents OAuth 2.0 details and its advantages
while Section V explains the proposed security archi-
tecture with added security features as well as its im-
plementation details. Section VI presents the business
use cases and Section VII provides the discussions for
the proposed security plug-in module along with the
limitations. Finally, Section VIII concludes the paper
with the possible future directions.

2 RELATED WORK

Security in IoT implementations is critical and cor-
rectly implemented. Secure IoT deployments should
ensure the proper configuration of the basic security
requirements: data confidentiality,data integrity, and
data accessibility as part of the solution. An effi-
cient identity management is a primary security re-
quirement for dynamically assigning and managing
unique identities for the large number of objects and
users. OAuth 2.0 is an authorization framework that
allows third party applications to get protected ac-
cess to user accounts on an HTTP service. Recently,
many research works have focused on security related
with Internet of Things and discussed various sce-
narios for implementing OAuth to be used for Inter-
net of Things. The use of OAuth for IoT networks
was first proposed in (Emerson et al., 2015), the pro-
posed approach protects IoT network from unauthen-
ticated users with security manager which manages
various kinds of constrained devices using OAuth 2.0
protocol. (Fremantle et al., 2014) explores the use
of OAuth for IoT systems and built a prototype that
uses OAuth 2.0 to enable access control to infor-
mation distributed via MQTT. (Sciancalepore et al.,
2017) proposed a flexible authentication and autho-
rization framework for the Internet of Things, namely
OAuth-IoT which leverages and properly harmonizes
existing open-standards while taking into account the

limited capabilities of constrained devices. A con-
figurable and easily integrable proposal was made in
(Cirani et al., 2014) which proposes an architecture
targeting HTTP/CoAP that provides an authorization
framework which can be integrated with an exter-
nal oauth-based authorization service (OAS) collab-
oratively making it the IoT-OAS architecture. (Khan
et al., 2018) proposed an authentication scheme based
on the OAuth 2.0 protocol to secure the IoT net-
work by providing an authentication service. (Fre-
mantle and Aziz, 2016) proposed model for IoT us-
ing OAuth 2.0 protocol which allowed the identity
of users and devices on the network to be federated.
Other lightweight approaches to solve the authentica-
tion and authorization problems in the IoT networks
have been discussed in (Yao et al., 2013).

This article is an extension of the work done
in (Yousefnezhad et al., 2017) to provide suitable
access control and authentication mechanisms that
could regulate the rights of different principles and
operations defined in O-MI/O-DF standards. This pa-
per discusses a major step taken to enhance the secu-
rity modules and added functionalities in the security
module of the O-MI/O-DF standards.

3 OPEN MESSAGING
STANDARDS

3.1 O-MI/O-DF Standards

With the vision of creating a protocol for Internet
of Things which serves in the same way as HTTP
protocol serves to the Internet, Open Group devised
the O-MI/O-DF standards. In other words, O-MI/O-
DF standards will offer connectivity between various
things and will allow rapid integration of these links
with other systems and networks, making it an inte-
grated standard for Internet of things. O-MI provides
a communication framework between commodities
and distributed information systems that consume and
publish information on a real-time basis. It can be
seen as a transportation mechanism which allows to
exchange information between different O-MI nodes
across a network. In O-MI Node, each node can act
both as a ”server” and as a ”client” with other nodes
or systems. O-DF is specified as an expandable XML
Schema for representing payload in Internet of things
applications (Javed et al., 2019) (Madhikermi et al.,
2018).

An OAuth-based Authentication Mechanism for Open Messaging Interface Standard

217



3.2 Reference Implementation of
O-MI/O-DF Standards

Reference Implementation of O-MI/O-DF standards
shows the executable documentation as well as re-
quest and response examples which can cover each
and every aspect of these standards2. The develop-
ers can understand with the help of examples and im-
plementations what these standards can do in real-
ity. Current reference implementation includes three
modules: O-MI Node Server: Server implements
all basic O-MI operations and maintains a database
where the information about O-DF data model, con-
sisting of all object(s) and InfoItem(s) is stored. Web-
client: It provides graphical user interface which al-
lows the users or developers to perform the desired
operation under the standards by just clicking the de-
fined buttons instead of writing all the XML messages
and HTTP queries. Agent: The agents are the actors
that interact with core of O-MI node programmati-
cally and act as an intermediate between the hardware
and O-MI node Since for a application to be fully
developed it would certainly require security aspects
which can defend against different cyber-crimes and
attacks, so there is need to discuss the reference im-
plementation for security sub-modules.

3.3 Security of O-MI/O-DF Standards

Though the reference implementation clearly ensures
robust development and data standardization, secu-
rity was always a concern for fully developed appli-
cation. So as mentioned in (Saeed, 2018), initially
the reference implementation had only IP white list
mechanism for security, i.e, the trusted IP addresses or
their ranges are listed and only these trusted users can
access the domain and perform ”write” functionality
while the ”read” functionality was open for all users.
Thus, in order to have an appropriately designed se-
curity mechanism, a dedicated security model was re-
quired and created (the version 1 of security model)
which became obsolete since it does not provide any
support for O-MI read request permission and it only
had specific authentication method implementations.
Then the second version (which is the existing ver-
sion) provides a better solution where Authentication
and Authorization module are separated into two indi-
vidual processes working concurrently. The Authen-
tication sub-module basically registers, authenticates
and logins the users for session handling. Three lo-
gin options are available for the user to authenticate

2O-MI reference implementation developed by Aalto
University, Available: https://github.com/AaltoAsia/O-MI

namely local authentication, Facebook login and lo-
gin with LDAP (Lightweight Directory Access Proto-
col) credentials. The authorization sub-module has
two parts namely superuser console and the access
control module. An administrator console has a user
interface which can only be accessed by a superuser.
This console handles addition of users to group and
manages access policies on the database. On the other
hand,the Access control module communicates with
the O-MI node, processes requests made by users
and authorizes them. However, the security model of
O-MI/O-DF standard is required to be updated with
more recent security techniques in order to prevent
cyber attacks and ensure data security.

The implementation details for the above men-
tioned sub-modules are stated in (Saeed, 2018) and
the existing security module is developed using
Python and Scala. Django web framework was used
for developing the authentication module and Akka
HTTP was also used for construction of security
model. The module supports SQL databases and
LDAP directory services. Furthermore, JSON Web
Tokens were used for the token mechanism. New Au-
thentication and Authorization APIs are flexible and
adaptable. These modules were necessary to make the
O-MI Node secure which makes the APIs more secure
and add extra functionalities which can be beneficial
to any organization in terms of security, user identity,
analysis and monitoring, better access control, from a
variety of other methods discussed in section 3.4.

3.4 Comparison between Various
Security Standards

A variety of methods to increase the security of O-
MI-Authentication sub-module are being analysed in
this sub section. The most common web security pro-
tocols are OpenID, OAuth 2.0 and SAML. These are
standardized protocols and there are generalised im-
plementations and libraries existing in multiple lan-
guages to implement these protocols. A comparison
between these protocols has been shown in Table 1.
These web security protocols support the idea of Sin-
gle sign-on (SSO) which allows a user to enter one
username and password in order to access multiple
applications. The three security standards (Lightfoot,
2018) (Onl, e) are discussed along with their usage as
mentioned in the following:
OpenID. OpenID is an open standard for authenti-
cation. The user is authenticated using a third-party
service called identity provider in this standard. If au-
thentication is a major concern for security implemen-
tation then OpenID is highly recommended than any
other security methods. In 2014, OpenID connect was

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

218



introduced where OpenID is used for authentication
along with OAuth 2.0 being used as authorization.
SAML. SAML stands for Security Assertion Markup
Language. It is an XML-based markup language for
security assertions and is the oldest standard of these
all. It’s an open standard that provides both authen-
tication and authorization services. This protocol is
much more complex to use than other protocols and
is vulnerable towards XML signature wrapping to im-
personate any user.
OAuth 2.0. This is an authorization protocol that al-
lows third party applications to get protected access
to user accounts on an HTTP service like Facebook,
GitHub, and Google. It is mainly used for access-
ing delegation via token-based authentication. This
is a quite flexible and adaptable mechanism for pro-
tected resource view and authorization but lacks a
good mechanism for authentication of the user. Phish-
ing is a common security risk to which OAuth 2.0 is
vulnerable. Apart from that OAuth 2.0 relies com-
pletely on TLS for confidentiality.

4 OAuth 2.0 PROTOCOL

4.1 OAuth 2.0 Roles

OAuth 2.0 basically defines four major roles as spec-
ified in (Onl, d) which are:
Resource Owner. An entity that provides access to
the protected resources. It can be a person or a ma-
chine. According to (Buyya and Dastjerdi, 2016),
when the resource owner is a person, it is referred as
an end-user. The Resource owner must give autho-
rization to third party applications to access its data.
Resource Server. It is the server that hosts protected
resources and it has the ability to accept and send re-
sponses to protected resources requests using access
token. The resource server might be the same server
as the authorization server. In O-MI-Authentication
module, we used same server to function as resource
server and authorization server.
Client. Client is an application that makes secured
resource requests on behalf of the resource owner and
with its authorization specifications. Each client is de-
fined by a unique client id and a client secret. These
credentials are registered with an authorization server
inserted into an OAuth 2.0 Access token and then val-
idated by the resource server which provides addi-
tional layer of security. The client can be hosted on
a server, desktop, mobile or any other device.
Authorization Server. It is the server that maintains
the list of registered clients, manages and issues the
access token needed for all authorization flows. These

are supported by OAuth 2.0 spec to the client after
authenticating the resource owner and obtaining au-
thorization. Usually the same application that offers
resources through OAuth 2.0 protected API also be-
haves like an authorization server.

4.2 OAuth 2.0 Grant Types

OAuth 2.0 is a flexible authorization framework
which provides a number of methods for client appli-
cation to obtain access token which is further used for
authenticated access to the API endpoint. There are
basically four authorization grant types, as mentioned
in (Onl, d), namely:
Authorization Code. This is the most common grant
type used. Here, the authorization code is obtained by
an authorization server which acts as an intermediary
between the client and the resource owner. Here the
client directs the resource owner to an authorization
server which then directs the resource owner back to
the client with the authorization code which can be
further used to obtain a long-lived access token and a
refresh token. So, the Authorization server authen-
ticates the resource owner and after authentication,
it directs the resource owner back to the client thus
adding an additional layer of security. It prevents di-
rect transmission of access token to the client unlike
implicit grant.
Implicit. The implicit grant is a simplified authoriza-
tion code flow developed for clients implemented in
a browser using scripting language like JavaScript.
The grant type is implicit so there are no intermediate
credentials and access token is directly issued to the
client. Unlike authorization code grant type, client re-
ceives the access token in the front-end as a result of
the authorization request. In some cases, redirection
URL used to deliver the access token to the client are
used to verify the client identity. Although, implicit
grant improves the responsiveness and efficiency of
some clients by removing extra steps of authentica-
tion before obtaining the access token, still it is the
least secure grant type because the access token is di-
rectly exposed on the client side.
Resource Owner Credentials. Resource owner
password credentials can be used directly to obtain an
access token. This method is only used when there
is a high level of trust between the client and the
resource owner and when other authorization grant
types are not viable. By exchanging the credentials
with a long-lived access token or refresh token, this
grant type can eliminate the need for the resource
owner credentials to be stored by the client for future
use. This is for what OAuth was created to prevent in
the first place, so it is not a recommended method to

An OAuth-based Authentication Mechanism for Open Messaging Interface Standard

219



Table 1: Comparison between web security protocols.

Web Security Protocols
Parameters OpenID Connect SAML OAuth 2.0
Token format JSON, JWT XML JSON, XML, JWT
Protocols used JSON, HTTP, REST XML, HTTP, SOAP XML, HTTP, REST
Main purpose Single sign-on for Single sign-on for API authorization

consumer applications enterprise users between applications
Provides Authorization No Yes Yes
Provides Authentication Yes Yes Pseudo-Authentication
User Consent It collects user consent It does not collects It collects users consents

before sharing attributes users consent before sharing attribute
Security Risks Phishing since Identity XML Signature wrapping Phising, OAuth 2.0 does not

support encryption &
provides have a database of
OpenID logins.

to impersonate any user also it relies completely on
TLS for confidentiality.

allow third-party apps to use this grant, but this meth-
ods finds its use mainly when the client is developed
or works under the same authority as the authorization
server i.e it is entitled to great degree of trust.

Figure 1: Authorization code grant flow.

Client Credentials. The client credentials grant type
can be used as an authorization grant when the autho-
rization scope is confined to protected resources under
the control of client or under the authorization server.
This grant type is used by clients to acquire an access
token outside user’s context and used by clients to ac-
cess resources about themselves rather than to access
user’s resources. Hence the end-user does not have
to give its authorization for accessing the resource
server.

4.3 Advantages of using Authorization
Code in O-MI-Authentication
rather than Other Grant Types

According to (Onl, d) the authorization code grant
flow can be shown in Fig. 1. The authorization code
flow is also known as the three-legged OAuth flow
since it has three legged scenarios of the application,
user and the service provider. So this flow has an ex-
tra authorization step as compared to generic 2-legged
approach. As stated in (Onl, a) since Authorization
code is short lived and that can be further used to ob-
tain a unique access token and a refresh token. When
the request for access token is made by the applica-
tion, the user is authenticated with the client secret,
which diminishes the risk of attacker intercepting au-
thorization code.

5 OAuth 2.0 SECURITY MODULE
FOR O-MI/O-DF STANDARDS

5.1 Architecture

The architecture for OAuth 2.0 integration with the
O-MI authentication module is shown in the Fig. 2
depicting all the steps undertaken for the proposed
model. Fig. 3 illustrates our security module imple-
mentation with OAuth 2.0. The implementation steps
can be listed as follows:

1. The OAuth 2.0 module authenticates the client
and generates a unique token/session for secure
communication.

2. The client sends O-MI request with the authenti-
cation token/session. This request is then parsed
in terms of TTL and request type.

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

220



User

Client

User Agent
(Web Browser)

Authorization
Server

Resource 
server

(O-MI Server)

login  and grant access

User verified

Authorization 
code

request

Access token  
and Refresh Token

Exchanging Tokens

Validates 
Access token

verifying access token 

Send omi request

Omi response

5

5

44

3

4

1

1

2
4

Figure 2: The proposed architecture for OAuth 2.0 integra-
tion with O-MI Node.

Parse 
Request

Authorization Routing
Fetch/
Store

O-MI Node

Response

1.

2.

3. 4.
6.

Client

OAuth2
Access 
Control

Security Module

5.

Client

Figure 3: Security module with OAuth 2.0 implementation.

3. The authorization block validates the token with
OAuth 2.0 to confirm that the user is authenti-
cated.

4. Once the token has been validated, OAuth 2.0 re-
turns the user ID.

5. The authorization block gets access control rules
with user ID and request type. The O-DF request
is also filtered based on these rules.

6. The routing block then split the O-DF request
to the corresponding handlers. The database is
queried in the fetch/store block based on the read
or write request. Finally, the results are sent to the
client.

OAuth 2.0 implementation and integration with
the O-MI authentication module was done using
open-source python framework Django. This deci-
sion to use Django framework has been made mostly
due to availability of libraries to complete the whole
OAuth 2.0 flow. Django-oauth-toolkit is used to set
up our own Authorization server to issue access to-
kens to client applications for a certain API, to set up a
resource server to protect the views of the application
and to authenticate the access token and ultimately the
client. The implementation of security module can
be found on GitHub3. To complete the OAuth 2.0

3O-MI security module implementation, Available:
https://github.com/AaltoAsia/O-MI-Authentication/tree/
OAuth2-Service-Provider-Functionality

flow, we used the authorization code grant flow type
due to various advantages it offers. Django-allauth
library was included to establish the client or the mid-
dleware server for the third party application/client
side integration for the OAuth flow to be completed
and to store and manage the information about access
tokens, social accounts, applications, user and group
information.

5.2 Added Security Features

OAuth 2.0 flow was found the most suitable one to be
integrated with the O-MI/O-DF standards. Following
reasons were also considered to implement OAuth 2.0
in the O-MI authentication module:

• API Security: To make an API secure; one way is
to use the basic authentication method similar as
the O-MI-Authentication method where the user-
name and password are sent using Base64 encod-
ing. The credentials are not encoded or hashed
and the user has to send username and password
over the wire. To improve this flow, we use OAuth
2.0 to secure the API, so instead of username and
password, an access token is sent which makes the
flow more secure. Since in case of any attack if
the client application starts misbehaving or using
data improperly, access token for that application
can be revoked any time thus making all the future
requests invalid.

• Provision for limited access: Limited access to
the application can be also be provided by defin-
ing limited scopes in the access token. So when
using access tokens, a client application may not
have full API access. In contrast, if the credentials
are stolen then whole API can be misused.

• Federal identity: As discussed in (Onl, b) with
OAuth 2.0, an effective mechanism can be applied
where once user logs in with username and pass-
word (the OAuth 2.0 service provider), he is redi-
rected to the provider in all other applications. He
has to confirm that he wants to be authorized and
need not to enter his credentials/sign up for other
applications.

• Service analysis and monitoring: According to
(Onl, b) the organizations can monitor their ap-
plication usage by the consumers and can track,
monitor more easily that which access token is
making requests. It helps in gaining better in-
sights about customer’s behavior and can make
optimizations.

An OAuth-based Authentication Mechanism for Open Messaging Interface Standard

221



5.3 Steps of Implementation

The implementation steps adopted for the OAuth inte-
gration with O-MI/O-DF standards is depicted in Fig.
4.

Resource 
Owner 
(User)

Client
(O-MI Client)

User Agent 
(Web

browser)

Authorization
Server
(O-MI

Authentication)

Resource
Server 

(O-MI Server)

Authorization code request

Login and grant access

Authorization 
code provided

Sends authorization code

Access token provided

Sends O-MI request with access token

O-MI response

Token valid/invalid

Checks access token

Figure 4: The implemented OAuth 2.0 flow for O-MI Node.

Accessing the O-MI Authentication Module. The
first step of the flow requires the user to provide
appropriate credentials to the O-MI Authentication
module. If valid user credentials are provided, then
the user is redirected to the authentication module in-
terface where the user can obtain his/her own signed
and decoded token which can be further used to au-
thenticate the user in the O-MI-Node. If the user does
not have valid credentials, he/she can register as a user
or super user by using filling up the sign-up form pro-
vided on the homepage of authentication module.

Figure 5: Client Registration Interface.

Application Registration. Now the user should tell
the authorization server which application is allowed
to use the OAuth 2.0 Authentication by registering
the application on the server. Here the user has to
provide information about the application like client
type, grant type and the redirect URL. To make this
module secure and as per the needs of authentication
module, we used the configuration of having client
type as confidential client, grant type as authoriza-
tion code and the redirect URL as the callback ad-
dress of the client application on running on differ-
ent server (or the middle-ware server). After reg-
istration the user is provided with a client id and a
client secret which is used to authenticate the appli-
cation while obtaining the authorization codes, ac-
cess token and the refresh token. Fig. 5 shows the
application interface along with the desired applica-
tion code flow. Here the user is assigned a unique
client ID and secret, the client type is made confiden-
tial so that only trusted clients could access the re-
sources of the O-MI node. As discussed in subsection
4.3 due to the mentioned advantages of authorization
code flow, the grant type is set to authorization code
here. The redirect URI includes the callback URI of
the client application which is bound to run on a dif-
ferent domain/server than that of the O-MI authenti-
cation module. The following details about the ap-
plication can be edited/deleted according to the user’s
need.
Obtaining Authorization Code. The authorization
server validates the client and continues to complete
the flow according to the grant type and the client cre-
dentials provided. After validation, it asks the user’s
permission to provide the demanded scopes to the ap-
plication. After getting user’s permission, authoriza-
tion server redirects the user agent back to client us-
ing the redirection URI provided at the time of ap-
plication registration. Now after redirection, the redi-
rection URI automatically includes an authorization
code and any local state provided earlier by the client
as shown in Fig. 6.
Exchanging Tokens. After a short lived Authoriza-
tion code is obtained from the authorization server,
now the client requests an access token from the au-
thorization server’s token endpoint by exchanging the
authorization code and client information with the au-
thorization server. After verification of client and the
authorization code, an HTTP response is passed by
the authorization server including the access token,
its validity period and a refresh token.
Obtaining the Protected Resource View and Au-
thenticating the Access Token with O-MI Node.
After the access token and refresh tokens are obtained
as shown in Fig. 7, the client is OAuth protected i.e

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

222



Figure 6: Authorization code included in the URL after redirection.

the user can access the protected resource view of the
client by providing the access token. Now to complete
the whole process, user has to provide the access to-
ken to the O-MI-Node which checks with the O-MI-
Authentication module and ultimately results with a
200 OK code if the access token provided is valid.
User Interface. Our Django social application which
runs on a different server must be told about the cre-
dentials to be allowed to use the server as an authen-
tication back end and information about the provider
must be provided. We used the django-allauth library
for developing the client application which provides
the flow for sign up of both local and social accounts,
allows connection of more than one social account
to a local account and supports consistent storage of
access token. For the purpose of developing a gen-
eralised reference implementation we used our own
custom provider, in case we use any external OAuth
2.0 provider like Github, Facebook,etc. We would
need the unique client id and secret key which is ob-
tained from respective OAuth 2.0 providers. Fig. 8
shows the interface for social application registration.

Figure 7: Access token,refresh token and token details ob-
tained from token endpoint.

Figure 8: Page for creating/editing django social applica-
tion.

Django Site Administration. The django client ap-
plication also manages multiple social applications,
social accounts and the social tokens. Basic features
such as addition/deletion of accounts and tokens are
also included within the library, multiple sites can also
be added or deleted. The user can keep a track of
the recent changes implemented under the My actions
section. Figure 9 shows the django site administration
panel.

Figure 9: Django site administration panel on client side.

6 BUSINESS USE CASES

The O-MI/O-DF standards are used for unification of
diverse IoT systems and data streams. It can enable
a range of diverse IoT applications, more specifically,
three use cases (proof-of-concept) have been devel-
oped and showcased4.

1. Greater Lyon Use case: There are two case studies
implemented for Lyon which are associated with
essential elements of public policies of metropoli-
tan; heat wave mitigation case study deals with the
urban monitoring and the climate change adap-
tation and bottle banks management case study
deals with the optimization of daily public ser-
vices.

2. The Brussels city use case: This use case is for
smart mobility which covers three general pilot
cases; Safety Around School use case, waterbus
services use case and smart mobility for disabled
people.

3. The Helsinki Smart City use case: It is being
designed for contribution in creation of an elec-
tric vehicles’ charging ecosystem. The proposed
ecosystem helps in integrating all charging possi-
bilities by providing interoperability between the
charging service provider companies and inclu-
sion of other non-specialized possibilities, such as
house-holds and private parking places.

Apart from the business use case of the O-MI/O-
DF standards, the recently added OAuth integration
also has specific use cases (Onl, c) which can used
according to the user’s need.

4bIoTope Project, Available: https://biotope-project.eu

An OAuth-based Authentication Mechanism for Open Messaging Interface Standard

223



Table 2: Comparison between different versions of O-MI security module.

Functionalities and properties Version 1 Version 2 Modified Version 2
Request type in O-MI Write Read, write, call, delete Read, write, call, delete
Token types Base64 token Base64 token Base64 token and OAuth access token
Local user and password no yes yes
OAuth 2.0 user login no no yes
External Client registration no no yes
Protected page or API no yes yes
External OAuth 2.0 provider no yes yes
OAuth 2.0 service provider no yes yes
Http Framework Jetty Django, Akka HTTP Django, Akka HTTP

1. Multiple Access tokens: This use case is partic-
ularly useful for native applications since a web
browser needs to be launched only once. And as
discussed in 5.2, multiple access tokens provide
the functionality of federal identity, which eases
the login process for the user.

2. Data monitoring: The user/organisation can give
limited access to another user or organisation and
can manage the data to be shared. The organi-
sation can monitor the application usage by the
consumers and monitor the data usage based on
access token requests.

3. Support for native applications: Since OAuth2.0
supports native applications, which makes it eas-
ier for the user to log-in and the user does not need
to authenticate and authorize access on every exe-
cution of the app. This use case can be implied in
various ways including in-app-payment methods,
data sharing applications, etc.

7 DISCUSSION

In the IoT security, data privacy and confidential-
ity are important aspects to be concerned about. As
of now, the security module v2 used so far has two
security sub-modules namely authentication and au-
thorization modules for security purposes which had
minimalist security features required for an Internet
of things network. Though these modules are fully
functional modules, still some major functionalities
are required to improve the performance and the secu-
rity of reference implementation is missing. Adding
OAuth 2.0 security feature was one of the major steps
taken to improve the security modules. Table 2 also
compares the newly developing modules with the pre-
vious versions.

Limitations and Vulnerabilities of OAuth

As mentioned in (Emerson et al., 2015) (Lodderstedt
et al., 2013) following limitations and threats are be-

ing observed for the OAuth 2.0 process flow:

• Addition of extra extensions at the ends in the
specification produce a wide range of non-inter
operable implementations.

• By eavesdropping the communication between
the service provider and user attacks like replay
attacks and impersonation attacks are quite com-
mon. By eavesdropping, any intruder can steal the
authorization code or access token and pretend as
a user.

• There are chances that the data can be mishandled
by the registered third party application.

• According to (Mangal, 2019), the spec recom-
mends the use of SSL/TLS while transmitting the
issued tokens in plain text over the wire, so if the
authorization endpoints or the redirection URL is
not secure, then the attacker can easily attack the
security module.

• In (Chae et al., 2015) authors have discussed
about the replay attack as the authorization code
is not for single use. Any attacker who captures
the authorization code within its lifetime can re-
send the request to access the resources. Authors
have also mentioned the impersonation, phishing
and the replay vulnerabilities.

8 CONCLUSION AND FUTURE
SCOPE

The main focus of this research is to develop an en-
hanced security model for the Open Messaging Inter-
face (O-MI) and Open Data Format (O-DF) standards
by integration with OAuth 2.0 authentication proto-
col. The integrated security module helps in making
the APIs more secure, providing provision for limited
access, federal identities and helps in service analysis
as well as monitoring. The design and implementa-
tion principles of authentication module are explained
and the integration with the existing O-MI security

ICAART 2020 - 12th International Conference on Agents and Artificial Intelligence

224



module is presented. Adding OAuth 2.0 security fea-
ture was one of the major steps taken to improve the
existing security module. However, the requirements,
the core design decisions, and the code structure are
conceived to be generally applicable to other systems,
providing a solid foundation for a further abstraction
and generality of the used approach.

Future work will be to implement JSON Web To-
ken (JWT) in the O-MI reference implementation to
achieve good performance and portability. With JWT,
there is no session to manage as the security informa-
tion is digitally signed and self-contained in the token,
which makes the system stateless. Further, the work
will be extended to reduce network round trip time by
sharing user ID between OAuth 2.0 and Access Con-
trol module, instead of retrieving the ID from autho-
rization module.

REFERENCES
Authorization Code Grant - OAuth2.0 Servers. https:

//www.oauth.com/oauth2-servers/server-side-apps/
authorization-code/. [Online]; accessed October
2019.

Benefits of OAuth 2.0. https://subscription.packtpub.
com/book/application development/9781783285594/
1/ch01lvl1sec09/benefits-of-oauth-2-0. [Online];
accessed October 2019.

OAuth Use Cases. https://tools.ietf.org/html/
draft-ietf-oauth-use-cases-01. [Online]; accessed
December 2019.

The OAuth 2.0 Authorization Framework. https://tools.ietf.
org/html/rfc6749. [Online]; accessed October 2019.

User Authentication with OAuth 2.0. https://oauth.net/
articles/authentication/. [Online]; accessed October
2019.

Buyya, R. and Dastjerdi, A. V. (2016). Internet of Things:
Principles and paradigms. Elsevier.

Chae, C.-J., Choi, K.-N., Choi, K., Yae, Y.-H., and Shin,
Y. (2015). The Extended Authentication Protocol us-
ing E-mail Authentication in OAuth 2.0 Protocol for
Secure Granting of User Access. Journal of Internet
Computing and Services (JICS), 16(1):21–28.

Cirani, S., Picone, M., Gonizzi, P., Veltri, L., and Ferrari,
G. (2014). IoT-OAS: An OAuth-based Authorization
Service Architecture for Secure Services in IoT Sce-
narios. IEEE sensors journal, 15(2):1224–1234.

Emerson, S., Choi, Y., Hwang, D., Kim, K., and Kim, K.
(2015). An OAuth based authentication mechanism
for IoT networks. In International Conference on
Information and Communication Technology Conver-
gence, ICTC 2015, Jeju Island, South Korea, October
28-30, 2015, pages 1072–1074.

Fremantle, P. and Aziz, B. (2016). OAuthing: Privacy-
enhancing federation for the Internet of Things. In
2016 Cloudification of the Internet of Things, CIoT
2016, Paris, France, November 23-25, 2016, pages 1–
6.

Fremantle, P., Aziz, B., Kopecký, J., and Scott, P. (2014).
Federated Identity and Access Management for the
Internet of Things. In 2014 International Workshop
on Secure Internet of Things, SIoT 2014, Wroclaw,
Poland, September 10, 2014, pages 10–17.

Javed, A., Yousefnezhad, N., Robert, J., Heljanko, K.,
and Främling, K. (2019). Access Time Improve-
ment Framework for Standardized IoT Gateways. In
IEEE International Conference on Pervasive Comput-
ing and Communications Workshops, PerCom Work-
shops 2019, Kyoto, Japan, March 11-15, 2019, pages
220–226.

Khan, J., ping Li, J., Ali, I., Parveen, S., ahmad Khan,
G., Khalil, M., Khan, A., Haq, A. U., and Shahid,
M. (2018). An Authentication Technique Based on
Oauth 2.0 Protocol for Internet of Things (IoT) Net-
work. In 2018 15th International Computer Con-
ference on Wavelet Active Media Technology and In-
formation Processing (ICCWAMTIP), pages 160–165.
IEEE.

Kubler, S., Madhikermi, M., Buda, A., and Främling, K.
(2014). QLM Messaging Standards: Introduction and
Comparison with Existing Messaging Protocols. In
Service Orientation in Holonic and Multi-Agent Man-
ufacturing and Robotics, pages 237–256.

Lightfoot, J. (2018). Authentication and authorization:
Openid vs oauth2 vs saml. https://spin.atomicobject.
com/2016/05/30/openid-oauth-saml/. [Online]; ac-
cessed October 2019.

Lodderstedt, T., Mcgloin, M., and Hunt, P. (2013). OAuth
2.0 Threat Model and Security Considerations. RFC,
6819:1–71.

Madhikermi, M., Yousefnezhad, N., and Främling, K.
(2018). Data Exchange Standard for Industrial Inter-
net of Things. In 2018 3rd International Conference
on System Reliability and Safety (ICSRS), pages 53–
61. IEEE.

Mangal, A. (2019). OAuth 2.0 - The Good, The Bad
& The Ugly. https://code.tutsplus.com/articles/
oauth-20-the-good-the-bad-the-ugly--net-33216.
[Online]; accessed October 2019.

Saeed, A. (2018). Authentication and Authorization Mod-
ules for Open Messaging Interface (O-MI). Master’s
Thesis, Aalto University.

Sciancalepore, S., Piro, G., Caldarola, D., Boggia, G., and
Bianchi, G. (2017). OAuth-IoT: An access control
framework for the Internet of Things based on open
standards. In 2017 IEEE Symposium on Computers
and Communications, ISCC 2017, Heraklion, Greece,
July 3-6, 2017, pages 676–681.

Yao, X., Han, X., Du, X., and Zhou, X. (2013). A
lightweight multicast authentication mechanism for
small scale IoT applications. IEEE Sensors Journal,
13(10):3693–3701.

Yousefnezhad, N., Filippov, R., Javed, A., Buda, A., Mad-
hikermi, M., and Främling, K. (2017). Authenti-
cation and Access Control for Open Messaging In-
terface Standard. In Proceedings of the 14th EAI
International Conference on Mobile and Ubiquitous
Systems: Computing, Networking and Services, Mel-
bourne, Australia, November 7-10, 2017., pages 20–
27.

An OAuth-based Authentication Mechanism for Open Messaging Interface Standard

225


