
An Extended Multi-agent Coalitions Mechanism with Constraints

Souhila Arib1 and Samir Aknine2

1Laboratoire Quartz, EISTI, France
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Abstract: In multiple realistic scenarios, limited agent capabilities may negatively affect task performance. To overcome
this, multi-agent cooperation may be required. Many studies have focused on cooperative task performance.
To facilitate such cooperation, we develop and evaluate a coalition mechanism that enables agents to partici-
pate in concurrent tasks achievement in competitive situations, in which agents have several constraints. We
consider a set of self-interested bounded-rational agents, each of which has a set of tasks, that leads an agent
to achieving its goal. The agents have not a priori knowledge about the preferences of their opponents. All
the agents have their specific constraints and this information is private. In this paper, we do not deal with the
negotiation protocol but just introduce a new coalition formation mechanism (C F M ) that imposes minimal
sharing of private information to ease negotiations. Specifically, we only require that agents share preferences
over their constraints. The agents negotiate for coalition formation over these constraints, that may be re-
laxed during negotiations. They start by exchanging their constraints and making proposals, which represent
their acceptable solutions, until either an agreement is reached, or the negotiation terminates. We explore two
techniques that ease the search of suitable coalitions: we use a constraint-based model and a heuristic search
method. We describe a procedure that transforms these constraints into a structured graph on which the agents
rely during their negotiations to generate a graph of feasible coalitions. This graph is therefore explored by a
Nested Monte-Carlo search algorithm to generate the best coalitions and to minimize the negotiation time.

1 INTRODUCTION

Forming coalitions of agents which are able to effec-
tively perform tasks is a key issue for many practi-
cal applications. This paper mainly focuses on self-
interested agents which aim to form coalitions with
other agents as they cannot reach their objectives in-
dividually. Several methods have been developed to
control the behaviors of the agents involved in such
process (Shehory and Kraus, 1998). However few
mechanisms cope with the dynamic of the constraints
of the agents in such contexts. Indeed, these con-
straints can gradually be revealed, and relaxed by the
agents at different moments of the negotiation in or-
der to meet the requirements of their opponents and
thus to ease the convergence. Some coalition meth-
ods have been developed to determine the optimal
coalitions and take into account the constraints of the
agents involved in the coalition process. These meth-
ods have addressed important issues such as com-
putational complexity and heuristics approaches for
the optimal coalition structure generation, (Rahwan

et al., 2011), (Voice et al., 2012) , (Ramchurn et al.,
2010). In this paper, we present an extended version
of the mechanism presented in (Arib et al., 2015).
We focus on contexts where agents neither have the
same utility functions, nor they reveal these functions.
Thus, it is infeasible to precisely estimate a priori
the corresponding utility of each agent for each fea-
sible proposal of solution with current optimal coali-
tions search algorithms. The issues with processing
the constraints of the agents in the negotiation phase
for the coalition formation deserve a particular at-
tention and a deep study. Yet, only few works pro-
pose a mechanism to deal with the dynamic of such
constraints while agents negotiate them. Note that,
since we consider that the agents are self-interested
and do not share their information and computations,
our aim is not to identify the optimal solution of the
coalitions, but to ease the convergence to an agreed
common solution for these agents. Our main contri-
bution is not to deal with the negotiation protocol it-
self but propose a new mechanism that enables agents
to negotiate and form coalitions. This mechanism is

Arib, S. and Aknine, S.
An Extended Multi-agent Coalitions Mechanism with Constraints.
DOI: 10.5220/0008969001990207
In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 1, pages 199-207
ISBN: 978-989-758-395-7; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

199



based on three main abstractions: a constraint graph,
a coalition graph and a Nested Monte-Carlo search
method. First, we develop a constraints based graph
which handles the revealed constraints of the agents.
This graph of constraints can be used to specify differ-
ent types of constraints relations, such as a constraints
ordering over potential decision outcomes. Building
upon this, we transform this representation into a flat
representation of coalitions in the graph of coalitions.
Each level of this graph allows generating a set of
possible coalitions and in this set the agent selects
the best coalitions that can be accepted. This graph-
ical representation of constraints and coalitions spec-
ifies constraints relations in a relatively compact, in-
tuitive, and structured manner. In the next sections,
we first define the problem and link it to other ex-
isting problems, so that approximate solution tech-
niques and anytime heuristics that provide increas-
ingly better solutions if given more time can be re-
used. We advise new solutions that allow agents use
a nested Monte-Carlo search algorithm (Cazenave,
2009) which finds the best coalitions that maximize
the utility of each agent. Nested Monte-Carlo search
methods address the problem of guiding the search to-
wards better states when there is no available heuris-
tic. These methods use nested levels of random games
in order to guide the search of coalitions. These al-
gorithms have been studied theoretically on simple
abstract problems and applied successfully to several
games (Gelly and Silver, 2007). Specifically, this pa-
per advances the state of the art in the following ways.
We advise new anytime heuristics to find approximate
solutions fast, we empirically evaluate our algorithm
and show that it computes (in less than 600 millisec-
onds) 689 proposals of solutions for non-trivial prob-
lems involving up to 30 agents and 50 tasks. Thus,
our work encompasses essential aspects of the coali-
tion formation, from the coalition model, negotiation,
and an anytime heuristic. The reminder of the paper is
organized as follows. Section 2 briefly describes the
related works. Section 3 introduces some preliminar-
ies and the case study. Section 4 presents the coalition
formation mechanism, and a final section will con-
clude the work with a summary of the contributions.

2 RELATED WORK

In game-theoretic perspective, coalitional games with
constraints have been addressed by a number of
works. However, none of these mechanisms is able to
model agents’ negotiations for reaching joint agree-
ments. The authors in (Yang et al., 2016) addressed
the problem of coalition formation in small cell net-

works. Small cells can mitigate the co-tier interfer-
ence within a coalition and thus increase the system
capacity. (Bistaffa et al., 2017) adopted a coopera-
tive game theoretic approach to deal with the prob-
lem of social ridesharing. Based on a social network
representation of the set of commuters, they proposed
an algorithm to form coalitions and arrange one-time
rides at short notice which is based on two princi-
pales. First, the optimization problem of forming the
coalitions that minimise the cost of the overall sys-
tem, for which they restrict the feasible coalitions
by means of a graph-constrained coalition formation
model, allowing to specify both spatial and tempo-
ral preferences. Second, they address the payment al-
location aspect of ridesharing. In (Demange, 2009),
the authors proposed a game-theoretical study and fo-
cus on strategic, core-related issues rather than com-
putational analysis of the coalition formation. This
work is more close to (Rahwan et al., 2011) where
authors proposed a constrained coalition formation
model and an algorithm for optimal coalition struc-
ture generation. They developed a procedure that
transforms the specified set of constraints, making it
possible to identify all the feasible coalitions. Build-
ing upon this, they provide an algorithm for optimal
coalition structure generation. (Skibski et al., 2016)
have introduced the k-coalitional games. The authors
have proposed an extension of the Shapley value for
these games, and studied its axiomatic and compu-
tational properties. The authors in (Michalak et al.,
2010) have considered only the issue of representing
coalitional games in multi-agent systems with exter-
nalities in coalition formation. They have proposed
a new representation which is based on Boolean ex-
pressions. Their aim was to construct much richer
expressions that allow for capturing externalities in-
duced upon coalitions. (Voice et al., 2012) addressed
the problem of coalition formation with sparse syner-
gies where the set of feasible coalitions is constrained
by the edges of a graph. Their aim is to check whether
the knowledge of the topology of the underlying so-
cial or organizational context graph could be used
to speed up coalition enumeration and structure gen-
eration. (Ramchurn et al., 2010) defined the prob-
lem of allocating coalitions of agents to spatially dis-
tributed tasks with workloads and deadlines so as to
maximize the total number of tasks completed over
time. Nevertheless, these works have not deeply ad-
dressed the constraints of the agents in the proposed
models or specify how agents negotiate over them to
reach agreements. Constraints on coalition sizes have
been considered for coalition structure value calcula-
tion (Sandholm et al., 1999), (Rahwan et al., 2007),
(Rahwan et al., 2009). However, the semantics of
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these constraints has not been used on the same level
as it is done in this paper. Work in (Wang et al.,
2016) introduced a novel mathematical framework
from cooperative games to model and solve cooper-
ative scenarios where network devices have to be-
come more autonomous and cooperate with one an-
other, in two main classes of these games, namely,
interference management and cooperative spectrum
sensing. Such cooperative mechanisms involve the
simultaneous sharing and distribution of resources
among a number of overlapping cooperative groups
or coalitions. (Ieong and Shoham, 2005), (Conitzer
and Sandholm, 2006) developed succinct and expres-
sive representations for coalitional games. In all the
algorithms discussed so far, the main focus was on
maximizing the social welfare, where agents consider
every possible subset of agents as a potential coali-
tion. Such formalism could be used to encode the
constraints, but this is not the main concern of the
constrained CF M mechanism considered in this pa-
per. Negotiation is, mostly, about needed resources to
perform tasks. In (Cao et al., 2013), the agents are as-
sumed to have the same set of tasks and a unique com-
mon goal. The authors in (Arib and Aknine, 2011)
addressed situations where agents plan their activities
dynamically and use these plans to coordinate their
actions and search for the coalitions to be formed.
These studies have not considered the coalition for-
mation with constraints changing requirement, which
makes those approaches not suitable for our problem.
In other hand, multi-agent negotiation has received
much attention both in the context of coalition forma-
tion and in other contexts (An et al., 2011), (Rochlin
and Sarne, 2014), (Sofer et al., 2016), (Kang, 2005).
Indeed, negotiation is an important interaction mech-
anism that may allow a group of agents to reach a
certain goal, particularly in situations where agents
have several possibilities to explore. The authors in
(An et al., 2011) considered interrelated negotiations,
where selfish agents have to efficiently coordinate
their negotiation with multiple resource providers to
acquire multiple resources in order to accomplish a
high level task. (Sofer et al., 2016) used negotia-
tion as an exploration process, over a set of several
possible alternatives, in situations where the negotia-
tors have no information on the value of each alterna-
tive. Therefore, negotiation is assumed to be limited
in time and a discount factor is used to make nego-
tiation converge toward a solution. Another work in
which agents have to explore different alternatives to
find a solution is that of (Rochlin and Sarne, 2014).
The agents explore several opportunities available to
them, following a costly exploration process, with-
out revealing the benefit with which they are asso-

ciated. Thus, agents’ goal is not to maximize the
overall benefit, but rather to maximize each agent’s
own benefit. In (Jonge and Sierra, 2015), the authors
have introduced a new heuristic-based negotiation al-
gorithm where many self-interested agents have non-
linear utility functions. In this work negotiation is,
mostly, about needed resources to perform tasks. In
our approach, negotiation is about groups of tasks and
agents to perform them.

3 PRELIMINARIES AND CASE
STUDY

To illustrate the coalition formation mechanism we
propose, let us consider a carpooling example, where
some travellers want to move from a city to another,
and they want to share their means of transportation.
Each traveller formulates to his agent the goals to be
achieved. For example ”I want to go from NY to
Boston”, his constraints as departure time, duration
of the travel, and unit price of seat. To solve this
problem, the agents have to deal with all the con-
straints and preferences over those of their associated
travellers in order to enable them to share transporta-
tion. Agents negotiate for the coalitions to form to
decrease the unit price of seat, increase the number of
passengers, etc. They can step aside in favor of other
agents, if an agreement can be found. More formally,
consider a set of agents N = {a1,a2, ...,an}, a set of
actions A = {b1,b2, ...,bm} and a set of constraints
Ct = {ct1,ct2, ...,ctk}. The agents of N need to exe-
cute the actions of A by satisfying the constraints in
Ct .
The constraints are defined as intervals, for instance
as an example: departure time: D ∈ [10a.m.,12a.m.],
travel duration in hours: T ∈ [1H,2H] and price:
P ∈ [20,25]. The agents’ preferences are represented
using a preference relation � for those they want to
share a car with, for instance ax �i ay (for agent ai,
ax is preferred to ay). We consider a coalition c as
a nonempty subset of N (c ⊆ N ). We define C as
the set of all possible coalitions. For a coalition c
to be formed, each agent ai in c should get a cer-
tain satisfaction. This satisfaction is defined by a util-
ity function ui : C 7→ R . Note that a coalition is ac-
ceptable for agent ai if it is preferred over, or equiv-
alent to a reference coalition, ui(re f ), which corre-
sponds to the minimal guaranteed gain of the agent
during the negotiation. A solution of the negotia-
tion for each agent ai introduces a coalition struc-
ture denoted CSi which is defined on N with its as-
sociated utility ui(CSi). CSi contains a set of coali-
tions {c1,c2, ..,cq} to be formed for the set of actions
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Ai ⊆ A where ai is involved. Furthermore, for every
q′ ∈ [1,q],cq′ ⊆ N and cq′ performs a set of actions
Acq′ ⊆ A and ∀(x,y) ∈ [1,q]2,x 6= y,Acx ∩Acy = ∅,⋃

q′=1,..,q Acq′ ⊆ A and
⋃

q′=1,..,q cq′ ⊆ N . The set of
all coalition structures is denoted S .

4 COALITION FORMATION
MECHANISM (C F M )

In order to satisfy the goals they have to achieve,
the agents perform negotiations on the coalitions they
want to form. So, the CF M requires an analysis step
of constraints that agents exchange in order to guide
the choice of the coalitions and a step of generating
coalition structures from these constraints. Constraint
analysis relies on constructing a graph of constraints
and coalition generation is based on the mapping of
the constraints to possible coalitions in a coalition
graph. Exploring the search graph of coalitions to-
ward better states is based on a Nested Monte-Carlo
algorithm.

4.1 Constraint Graph

An effective technique for solving a coalition forma-
tion problem is a heuristic search through abstract
problem spaces. The first problem space can be rep-
resented by a directed connected graph, where nodes
correspond to constraint sets and edges correspond to
actions (cf. Figure 1). The constraint graph may in-
clude many paths from the start to any node. Since the
agents are self-interested, to search among the con-
straints to deal with in the coalitions, every agent con-
structs its own graph of constraints based on its own
constraints and those revealed by other agents during
this negotiation. Given a set of constraints that must
be satisfied by an agent to execute a set of actions and
starting from the source node labeled with {b: ∅, ct :
∅}, initially there are not constraints and actions as-
sociated with this source node, let us define a graph
denoted G(ct ,b) as follows.

Definition 1. Given a node labeled {b: ∅, ct : ∅},
the constraint graph G(ct ,b) is a directed connected
graph, containing all possible nodes of constraints
represented by intervals, labeled {X1, ...,X ′k} for each
action bi,1 ≤ i ≤ m, that has to be executed by the
agent. Each node has a utility labeled u, and directed
edges from this node are labeled {b j, ...,bk} where
1≤ j .. k ≤ m.

A constraint graph gathers, the most preferred
constraints’ intervals in its nodes. At the root node,

no action and constraint are added. Each node gen-
erates a finite set of child nodes which correspond to
the accepted sets of constraints, where the first node
of the graph is an outgoing node and the last nodes are
incoming nodes. This constraint graph is built follow-
ing a preference rate on the intervals of constraints.

Let us consider two agents, ai which has its own
interval X and receives from a j an interval Y . The
agent ai wants to create a new interval Z that meets its
constraints and those of a j, {Z |= ai}, by merging its
interval and the one received from a j.

We will adopt the convention of the left and right
endpoints of an interval X by X and X , respectively
(Moore et al., 2009).

First, ai tests if X ⊆Y . Thus, if Y 6 X and X 6Y ,
it will get X ⊆ Y and Z = X ; else the agent tests if
X ∩Y and calculates the new interval Z. If X ∩Y =∅
there are no points in common with a j. Otherwise,
Z = {max{X ,Y}, min{X ,Y}} and the agents tests if
Z complies with its actions. If ai does not choose
this interval, it calculates Z = X∪Y which means the
union between X and Y and tests if it complies with
its actions. For more details about the operations
over the intervals see (Moore et al., 2009). Based on
this graph, constraint analysis consists for an agent
of comparing and grouping its constraints and those
received from others. A natural constraint graph anal-
ysis involves constructing and linking optimal nodes.
Constraints are gathered based on their relations into
sets represented in the nodes of this graph. Each level
of the graph of constraints refers to an action to be
performed by a coalition. The advantage of the sug-
gested method consists in directing the search of the
solutions of coalitions towards primary constraints,
i.e., important constraints to satisfy, thus, reducing
search complexity. To move from one node of this
graph to another, an action is added to the graph. The
utility of a move, which labels the corresponding edge
in the search space, is the utility of the action when
it is added and performed by the coalition. A solu-
tion path represents a particular succession order of
the added actions, and the width of that order is the
sum of the edge utilities on the solution path.

To construct the constraint graph and to search
for feasible proposals agents use Algorithm 1. Let
us consider constructing the constraint graph by the
agent a1 on our previous example using these algo-
rithms. First, assume that agent a1 started a nego-
tiation with agents a2 to a5 and in which each of
these five agents revealed certain of its constraints.
The actions that have to be executed are: b1,b2,b3
which correspond respectively to: go from NY to
Amherst, find a hotel room in Amherst, and go
from Amherst to Boston. The constraints identified
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Figure 1: An example of a graph of constraints against dif-
ferent actions of the agent a1. The child nodes are created
based on Algorithm 1 and each node is labeled with its as-
sociated utility.

by a1 for the action b1 are: D ∈ [10a.m.,01p.m.],
T ∈ [1H,2H] and P ∈ [20,25] and for b2 are: D ∈
[01p.m.,02p.m.], T ∈ [1H,2H] and P ∈ [20,25]. The
nodes in the first level of the graph assemble pos-
sible sets of constraints concerning the action b1.
a1 compares its own constraints and those received
from these agents and creates new intervals of con-
straints Xkct (cf. Algorithm 1). Let us consider again
the agent a1 who received these intervals of con-
straints from the agent a2 concerning the action b1:
D ∈ [10a.m.,11a.m.], T ∈ [1H,3H] and P ∈ [20,35].
Applying the algorithm 1, D ∈ [10a.m.,11a.m.] ⊆
[10a.m.,01p.m.] so Z = [10a.m.,11a.m.] |= (a1,a2).
Thus, a1 selects the interval Z. For T ∈ [1H,2H] ⊆
[1H,3H], Z = [1H,2H] |= (a1,a2), so a1 chooses
T ∈ [1H,2H]. For P ∈ [20,25] ⊆ [20,35], Z =
[20,25] |= (a1,a2). These results are resumed in the
Figure 1. On the left of this figure, agent a1 repre-
sents the first node created for the action b1 by the
ordered set of intervals D ∈ [09a.m.,11a.m.], T ∈
[1H,3H] and P ∈ [20,23]. We notice in this node
that a1 chooses the interval [09a.m.,11a.m.] even if
its departure time is not completely included in D ∈
[10a.m.,01p.m.] because it has a good proposal of the
seat price. D ∈ [10a.m.,11a.m.], T ∈ [1H,2H] and
P ∈ [20,25] are associated with the second one and
D ∈ [11a.m.,01p.m.], T ∈ [4H,5H] and P ∈ [20,19]
with the last child. So, for each action, a1 generates
the different possible intervals of constraints that sat-
isfy its action b1. We observe that the constraints in
each child node are created taking into account the
end of execution of the antecedent action. So, to
generate intervals of constraints that satisfy the ac-
tion bi+1, the agent takes into account the end time
of bi. This allows the agent to manage the rela-
tions between the actions that have to be executed.
In this example, in the second level of the graph the
agent a1 identified for the action b2 these intervals:
D ∈ [01p.m.,02p.m.], T ∈ [2H,5H] and P ∈ [20,25].
The beginning of b2 is in [01p.m.,02p.m.] because b1

begin
Require: Node(bi,Xkct );
Loop;
if Xkct |= bi ∧Xkct 2 bi+1 then

Generate (X ′1ct , ...,X
′
k′ct

) |= bi+1;

Split(bi,Xkct ) into (bi+1,X ′yct /y : 1..k′);
for bi+1 will be executed after bi do

if (X ′1ct , ...,X
′
k′ct

)∩ (Xkct ) = φ then
Create child nodes (bi+1 : (X ′1ct , ...,X

′
k′ct

));

end
end
else

break
end

end
else

break
end
End Loop;

end

Algorithm 1: Constraints linking algorithm.

ends at the latest at 01p.m. The nodes are generated
following the Algorithm 1. The dashed arcs show
that nodes can share the same child nodes and the
red and bold ones show the most preferred path from
the root node to the last one, they result from the
Monte-Carlo exploration (detailed below). From the
Algorithm 1, every agent ai which has to negotiate
to execute an action bi while satisfying its constraints
ct , chooses intervals of constraints: Xkct (bi) |= ai. It
then creates child nodes for the feasible intervals that
satisfy bi. Each node created can be split under ap-
propriate restrictions to other child nodes. The agent
ai starts with a node, labeled Xkct , for the action bi.
For each action bi+1 that must be executed after bi
and needs negotiation, ai creates the new intervals for
bi+1 : (X ′1ct

, ...,X ′k′ct
), and splits the node bi,Xkct to the

child nodes bi+1 : (X ′1ct
, ...,X ′k′ct

). The agent ai uses
this procedure until no action needs negotiation.

A notable detail of the constraints search space
construction is that a solution is measured by its max-
imum path utility. We use an additive utility function,
where a path is evaluated by summing its edge util-
ities. For each iteration, feasible solutions are only
explored if their utility is not under a certain refer-
ence situation ui(re f ). If an iteration is completed
without finding a new possible solution, then all so-
lutions provide less utility than that of the reference
situation, ui(re f ), thus, ui(re f ) may be decreased
and the search is repeated. To optimize the search
time for the new coalitions to propose or to accept,
agents use the Nested Monte-Carlo (NMC) algorithm
(Cazenave, 2009).

In the first step of the mechanism, the NMC ex-
plores each level of the graph of constraints and stores
the best path of constraints that satisfies the agent ai.
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The idea is to explore a graph randomly from a given
position in the graph, agents use a function which
plays the move in the position and returns the result-
ing position.

4.2 Coalitions Processing

Based on its graph of constraints and the resulting
path solution, each agent ai constructs a search graph
of coalitions for all the actions that have to be exe-
cuted. Each node of this graph gathers a set of coali-
tions that comply with the corresponding node in the
graph of constraints. Each level of this graph con-
cerns an action. To decide on the coalition to attach
to each node, ai uses the information gathered from
other agents, i.e. on the coalitions they propose during
their negotiations. ai chooses from it the coalitions to
propose and negotiate with others.

As during their negotiations the agents exchange
their proposals of coalitions, each agent updates its
sets of coalitions in its own graph. Agents perform
a graph search to achieve these goals and the out-
put of this search is a list of proposals of coalitions,
one for each action. At any step in the search, a path
corresponds to a set of actions that have to be exe-
cuted. Once the preferred path is identified in the
constraint graph, the agent ai generates partially the
graph of coalitions that satisfies at best the path of
constraints and completes this graph during the ne-
gotiation phase. Hence, to complete the graph, the
agent ai adds the coalition proposal received in the
corresponding level or tries to generate a new feasible
proposal of coalition that takes into account revealed
preferences of other agents. Therefore, ai generates
a new arc in the graph and checks possible connec-
tions with the other nodes of the graph. In case that
the agents changed their constraints associated to an
action, then ai tries to generate other intervals in the
graph of constraints. Then, ai re-explores this graph
with the NMC algorithm. ai chooses a new path and
completes the graph of coalitions with new coalitions
if the old ones do not meet the constraints of the new
path. Let us consider again the agent a1 that con-
structs its coalition graph to satisfy the path which is
identified from its constraint graph. Figure 2 shows
this graph.

5 SOME PROPERTIES OF THE
MECHANISM

Let U be the set of actions that are already used on a
path p:

Figure 2: An example of a search graph against different
actions of the agent a1. Each node gathers possible coali-
tions that satisfy its path of constraints, where each coali-
tion c may contain a set of variables of agents xi,{i > 0 and
xi ∈N }. These variables are instantiated as the negotiation
progresses.

U =
⋃

m/bm∈p

bm (1)

A path ends when no action can be added. This occurs
when for every proposal, some of its actions have al-
ready been used on the path (∀m′,bm′ ∈U). A utility
that an agent ai gets from one path p is:

ui(p) = ∑
c j∈p

ui(c j) (2)

Proposition 2. Every feasible coalition structure
CS ∈ S is represented in the search graph by exactly
one path from the root to a node. If the children
of a node are the proposals such that: (1) they in-
clude the actions that have not been used on the path
yet, (2) they do not include actions that have already
been used on the path; formally, for any node, Θ, of
the search graph, children(Θ)= {b∈{b1, ...,bm},b∩
U = /0}.

Proof. We first prove that each relevant structure
CS ∈ S is represented by at most one path from the
root to a node.

The first condition of the proposition leads to the
fact that a coalition structure can only be generated in
one order of actions on the path. Thus, there can not
exist more than one path for a given coalition struc-
ture.

What still has to be shown is that each relevant
coalition structure is represented by some path from
the root to a node in the graph. Assume for contra-
diction that some relevant coalition structure CS ∈ S
is not. Then, at some point, there has to be a coalition
in that structure such that this coalition has an action
which is not on the path, but that coalition does not
belong to the path.

To summarize, in the search graph, a path from
the root to a leaf corresponds to a relevant structure of
coalitions. Each relevant structure CS is represented
by exactly one path in the graph of coalitions.
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Lemma 3. Every feasible coalition structure CS con-
tains exactly one coalition from level 1 and at most
one coalition from every level of the graph.

Proof. From the proposition 2, in the search graph, a
path from the root to a leaf corresponds to a relevant
structure of coalitions. Each relevant structure CS is
represented by exactly one such path in the coalition
graph, and each path contains exactly one coalition
from each level.

Proposition 4. The number of leaves in the graph
search is no greater than Lm with L = 2n−1. Fur-
thermore, the number of levels in the graph search
(excluding the root) is not greater than m. The num-
ber of nodes in the graph search is not greater than
Lm+1−1.

Proof. The depth of the graph is at most m since every
node on a path uses up at least one action. Let C (bm)
be the set of coalitions that is created to execute the
action bm. Let L = |C (bm)| the number of possible
coalitions created for the action bm in one level.

There are at most 2n−1 combinations of agents i.e.
coalitions, so L is not greater than 2n−1. Therefore,
the number of leaves in the graph is not greater than
m times the number of coalitions in each level (L∗L∗
L∗ ...∗L, m times), so not greater than Lm.

Next we prove that the number of nodes is not
greater than Lm+1−1. The number of children of each
node is not greater than L because we have not greater
than 2n−1 possibilities of coalitions. Therefore, the
number of nodes is: ∑

m
i=1 Li, the maximization of this

sum gives: (2n−1)1+ ...+(2n−1)m = (2n−1)m+1−1=
Lm+1−1.

6 EXPERIMENTAL EVALUATION

We have carried out an experimental evaluation of
the CFM in a testbed implemented in JAVA. In these
experiments, we have tested different sets of agents.
Each agent is randomly attributed between 30 and 50
actions (i.e., 30 ≤ |bm| ≤ 50) and the constraints for
each action are chosen randomly between 10 to 100
(i.e., 10 ≤ |Ctk| ≤ 100). At each step of the nego-
tiation, agents propose, accept, refuse proposals until
agreements are reached or the deadline for the process
is met. To evaluate the performance of our mecha-
nism, we recorded the number of solutions reached,
the time taken to reach such solutions, and the num-
ber of proposals sent to reach these solutions. Our
experiments are repeated 100 times. We do not com-
pare our method to some methods seeking optimal

Figure 3: Taken time to reach a solution with and without
NMC.

Figure 4: Number of solutions.

coalitions since we do not make a priori computation
of coalitions before the negotiation but coalitions are
computed gradually during the negotiation. We also
consider that the agents do not have the same util-
ity functions which are not known by others. Thus,
agents do not necessarily look for an optimal solu-
tion. They try to converge to an acceptable solution
in their negotiations since convergence is difficult to
address with self-interested agents. Figure 3 shows
that when NMC is not used, the time taken to reach
a solution is greater, compared to that based on NMC
using 100 constraints and 50 actions. This is because
our algorithm allows agents to speed up their search
and thus, to explore relevant solutions.

In what follows, we evaluate the influence of the
NMC on the number of the solutions during the ne-
gotiation process while we use 100 constraints and 50
actions. We notice from Figure 4 that the number of
agreements reached after negotiation is more signifi-
cant in the cases where the NMC is used. These re-
sults clearly show that using the NMC enables agents
to get more possible coalitions, and thus, more feasi-
ble alternatives in a reasonable time limit.
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7 CONCLUSION

In this paper, we addressed the problem of coali-
tion formation with constraints, where self-interested
agents have individual alternative sets to reach dif-
ferent goals.We introduced a new coalition forma-
tion mechanism enriched with several principles to
deal with the constraints of the agents and a Nested
Monte-Carlo based search algorithm. Thus, each
agent may have several possible solutions represented
in the form of sequential interdependent coalitions.
Our mechanism aims to allow each agent to take into
account the dependencies among its tasks, which lead
to inter-dependencies among possible coalitions, and
to keep an overall view of all of its possible solu-
tions throughout the coalition formation process. We
have detailed how the constraints are modeled as a
graph and how this graph is explored using the Nested
Monte-Carlo search. From the graph of constraints,
each agent gets its most preferred path of constraints
and constructs a coalition graph that is used to gener-
ate the coalitions to negotiate. We have detailed some
proprieties that the graphs satisfy. Then we have pre-
sented an empirical evaluation of the proposed mech-
anism.
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