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Abstract: Atmospheric pressure sensors are important devices for several applications, including environment 
monitoring and indoor positioning tracking systems. This paper proposes a method to enhance the quality of 
data obtained from low-cost atmospheric pressure sensors using a machine learning algorithm to predict the 
error behaviour. By using the extremely Randomized Trees algorithm, a model was trained with a reference 
sensor data for temperature and humidity and with all low-cost sensor datasets that were co-located into an 
artificial climatic chamber that simulated different climatic situations. Fifteen low-cost environmental sensor 
units, composed by five different models, were considered. They measure – together – temperature, relative 
humidity and atmospheric pressure. In the evaluation, three categories of output metrics were considered: 
raw; trained by the independent sensor data; and trained by the low-cost sensor data. The model trained by 
the reference sensor was able to reduce the Mean Absolute Error (MAE) between atmospheric pressure sensor 
pairs by up to 67%, while the same ensemble trained with all low-cost data was able to reduce the MAE by 
up to 98%. These results suggest that low-cost environmental sensors can be a good asset if their data are 
properly processed.

1 INTRODUCTION 

Low-cost environmental sensors have enabled 
individuals to build and manage their own monitoring 
system not only by its lower price, but also due to its 
easy availability and extended technical support. 
Therefore, when engaged individuals share a 
common concern, such as the quality of the 
environment, those particular monitoring artefacts, 
together, can be part of a collaborative monitoring 
system (Goldman et al., 2009; Zaman et al., 2014). 
Collaborative sensing, either mobile or not, can be 
helpful as a complementary tool in several fields of 
study, such as biology (Kanhere, 2011), urban 
environment and weather and local climate (D’Hondt 
et al., 2013; Young et al., 2014).  

The use of such sensors can help to reduce overall 
costs to maintain an urban environmental monitoring 
system in continuous run. A specific concern about 
urban areas is the urban heat islands. The continuous 
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monitoring of environmental conditions in urban 
areas can help in the assessment and in triggering 
actions towards prevention or mitigation of urban 
heat islands as demonstrated by (Magli et al., 2016; 
Qaid et al., 2016; Salata et al., 2017) or other human-
caused local phenomena, such as air pollution.  

The study of air quality is another field that has 
also seen an increase in the utilization of low-cost 
sensors (Kumar et al., 2015). As an example, the 
authors in (Hu et al., 2016) described the design and 
evaluation of an air-quality monitoring system that 
uses low-cost sensors and found the performance of 
the sensors to be satisfactory; the authors in (Duvall 
et al., 2016) investigated the performance of low-cost 
sensors for ozone and nitrogen dioxide monitoring 
and its application in a community, and found that the 
sensors, handled by citizen scientists, provided 
consistent and positive readings in most of the 
situations. Once the sensors are evaluated positively, 
they can feed, for example, a local air quality 
evaluation system as described by (Silva & Mendes, 
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2012). In an indoor scenario, they can also be used for 
air-quality assessment by monitoring the levels of 
CO2, once it has relevant consequences on cognitive 
performance of the occupants, as described by (Allen 
et al., 2016; Satish et al., 2012). They can even be 
used as a complementary asset for indoor surveillance 
(Szczurek et al., 2017). 

Electronic sensors are often controlled by 
hardware with embedded microprocessors, such as 
Arduino, Raspberry Pi or NodeMCU. Amongst these, 
Arduino is, perhaps, the most popular among non-
specialized users in a citizen science scope. Several 
works about Internet of Things, Environmental 
Monitoring and Sensor Evaluations used Arduino as 
a platform for data collection due to its ease of use 
and widespread collaborative support (de Araújo et 
al., 2017; Fuertes et al., 2015; Piedrahita et al., 2014; 
Saini et al., 2016; Sinha et al., 2015; Trilles et al., 
2015). 

However, low-cost environmental sensors cannot 
be deployed into the field without minimal 
verifications regarding their data-quality, even when 
nominally calibrated from factory. Afterall, the value 
of a running sensing system is strictly related to the 
quality of its data, as scrutinized by (Liu et al., 2015). 
Data quality assessment, by itself, is a difficult task, 
mostly because bad quality data can be originated 
from diverse sources, including a bad sensor 
behaviour (Gitzel, 2016). In air quality studies, the 
investigators in (Borrego et al., 2016) studied the data 
quality of microsensors by comparison with reference 
methods for air quality monitoring. They found that 
the performance can vary from one sensor to another, 
even if being of the same type. With similar results, 
authors in (Castell et al., 2017) found that low-cost 
sensors, despite its issues on reproducibility, can 
provide very good data for lower-tie applications, 
such as pollution awareness and environmental 
monitoring in a coarse scale. However, improvements 
are necessary if the goal is a high-accuracy 
application. 

Authors in (Terando et al., 2017) and (Ashcroft, 
2018) discussed the errors involved in environmental 
monitoring with microsensors and professional 
stations. They pointed out that both approaches may 
not differ in terms of error sources, since biased 
temperature readings may be common in both 
situations due to the lack of standardization on 
thermal shields and positioning. However, despite the 
technical issues involved in temperature monitoring, 
the author in (Mwangi, 2017) demonstrated the 
importance of low-cost sensors for building weather 
stations in developing countries, places without 
sufficient resources for conventional monitoring. In 

the reported experiment, the sensors were first 
calibrated by placing the low-cost monitoring station 
close to reference instruments and, then, the artefacts 
were deployed into the field, achieving good results. 

The use of barometric pressure sensors in weather 
monitoring is important since pressure is a good 
predictor for rainfall, as it is closely related to water 
evaporation rate (Özgür & Koçak, 2015). In simple 
terms, low pressure values, compared to typical 
values, may indicate rain, whereas high pressure 
values may indicate clean weather. Beyond 
environmental monitoring, atmospheric pressure has 
also great importance for medical applications, 
automotive industry and positioning estimation for 
mobile computing (Yunus et al., 2015). In indoor and 
outdoor positioning systems, barometric pressure can 
provide a good estimate of altitude, since the air 
pressure value is about 1013hPa at sea-level and, it 
drops by approximately 0.11hPa per meter in the first 
1000 meters of altitude. Thus, the enhancement of 
data quality in these sensors may empower its use for 
several applications. 

Machine learning has also attracted the attention 
of non-specialized users in citizen science projects. 
Some contributing factors to its spreading are its 
accessibility through built-in open-source packages, 
such as “scikit-learn” for Python programming 
language (Scikit-Learn, 2019), and the available 
tutorials and collaborative support by other users 
through web communities such as GitHub, Quora and 
StackExchange. Machine learning algorithms can be 
applied to sensor analysis as a powerful calibration 
tool. Authors in (Yamamoto et al., 2017) used a 
machine learning-based model for calibration of 
temperature sensors in outdoor monitoring, and 
reduced the errors of subject sensors satisfactorily. 
For air quality applications, the authors in 
(Zimmerman et al., 2018) used Random Forest 
ensemble as a regressor between multidimensional 
data for air-pollutant sensors, including cross-
sensitivity. They reached the US EPA 
recommendations for air quality with the calibrated 
low-cost sensors (US-EPA, 2019), highlighting a 
promising strategy to overcome poor data, commonly 
found in low-cost air quality sensors. 

2 RESEARCH PROBLEM AND 
APPROACH 

The work described in this paper is part of a research 
project about the use of low-cost environmental 
sensors for monitoring and characterization of urban 
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spaces. Its main concern is the data quality obtained 
from low-cost sensors. 

The most common physical quantities observed in 
environmental monitoring are air temperature, 
relative humidity and atmospheric pressure. Sensors 
involved in the monitoring of these quantities can 
often have heterogeneous accuracy, with humidity 
and pressure readings being dependent, at least, on 
the temperature at which the readings were taken. 
Therefore, the errors associated to the readings of a 
sensor might be a function of other parameters. 

Regarding the atmospheric pressure sensors, as 
their transduction principle relies on the surface 
deformation of the sensing element due to the 
surrounding air pressure, as described by (Minh-
Dung et al., 2013), it is expected that both 
temperature and humidity interfere with the sensor 
readings.  

These considerations lead to the hypothesis that 
the errors, or deviations, from atmospheric pressure 
sensor readings can be mathematically modeled from 
temperature and humidity readings.  

We propose the use of a supervised machine 
learning algorithm in the modelling process, as 
current available regressor algorithms have been 
shown to be very effective in solving problems using 
both linear and non-linear approximations. The 
chosen machine-learning algorithm for the prediction 
of errors in atmospheric pressure readings was the 
Extremely Randomized Trees (Extra-trees) ensemble 
regressor, first proposed by (Geurts et al., 2006), and 
available in “sklearn” library for Python 3.7. This 
algorithm is suitable for both linear and non-linear 
systems with good accuracy and computational 
efficiency. 

In short terms, in the learning process the 
algorithm requires both input and target vectors, so it 
can “learn” the behaviour of the output (target) from 
the given inputs. Once the model is trained, it can 
either provide outputs using new inputs (data that 
were not passed in the training process) or correct the 
whole existing dataset, by feedback, to assess the 
algorithm’s performance in the error prediction.  

In the present approach, the input data is 
composed by the temperature and humidity readings, 
obtained from a set of sensors co-located and 
submitted to the same environmental conditions. In 
the final dataset each individual sensor data is 
represented by a vector (or feature), that, together, 
formed a matrix “m x n”, where “m” is the number 
of reading samples (the vector length), and “n” is the 
number of sensors. The target vector was obtained 
from the deviations between a pair of pressure 
sensors, point to point, where one of them was 

considered as a beacon (a reference). Both data were 
merged and then used in the training process. 
Consequently, once trained, the model was able to 
predict the errors between the atmospheric pressure 
sensors using the temperature and humidity data as 
input. The predicted error was added back into the 
original pressure sensor dataset to, finally, obtain its 
corrected readings.  

The overall process is illustrated in Figure 1, in 
which: “t1, (…), tN1” are vectors containing the 
temperature readings from “N1” different sensors; 
“h1, (…), hN2” are vectors containing the humidity 
sensor readings from “N2” different sensors; “pref” is 
the vector containing the readings from atmospheric 
pressure sensor used as reference; “pi” is the vector 
containing the readings from a given atmospheric 
pressure sensor “i” which will have its readings 
adjusted; “yi” is the actual error between the given 
sensors (used only in the learning process); “yො୧” is the 
output vector of the model, containing the predicted 
error (a function of temperature and humidity); and, 
finally, “pො” is the vector containing the corrected 
atmospheric pressure sensor readings. All vectors 
have length “m”. 

 

Figure 1: Diagram of the approach adopted to predict and 
correct deviations between atmospheric pressure sensors. 

Moreover, machine-learning algorithms often 
allow the adjustment of internal parameters that affect 
its performance. The main adjustable parameters for 
performance tuning in the Extra-Trees ensemble 
regressor are the number of trees in the forest and the 
maximum number of split nodes in the decision trees 
(this last is used only in classification problems). The 
choice of the number of trees has a trade-off: higher 
number of trees results in better accuracy but requires 
more computational resources. Usually, the default 
value for this parameter is “100” and is often used as 
a starting value. In case of eventual unsatisfactory 
performance, it could be increased or decreased in a 
fine-tuning process. 

The next section contains the experimental 
description that generated the datasets used in the 
current investigation. 
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3 EXPERIMENTAL 

The datasets used in this study were obtained from 
sensors submitted to controlled conditions inside an 
artificial climatic chamber (Aralab Fitoclima®) that 
followed a set of instructions to create different 
temperature and humidity combinations. The 
following sections describe the preparation of the 
sensor sets and the experimental execution plan for 
the artificial climatic chamber. 

3.1 Sensor Selection and Preparation 

Five different models of sensors were chosen due to 
its price, availability and ease of use (presence of 
built-in interface): AM2302 (Adafruit, 2016), 
HTU21D (Measurement Specialties Inc., 2013), 
BMP180 (Bosch Sensortec, 2013), BME280 (Bosch 
Sensortec, 2015) and MPL3115A2 (Freescale 
Semiconductor, 2013) (Figure 2). From these, the 
BME280 provides temperature, humidity and 
pressure data; AM2302 and HTU21D provide 
temperature and humidity data; BMP180 and 
MPL3115A2 provide temperature and pressure data. 
Three units of each sensor model were used, forming 
three sets containing one unit from each sensor model 
(identified as Set A, Set B and Set C).  

 

Figure 2: Low-cost sensors selected for the experiment. 
From left to right: AM2302, HTU21D, BMP180, BME280 
and MPL3115A2. 

Each experimental set was assembled around one 
Arduino device, equipped with a “SD&RTC” shield 
for datalogging with timestamps. There were no 
physical relevant spacing between sensors, so they 
could read the same quantity values. The sampling 
rate was set to one sample per minute.  

An additional independent sensor from Lascar 
Electronics© (Lascar Electronics, n.d.), factory-
calibrated for temperature and humidity, was also 
placed together with the low-cost sensor sets inside 
the chamber. Its function was to provide reference 
data for later processing and to enable the comparison 
of the deviation prediction performances between the 

model trained with all sensors and the model trained 
only with reference data. Every device was timely 
synchronized to avoid reading displacements 
between datasets. 

3.2 Artificial Climatic Chamber 
Configuration 

Two experimental profiles were programmed into the 
climatic chamber. The first one was programmed 
with temperature levels of -5°C, 10°C, 25°C and 
40°C; humidity levels of 30%, 50% and 80%. The 
total experiment length was 46 hours, including: 11.5 
hours for each temperature level in stability; 3 hours 
for each humidity level in stability. The second 
experimental profile was set by removing the 
negative temperature from the first profile and 
equally extending the times of each steady level. This 
was performed to increase the stability time of 
relative humidity and consequently reduce eventual 
noise in this quantity.  

The programmed execution started at the lowest 
value of temperature and ended at the highest. The 
relative humidity level sequence followed the scheme 
presented in Figure 3. Note that, in the used chamber, 
it was not possible to control relative humidity below 
0°C. The readings during transitions – either 
temperature or humidity – are also of interest and 
were considered. 

 

Figure 3: Temperature and humidity sequences 
programmed into the artificial climatic chamber. 

Those levels were chosen to attempt to cover 
typical conditions of an urban environment that does 
not experience extreme weather conditions. 
Consequently, it should allow the assessment of the 
data quality of the low-cost sensors in short-term 
timespan within the given hypothetic scenario. After 
the execution of all the experiments, more than 560 
hours of continuous controlled readings of 
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temperature and humidity were obtained, as well as 
corresponding readings of the natural atmospheric 
pressure (uncontrolled), since the chamber is not 
sealed. 

The final dataset, generated by joining all the data 
gathered from each experiment, consisted of eleven 
features (columns) separated by sensor models for the 
different physical quantities (with no distinction 
between different sensor sets): five for temperature 
and three for humidity, used entirely in the training, 
and three for atmospheric pressure that were used to 
form the error vectors. Also, the reference provided 
three complementary features that were used in a 
separate training: temperature, humidity and 
dewpoint estimative.  

The analysis of the final dataset and respective 
metrics is described in the next section. 

4 PERFORMANCE METRICS 
AND DATA ANALYSIS 

As previously described, the target vectors used in the 
algorithm contained only the errors and were obtained 
by the deviations point-to-point between two sensor 
models of the pressure sensors readings by choosing 
one sensor as beacon: the BME280 (since it was the 
newest device, among the pressure sensors used). As 
there were other two models able to provide 
atmospheric pressure values, it led to two target 
features vectors: y1 and y2. The target vector y1 was 
obtained by subtracting the BMP180 pressure 
readings from BME280 data (1), whilst the target 
vector y2 was obtained by subtracting the 
MPL3115A2 pressure readings from BME280 data 
(2), as follows: 

 
࢟ ൌ ܲொଶ଼ െ ܲெଵ଼ (1) 

࢟ ൌ ܲொଶ଼ െ ெܲଷଵଵହଶ (2) 
 

As each individual sensor, by model and physical 
quantity measured, was treated as one input feature 
vector (except the atmospheric pressure readings, that 
were used only to form the target vectors), it led into 
eight input vectors, where five input vectors were 
temperature readings (from AM2302, HTU21D, 
BMP180, BME280 and MPL3115A2) and three input 
vectors were relative humidity readings (from 
AM2302, HTU21D, BME280). The second analysis 
was performed using the same target vectors 
generated by the pressure sensors but using only the 

independent sensor readings as input (temperature, 
humidity and dew point) for training the model.  

In the model preparation stage, the train/test 
length was set to 80/20% in all analysis, and the 
number of trees of the network was set to the default 
value (100). It is a common starting condition, where 
– nominally – more is better. In case of an eventual 
poor performance, it could be adjusted later: 
increased in case of bad metrics; reduced in case of 
good metrics but with slow training time. 

After the training stage with 80% of the input data 
(temperature, humidity and pressure deviations), the 
model was first used to predict the other 20% of the 
target data, mainly to check its robustness on the data 
correction. The second step taken was to use the 
entire input data to predict all the errors between the 
pressure sensors. The output errors ሺݕොଵ, ොଶሻݕ  were 
added back into its correspondent sensor-deviation 
data vector (BMP180 and MPL3115) to perform the 
compensations (equations 3 and 4). Thus, it resulted 
in five atmospheric pressure vectors: the three 
original ones (BME280, BMP180 and MPL3115A2), 
and two containing the new and adjusted values for 
the BMP180 and the MPL3115A2 sensor models, 
that were used in the metrics for the performance 
evaluation. 

ܲெଵ଼ ൌ ܲெଵ଼   ොଵ (3)ݕ

ܲெଷଵଵହଶ ൌ ெܲଷଵଵହଶ   ොଶ (4)ݕ

 
Regarding the metrics, the evaluation of the 

expected and predicted errors from the sub-datasets 
originated in the train-test process (the 80%/20% split 
on the dataset) were named with “TT” suffix, whilst 
the datasets generated by feedbacking the predicted 
error into the whole dataset were named with “FIT” 
suffix. The metrics considered in the evaluation were 
the Mean Absolute Error (MAE), the Mean Squared 
Error (MSE) and the Root Mean Squared Error 
(RMSE), which are respectively described by the 
equations (5-7): 

ࡱࡹ ൌ
1
݊
|ݕ െ |ොݕ



ୀଵ

 (5) 

ࡱࡿࡹ ൌ
1
݊
ሺݕ െ ොሻ²ݕ



ୀଵ

 (6) 

ࡱࡿࡹࡾ ൌ ඩ
1
݊
ሺݕ െ ොሻ²ݕ



ୀଵ

 (7) 
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These metrics were calculated using different 
datasets as follows: between original atmospheric 
pressure vectors, identified as “Raw”; between train 
and test sub-datasets that used low-cost sensor data 
for training, identified as “LC_TT”; between train and 
test sub-datasets that used independent sensor data for 
training, identified as “IS_TT”; between deviation-
compensated vectors that used low-cost sensor data 
for training, identified as “LC_FIT”; and between 
deviation-compensated vectors that used independent 
sensor readings for training, identified as “IS_FIT”. 
To complement the analysis, the determination 
coefficient (r²) and Spearman’s Rank-Order 
Correlation Coefficient (ρ) were also obtained from 
the described datasets. 

5 RESULTS 

The presented numeric metrics were obtained by 
averaging ten executions of the Extremely 
Randomized Forests ensemble regressor with the 
“shuffle” feature enabled in each train/test split 
process (cross-validation). This setup ensured that the 
algorithm was trained and tested with different 
datapoints in each execution. Table 1 presents the 
achieved results in numerical terms. The datasets are 
identified as aforementioned.  

There was no significant discrepancy for mean 
absolute errors (MAE) in raw data between the pairs 
of sensors: MAE between BME280 and BMP180 is 
0.7935hPa, and between BME280 and MPL3115A2 
is 0.7958hPa. When the input data of the machine-
learning algorithm is only the independent sensor 
data, containing temperature, humidity and dew point 
estimated values, the overall MAE was reduced by 
68% for BMP180 and by 26% for MPL3115A2, 

reaching 0.248hPa and 0.5872hPa, respectively. 
However, when all low-cost sensor readings were 
considered for training the model, the error was 
significantly reduced: the MAE between BME280 
and BMP180 was reduced by 98.6%, while between 
BME280 and MPL3115A2 was reduced by 98.9%, 
reaching 0.0109hPa and 0.0086hPa, respectively. 

Table 1: Numerical performance summary (hPa) obtained 
from different dataset categories. 

DatasetBME vs. MAE MSE RMSE 

Raw
BMP180 0.7935 0.9477 0.9735 
MPL3115A2 0.7958 1.0319 1.0158 

IS_TT
BMP180 0.2583 0.1023 0.3198 
MPL3115A2 0.6133 0.5274 0.7262 

IS_FIT
BMP180 0.2480 0.0936 0.3059 
MPL3115A2 0.5872 0.4794 0.6924 

LC_TT
BMP180 0.0540 0.0061 0.0780 
MPL3115A2 0.0427 0.0063 0.0793 

LC_FIT
BMP180 0.0109 0.0012 0.0349 
MPL3115A2 0.0086 0.0013 0.0355 

 
Figure 4 shows the timeseries plots containing 

raw readings, the compensated values using low-cost 
sensor datasets and the compensated values using 
independent sensor readings. It is possible to observe 
that there were no significant deviations in data 
adjusted by the model that considered all low-cost 
sensor data. The abrupt changes visible in the 
timeseries plot was caused by appending subsequent 
experimental data when the last value of the previous 
experiment was different from the first value of the 
subsequent one. As these anomalies occurs once after 
every 2000+ samples, it does not cause significant 
depreciation in numeric performance and is of no 
concern. 

On the contrary of the model that used all sensors, 
the adjusted data that used only the independent 

 

Figure 4: Timeseries of atmospheric pressure readings: (a) raw data; (b) data adjusted by the model trained with the 
independent sensor data; (c) data adjusted by the model trained with the low-cost weather sensors data.
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sensor readings as input presented deviations that can 
be visually detected at some points, suggesting that 
the reduced number of input features, even from a 
certified sensor, may not reach the same efficacy, for 
this purpose, as a set of low-cost sensors co-located. 

The plot containing the error scattering between 
raw vectors is presented in Figure 5, and the residuals 
plot (difference between predicted and actual 
deviations) of the model trained with the independent 
sensor and the model trained with all sensor data are 
presented in Figures 6 and 7, respectively. 

 

Figure 5: Deviation distribution of the atmospheric pressure 
sensor readings as obtained (raw). 

The density of the error scattering can be 
interpreted by the colour intensity: faint colours 
corresponds to low concentration of deviations; vivid 
and solid colours corresponds to higher concentration 
of deviations.  

An ideal behaviour of the residuals distribution in 
a fitted model would be a straight horizontal line on 
zero hPa. The residuals plot of the model trained with 
the independent sensor (“IS_FIT”) indicates that 
there was still a random behaviour of the deviations. 
However, it achieved a better performance for 
BMP180 than for MPL3115A2, as shown by 
comparing Figures 5 and 6. 

The residuals scatterplot of the model trained with 
all co-located low-cost sensor data (“LC_FIT”) 
presents a very low spread around zero: a good 
approximation to the ideal behaviour for a fitted 
model. 

The positive results obtained by the Extremely 
Random Trees algorithm, when using readings from 
all co-located low-cost sensors, can be extended to the 
correction of outliers. Although it is still possible to 

perceive the presence of few outliers in Figure 7 (the 
vertically spaced points around 983hPa and 995hPa), 
they were significantly reduced if compared to the 
“IS_FIT” model residuals. Based on these 
observations, it can be concluded that the “LC_FIT” 
managed to notoriously reduce the readings 
deviations. 

 

Figure 6: Residuals distribution of Extremely Random 
Trees ensemble regressor trained with temperature, 
humidity and dew point estimative from independent sensor 
(“IS_FIT”). 

 

Figure 7: Residuals distribution of Extremely Random 
Trees ensemble regressor trained with temperature and 
humidity from co-located low-cost sensors (“LC_FIT”). 

The determination coefficients (r²) and 
Spearman’s rank-order correlation coefficient (ρ) of 
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the datasets, before and after the Extremely Random 
Tree algorithm fitting, are exposed in Table 2. The 
lowest r² was observed between BME280 and 
MPL3115A2 in raw datasets, with a value of 0.9798; 
the highest r² was observed in “LC_FIT” datasets, 
with both vectors exceeding the 0.9999 value when 
compared to BME280. The lowest ρ was also 
observed between BME280 and MPL3115A2 in raw 
datasets, with a value of 0.9861, and the highest ρ was 
also observed in “LC_FIT” datasets, with both 
vectors exceeding the value of 0.9999. 

Table 2: Determination coefficients (r²) and Spearman’s 
rank-order correlation coefficient (ρ) between atmospheric 
pressure sensor readings before and after deviation 
compensation by the machine-learning model. 

Dataset 
 BME280 versus: 

BMP180 MPL3115A2 

“Raw” 
r² 0.9815 0.9798 
ρ 0.9909 0.9861 

“IS_FIT” 
r² 0.9982 0.9905 
ρ 0.9982 0.9913 

“LC_FIT” 
r² 0.9999+ 0.9999+ 
ρ 0.9999+ 0.9999+ 

 
To enrich the interpretation on how the model 

managed to predict the errors, it is relevant to analyse 
the feature importance plot. This information can be 
obtained from the Extremely Randomized Forest 
model. It reveals which features had an informative 
role during the training of the model and which 
features do not inflict significative influence in the 
outputs. In other words, and for this case, it permits 
the determination of which data the error of evaluated 
atmospheric pressure sensors depends on. The feature 
importance plot for the model trained with the 
independent sensor (“IS_FIT”) is presented in Figure 
8, whilst the feature importance plot of low-cost 
trained model (“LC_FIT”) is presented in Figure 9. 

The interpretation of Figure 8 points out that the 
BMP180 sensor deviations were mostly temperature 
dependent (87% of importance), while the 
MPL3115A2 deviations demonstrated to suffer 
higher, yet small, influence from relative humidity 
(14% of importance, versus 2.5% for BMP180). The 
dewpoint, calculated by a non-linear formula that 
considers both temperature and humidity, presented 
relevant importance for MPL3115 deviation 
predictions (above 20% of importance) while it had 
no significant impact on BMP180 deviation 
predictions. 

Regarding the quantities dependence, the model 
trained with low-cost sensors (Figure 9) agreed with 
the information presented by the model trained with 

the independent sensor: the sum of temperature 
sensors importance resulted in 93% for the BMP180, 
and humidity has no informative role (7%). 
Meanwhile, the sum of humidity data importance 
results in 20% for MPL3115A2, suggesting that this 
variable may be considered for this sensor calibration 

 

Figure 8: Features importance plot of input vectors used for 
training the IS_FIT model.  

 

Figure 9: Features importance plot of input vectors used for 
training the LC_FIT model. 

As achieved results were considered positive, no 
additional hyper-parameter tuning was performed in 
the machine-learning model. However, it is not 
discarded that a fine tuning could enhance the 
algorithm’s performance. 

6 DISCUSSION AND 
CONCLUSIONS 

In this paper, the utilization of a set of co-located low-
cost sensors with post-processing in an accessible 
machine-learning algorithm showed promising 
results for atmospheric pressure sensor error 
prediction, once the deviations were reduced by more 
than 90% for both sensor models. The achieved 
reduction on the observed deviations between the 
sensors, and the consequent data quality 
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enhancement, through the utilization of machine 
learning algorithms is in agreement with the studies 
presented by (Yamamoto et al., 2017) and 
(Zimmerman et al., 2018), which used machine 
learning resources to improve the data quality from 
temperature and air quality sensors, respectively.  

Despite the model trained with the independent 
sensor was able to reduce deviations between the 
sensor pairs in acceptable levels, it still did not reach 
the same performance as the model that learned the 
error behaviour using the entire low-cost sensors 
dataset. In a broader reasoning, the low-cost of a 
given sensor might imply a trade-off on its data 
quality, but the presented results point out that, if a 
group of low-cost sensors is used and its data is 
handled properly (e.g. synchrony, logging and data 
treatment), the deviation prediction process, and its 
correction, may be more effective than when just one 
certified sensor is used. This observation also 
corroborates with one of the main points of the 
collaborative sensing that is spreading the low-cost 
sensor units (fixed or mobile) to overcome the quality 
of a singular sensing node. Then, it may act as a 
complementary asset to help conventional methods to 
address a problem, or even be a palliative in certain 
situations (Giordano & Puccinelli, 2015). An 
example that illustrates the low-cost sensors playing 
informative role in places where conventional 
methods are not available yet in large scale is the 
project with low-cost weather stations for developing 
countries described by (Mwangi, 2017), that used the 
HTU21D and BMP180 sensors – both used in this 
paper. The stations were tested in NOAA facilities 
and then deployed into field in Kenya for continuous 
weather monitoring in remote places. Such work can 
expand into an enhanced environmental sensor 
network involving the “low-cost” concept, but with 
“certified” results, similar to the work presented by 
(Ingelrest et al., 2010).  

Regarding the analysis, the most intuitive 
example of potential application from the observed 
outcomes is a real time calibration service using a 
previously trained machine-learning model. 
Although the model was trained with offline data, 
after the learning process, it can be executed online, 
in real time. This is possible to be done by performing 
the object serialization (or model persistence) in 
Python programming language, for example. In short, 
it allows the serialization (export) of an offline trained 
object (e.g. the trained Extremely Random Trees 
ensemble regressor used in this work) into a stream of 
bytes and performs its portability (import) to other 
service, such as an online server, or a middleware, 

similar to the author’s proposals about data quality 
improvements in (Dua et al., 2009; Fersi, 2015).  

It should be highlighted that the presented results 
were obtained by considering the BME280 as a 
beacon (a non-certified reference). However, these 
results do not show any evidence that they could not 
be replicated and reach similar positive performance 
if the target vectors (ݕଵ	and	ݕଶ) were obtained from a 
reference sensor for atmospheric pressure instead of 
a beacon sensor, since the machine learning is able to 
predict the error behaviour regardless of the number 
of inputs. Although the environmental dependence of 
the error between atmospheric pressure sensor were 
expected, since the considered physical quantities are 
strictly related one to another, the Extra-Trees 
algorithm would manage to pick only the features that 
relevantly can describe the observed problem. In 
other words, if the input had more, and even 
irrelevant, features (e.g. timestamp, luminosity, etc), 
the obtained results would not be different. 

From this point on, some possibilities of 
subsequent works can be considered, such as: a field 
test (uncontrolled conditions) of the error prediction 
using the approach of this work, and the consequent 
evaluation of its robustness for long-term sensor use, 
or its robustness over sensor positioning (spatial 
variation); the investigation of the performance of this 
approach when using a certified reference sensor for 
atmospheric pressure as the generator for the target 
vectors (instead of a beacon sensor, as 
aforementioned); to assess the performance of 
different machine learning algorithms for offline and 
online sensor correction (e.g. Random Forests, SVM 
regressor, Lasso, etc.) and different hyper parameters 
tuning.  

Finally, it is expected that the presented work, its 
respective results, and the opened opportunities may 
provide contributions or further motivations for 
studies situated in the intersection zone between 
citizen science, big data and environmental awareness 
and monitoring, or even those beyond these areas but 
which objectives eventually include the enhancement 
of data quality from environmental microsensors. 
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APPENDIX 

The datasets used in this work are available in the 
Zenodo repository, with digital identifier (DOI) as 
10.5281/zenodo.3560299. 

We encourage the readers to reproduce our 
findings. 
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