
Improving Accuracy and Speed of Network-based Intrusion
Detection using Gradient Boosting Trees

Ryosuke Terado1 and Morihiro Hayashida2
1Planning and Sales Group, WORKS Co., Ltd, Masuda, Shimane, Japan

2Department of Electrical Engineering and Computer Science, National Institute of Technology, Matsue College, Matsue,
Shimane, Japan

Keywords: Network-based Intrusion Detection System, Gradient Boostring Tree, Neural Network.

Abstract: As computers become more widespread, they are exposed to threats such as cyber-attacks. In recent years,
attacks have gradually changed, and security software’s must be frequently updated. Network-based intrusion
detection systems (NIDSs) have been developed for detecting such attacks. It, however, is difficult to detect
unknown attacks by the signature-based NIDS that decides whether or not an access is malicious based on
known attacks. We aim at developing a methodology to efficiently detect new unidentified attacks by
constructing a model from latest access records. Kyoto 2016 dataset was constructed for the evaluation of
such methods, and machine learning methods including random forest (RF) were applied to the dataset. In
this paper, we examine a deep neural network and gradient boosting tree methods additionally for session data
with twelve features excluding IP addresses and port numbers on Kyoto 2016 dataset. The average accuracy
by a gradient boosting method XGBoost achieved 0.9622 more than five times faster than RF. The results
suggest that XGBoost outperforms other machine learning classifiers, and the elapsed time for the
classification is significantly shorter.

1 INTRODUCTION

In recent years, information technology has been
promoted by technological advances, while the
increase in the number of cyber-attacks has been
regarded as a problem. In particular, attacks through
computer networks on most important infrastructures
such as power plants, large-scale factories, medical
care, transportation, and government-related facilities
can disrupt our power, water, and gas supply
networks. One of the defense methods against such
attacks is to detect them using a network-based
intrusion detection system (NIDS), which is a system
that detects in real time and informs us of malicious
accesses in the network to be monitored. Currently,
the signature-based NIDS that stores patterns of
attacks and detects whether or not an observed access
matches one of the stored patterns is mainly used.

Since the signature-based system is not effective
to unknown attacks, various studies on the
performance of NIDS have been conducted (Candora
et al., 2009), and especially NIDSs using machine
learning methods have attracted attention. An
effective feature selection method for an IDS was

proposed, and the IDS was combined with least
squares support vector machine (LSSVM)
(Ambusaidi et al., 2016). An IDS combined with
three machine learning methods, k-means clustering
(k-means), k-nearest neighbors (k-NN), and naïve
Bayes (NB) was proposed (Om and Kundu, 2012).
Support vector regression (SVR) optimized by
combining the ant colony optimization and firefly
algorithm was developed for detecting denial of
service (DoS) attacks (Hosseini et al., 2015). An
intrusion detection method was proposed using
anomaly detection using three unsupervised learning
methods, cluster-based classification, k-NN, and one-
class support vector machine (OCSVM) (Eskin et al.,
2002). It was reported that a network controlled by
software-defined networking technology is
vulnerable to distributed denial of service (DDoS)
attacks, and an SVM-based DDoS attack detection
method was proposed (Kokila et al., 2014). IDSs
based on neural network (NN) and SVM were
constructed and compared (Mukkamala et al., 2002).
A random forest (RF)-based ensemble learning
method for IDS was improved (Masarat et al., 2016).
An intrusion detection method combining a decision

490
Terado, R. and Hayashida, M.
Improving Accuracy and Speed of Network-based Intrusion Detection using Gradient Boosting Trees.
DOI: 10.5220/0008963504900497
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 490-497
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

tree (DT) with a genetic algorithm was proposed for
feature selection (Stein et al., 2005). The
classification performance by DT and NB was
compared (Amor et al., 2004). Deep neural networks
including recurrent neural networks have been
examined for intrusion detection (Nadeem et al.,
2016; Potluri and Diedrich, 2016; Yin et al., 2017).

In these studies, DARPA intrusion detection data
sets (https://www.ll.mit.edu/r-d/datasets), KDD Cup
1999 data (http://kdd.ics.uci.edu/databases/
kddcup99/kddcup99.html), and Kyoto 2006+ dataset
(Song et al., 2011) have been used for evaluation of
developed detection methods. These datasets are
already old, and the latest attack tendency is not
reflected and the period of data collection is too short.
Hence, Kyoto 2016 dataset for enhancing the
detection accuracy of NIDSs was constructed, the
effectivity of machine learning methods, RF, DT, NB,
SVM, k-NN, and OCSVM was confirmed for the
dataset, and it was reported that the detection
accuracy by RF was the best (Tada et al., 2017).

In this paper, we consider the following problem:
Given a network access behavior, obtained mainly
from IP packets, discriminate whether or not the
access is malicious. We first construct a deep neural
network (DNN), and investigate whether or not attack
detection tasks by neural networks are really
practical. In addition, we examine two gradient
boosting trees (GBTs), Friedman’s GBT (Friedman,
2001) and XGBoost (Tianqi and Carlos, 2016), that
are known to have higher regularization performance.
In fact, it was reported that XGBoost was useful to
the NSL-KDD dataset (Dhaliwal et al., 2018). We
perform computational experiments on Kyoto 2016
dataset. The results suggest that XGBoost
outperforms other machine learning classifiers in the
previous work. Furthermore, the elapsed time
required for classification by GBTs was much shorter
than those by other methods. It is important because
an NIDS must classify a large amount of accesses.

2 METHODS

We propose a deep neural network for detecting
attacks from IP packets, and briefly review two
gradient boosting tree methods, Friedman’s GBT
(Friedman, 2001) and XGBoost (Tianqi and Carlos,
2016). Suppose that N data ሺ࢞, ሻୀଵݕ

ே with a vector
 ݕ having features on the i-th session and a label࢞
representing whether or not the session is malicious
are given, where we expect features such as the
amount of transmitted data, and the number of

sessions having the same destination IP address,
given in Kyoto 2016 dataset as elements of ࢞.

2.1 Deep Neural Network Model

Neural networks are often used in various research
fields because it can respond flexibly to any problem.
It, however, is not easy to build a highly accurate
model in general. Figure 1 illustrates a fully
connected neural network model. Given the value

ݔ
ሺሻ of the j-th neuron in the input layer, the value ݖ

of the k-th neuron in the next layer is calculated by

ݖ ൌ ݄ቌݓݔ
ሺሻ െ ܾ

ቍ, (1)

where h denotes an activation function, ݓ denotes
the weight between the k-th neuron and j-th neuron,
and ܾ denotes a bias. The design of middle layers is
very important to construct a model with high
regularization performance. If the number of middle
layers and the number of nodes are small, there is a
high possibility that it will not be sufficiently trained.
Hence, we construct a fully connected neural network
with one hundred middle layers, where each middle
layer has one hundred neurons, the output layer has
two neurons corresponding to attack and normal
accesses, the activation function from the input layer
and a middle layer to another middle layer are the
hyperbolic tangent function, and the activation
function from the last middle layer to the output layer
is the softmax function.

Figure 1: Illustration on a fully connected neural network.

2.2 Friedman’s GBT Algorithm

Friedman’s Gradient Boosting Algorithm is the first
GBT algorithm, which is one of the ensemble
learning methods that combine multiple classifiers
with low classification performance, called weak
learners. Ensemble learning includes three types of
learning, bagging, boosting, and stacking. A GBT

Improving Accuracy and Speed of Network-based Intrusion Detection using Gradient Boosting Trees

491

belongs to boosting. In boosting, the first weak
learner learns one dataset, and the next weak learner
learns so that the example misclassified by the
previous weak learner can be preferentially classified
correctly. Thus, parallel processing is impossible, but
classification accuracy tends to be high. The
Friedman’s GBT tries to construct learners with
parameters that minimizes the error function ߖ൫ݕ,
݂ሺ࢞ሻ൯ for ܰ input data. It, however, is difficult to find
the minimum solution. Hence, the following gradient
݃௧ሺ࢞ሻ for the training data is calculated.

݃௧ሺ࢞ሻ ൌ ௬ܧ ቆ
,ݕ൫ߖ߲ ݂ሺ࢞ሻ൯

߲݂ሺ࢞ሻ
ቤ ቇ࢞

ሺ࢞ሻୀመషభሺ࢞ሻ

 (2)

Then, the parameters ߩ௧, ௧ߠ of the weak learner at
the t-th step are obtained by minimizing the following
function.

൫െ݃௧ሺ࢞ሻ ,࢞௧݄ሺߩ ௧ሻ൯ߠ
ଶ

ே

ୀଵ

, (3)

where h denotes a base-learner model.

2.3 XGBoost Algorithm

XGBoost is also a gradient boosting tree method. Let
a function ௧݂ represent the ݐ-th decision tree, ݕො be
the predicted value of the i-th decision tree after i
steps, that is, ݕො ൌ ∑ ݂ሺ࢞ሻ

ୀଵ be the ݅-th actualݕ ,

value, ߖ be an error function, and Ωሺ ௧݂ሻ be a

penalty function written by ܶߛ
ଵ

ଶ
ห|࢝|หߣ

ଶ
, where T

denotes the size of a decision tree, ߛ denotes a penalty
for T, ߣ denotes the contribution ratio of the previous
tree in constructing a new tree, and ࢝ denotes a
vector returned by the decision tree ௧݂ . Then, the
objective function ܮሺ௧ሻ to be minimized is defined
using ௧݂ሺ࢞ሻ by

ሺ௧ሻሺܮ ௧݂ሻ ൌߖቀݕ, ොݕ
ሺ௧ିଵሻ ௧݂ሺ࢞ሻቁ

ୀଵ

 ሺߗ ௧݂ሻ. (4)

The quadratic Taylor expansion around 0 with
respect to ௧݂ is taken as follows.

ሺ௧ሻሺܮ ௧݂ሻ ൎቆߖ൫ݕ, ොݕ
ሺ௧ିଵሻ൯ ݃ ௧݂ሺ࢞ሻ

ୀଵ

1
2
݄ ௧݂

ଶሺ࢞ሻቇ ሺߗ ௧݂ሻ,

(5)

where ݃ ൌ ߲
௬ො
ሺషభሻߖ൫ݕ, ොݕ

ሺ௧ିଵሻ൯ and

݄ ൌ ߲ଶ
௬ො
ሺషభሻߖ൫ݕ, ොݕ

ሺ௧ିଵሻ൯.

By removing terms that are not related to the
optimization, that is, terms not related to ௧݂ , from
Eq.(5), we have

෨ሺ௧ሻሺܮ ௧݂ሻ ൌቌ ݃ݓ
∈ூೕ

1
2
ቌ݄
∈ூೕ

 ଶቍݓቍߣ

்

ୀଵ

 .ܶߛ

(6)

Then, the optimal solution ݓ∗ that is returned by
the final node ݆ of the ݐ-th decision tree minimizing
the objective function is represented by

∗ݓ ൌ െ
∑ ݃∈ூೕ

∑ ݄ ∈ூೕߣ

. (7)

In this formula, the first and second gradient of
the ݐ -1 decision trees is used to construct ݐ -th
decision tree. By substituting ݓ∗ to Eq.(6), we have

ሻݍ෨ሺ௧ሻሺܮ ൌ െ
1
2

ቀ∑ ݃∈ூೕ ቁ
ଶ

∑ ݄ ∈ூೕߣ

்

ୀଵ

 (8) .ܶߛ

Since it is difficult to find the optimal tree
structure, the greedy algorithm tries to iteratively add
branches to the tree. Suppose that an instance set I is
splitted to IL and IR. Then, if ܮ෨ሺ௧ሻሺݍሻ decreases, the
branch is adopted.

The major difference from the Friedman’s
algorithm is that XGBoost uses not only the first-
order gradient but also the second-order gradient to
minimize the loss function. Therefore, the
convergence of the loss function is fast, the number
of trees can be reduced compared to the Friedman’s
algorithm, and the time required for training can be
reduced. If the number of trees can be reduced, the
model can be simplified and the time required for
classification of test data can be reduced. It is more
practical to be able to discriminate in a short time
even if a large number of cyber-attacks are received.

3 COMPUTATIONAL
EXPERIMENTS

3.1 Kyoto 2016 Dataset

It is important that datasets used for evaluation of
attack detection performance contain sufficient long
period of data collection and the latest attack
tendency. Kyoto 2016 dataset (Tada et al., 2017) was
constructed to deal with more shrewd attacks and
includes the following features: (1) the latest attack
trends included (2) constructed from actual traffic (3)

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

492

long period of data collection (approximately 10
years from November 2006 to December 2015).

The number of sessions observed in about 10
years is 806,095,624, of which 160,873,849 were
normal sessions and 640,618,555 sessions were
malignant sessions. Each session has the following
twelve features: (1) session length (2) the amount of
transmitted data (3) the amount of received data (4)
among the sessions in the past 2 seconds, the number
of sessions having the same destination IP address as
the current session (5) among (4), the percentage of
sessions having the same service type as the current
session (6) among (4), the percentage of sessions that
caused a SYN error (7) among the sessions in the past
2 seconds, the percentage of sessions that caused a
SYN error and the service type is the same as the
current session (8) among the past 100 sessions with
the same destination port, the number of sessions
having the same source IP address as the current
session (9) among the past 100 sessions with the same
destination port, the number of sessions having the
same destination IP address as the current session
(10) among (8), the percentage of sessions having the
same source port as the current session (11) among
(8), the percentage of sessions that caused a SYN
error (12) among (9), the percentage of sessions that
caused a SYN error. We also used these twelve
features that were the same as the features used in the
previous work by Tada et al.

The dataset was divided into two-month units
from November 2006 to December 2008 and from
November 2013 to December 2015 as shown in Table
1. Then, we evaluated the classifiers as follows. First,
10,000 sessions were randomly selected from each
period. After sessions selected in period A were used
for training, sessions selected in period B were used
for test (called A-B). Similarly, after sessions in
period B were used for training, sessions in period C
were used for test (called B-C), and the same
procedure was repeated until period M in the previous
work. In addition to A, ..., M, we evaluated the
classifiers for newer periods, N, ..., Z to investigate
whether or not gradient boosting tree algorithms and
random forests can deal with tendency of newer
attacks.

3.2 Implementation

For optimization of our neural network, the number
of epochs was set to 100, the softmax cross entropy
function and stochastic gradient descent in tensorflow
package (https://www.tensorflow.org/) were used.
For Friedman’s GBT and XGBoost, we used
GradientBoostingClassifier in scikit-learn package

Table 1: Periods from Nov. 2006 to Dec. 2008 and from
Nov. 2013 to Dec. 2015, and the corresponding symbols.

Period Symbol
Nov. 2006 ～ Dec. 2006 A
Jan. 2007 ～ Feb. 2007 B
Mar. 2007 ～ Apr. 2007 C
May 2007 ～ Jun. 2007 D
Jul. 2007 ～ Aug. 2007 E
Sep. 2007 ～ Oct. 2007 F
Nov. 2007 ～ Dec. 2007 G
Jan. 2008 ～ Feb. 2008 H
Mar. 2008 ～ Apr. 2008 I
May 2008 ～ Jun. 2008 J
Jul. 2008 ～ Aug. 2008 K
Sep. 2008 ～ Oct. 2008 L
Nov. 2008 ～ Dec. 2008 M
Nov. 2013 ～ Dec. 2013 N
Jan.2014 ～ Feb. 2014 O
Mar. 2014 ～ Apr. 2014 P
May 2014 ～ Jun. 2014 Q
Jul. 2014 ～ Aug. 2014 R
Sep. 2014 ～ Oct. 2014 S
Nov. 2014 ～ Dec. 2014 T
Jan. 2015 ～ Feb. 2015 U
Mar. 2015 ～ Apr. 2015 V
May 2015 ～ Jun. 2015 W
Jul. 2015 ～ Aug. 2015 X
Sep. 2015 ～ Oct. 2015 Y
Nov. 2015 ～ Dec. 2015 Z

(http://scikit-learn.org/), and XGBoost python
package, respectively. We used fixed parameters as
shown in Table 2 during all our experiments for
Friedman’s GBT and XGBoost, where parameters
were previously tuned using grid search for 120,000
sessions randomly selected from period A to M. For
random forests, the number of decision trees to be
weak learners was fixed to 100, the depth of the
decision tree was not fixed, and leaves were expanded
until the number of terminal node data was less than
two.

Table 2: Parameters, the number of decision trees, depth of
trees, and learning rate, in our experiments for Friedman’s
GBT and XGBoost.

 Friedman’s GBT XGBoost

decision trees 400 90
Depth of trees 3 6
Learning rate 0.3 0.45

Improving Accuracy and Speed of Network-based Intrusion Detection using Gradient Boosting Trees

493

We used a computer with intel core i9 processor
3.6GHz and 64G bytes memory under linux OS in all
experiments. Since cyber-attacks often force a large
amount of accesses at one time, an NIDS must
classify the accesses as accurately and quickly as
possible. Our purpose is not only to improve the
accuracy but also to reduce the time required for
classification.

We calculated accuracy, precision, true positive
rate (TPR), and false positive rate (FPR) from
classification results as follows.

ݕܿܽݎݑܿܿܣ ൌ 	
்ା்ே

்ାிା்ேାிே
,

݊݅ݏ݅ܿ݁ݎܲ ൌ 	
்

்ାி
,

ܴܶܲ ൌ
்

்ାிே
,

ܴܲܨ ൌ
ி

்ேାி
,

where TP denotes the number of sessions that were
actually attacks and predicted to be attacks, FP
denotes the number of sessions that were predicted to
be attacks but were actually normal (type 1 error), TN
denotes the number of sessions that were actually
normal and predicted to be normal, and FN denotes
the number of sessions that were predicted to be
normal but were actually attacks (type 2 error).

4 RESULTS

Table 3 shows the results on the accuracy by our deep
neural network for each period, where the standard
deviation of the accuracy was 0.0458. Table 4 shows
the results on the accuracy, precision, TPR, and FPR
by random forests, which was best in the previous
work by Tada et al.

Table 3: Results on the accuracy by our deep neural
network for each period, A-B, ..., L-M.

 Acc.
A-B 0.8814
B-C 0.8853
C-D 0.9301
D-E 0.9165
E-F 0.8998
F-G 0.905
G-H 0.8394
H-I 0.8996
I-J 0.7585
J-K 0.9031
K-L 0.9385
L-M 0.8932
Average 0.8875

From the tables, we can see that the accuracy by fully
connected neural networks with one hundred middle
layers was lower than that by random forests with one
hundred decision trees although the accuracy by our
neural network was not so low.

Table 4: Results on the accuracy, precision, TPR, and FPR
for each period, A-B, ..., L-M, by random forests, which
was best in the previous work by Tada et al.

 Acc. Pre. TPR FPR
A-B 0.9399 0.9801 0.898 0.0182
B-C 0.9647 0.9416 0.991 0.0615
C-D 0.9083 0.9722 0.8405 0.0239
D-E 0.9253 0.9469 0.901 0.0504
E-F 0.9747 0.9635 0.9867 0.0374
F-G 0.9848 0.9811 0.9886 0.019
G-H 0.9221 0.8794 0.9794 0.1352
H-I 0.9762 0.9846 0.9676 0.0151
I-J 0.8145 0.7365 0.9892 0.3602
J-K 0.9874 0.9857 0.9891 0.0144
K-L 0.9885 0.9891 0.988 0.0109
L-M 0.9752 0.9747 0.9757 0.0253
Ave. 0.9468 0.9446 0.9579 0.0643

Tables 5 and 6 show the results on the accuracy,

precision, TPR, and FPR by Friedman’s GBT and
XGBoost, respectively, for each period, A-B, ..., L-
M. The average accuracy, precision, and TPR by the
GBT methods were higher than those by RF, which
had the highest classification accuracy in the previous
study by Tada et al. In addition, the average false
positive rate (FPR) by the GBT methods was smaller
than that by RF. Especially, although FPRs in G-H
and I-J were relatively high, XGBoost could reduce
FPRs in both periods. In period C-D, the accuracy
0.9852 by Friedman’s GBT increased from that by
RF. The accuracy 0.9898 by XGBoost in period K-L
was the highest, and the accuracy by Friedman’s GBT
and RF in the same period was also high. It is
considered that features in sessions between periods
K and L were very similar. In another experiment, by
adding source and destination port numbers as
features of a session, the average accuracy by
XGBoost achieved 0.9879.

Moreover, we measured the elapsed time for
classification of one session in A-B,..., L-M. The
average elapsed time by RF, Friedman’s GBT, and
XGBoost, was 0.113 ± 0.0201, 0.0671 ± 0.0106, and
0.0192 ± 0.00369 seconds, respectively (also shown
in Fig. 2). The average elapsed time by XGBoost was
the shortest, and XGBoost could do the classification
more than five times faster than RF. These results
mean that XGBoost can improve the detection

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

494

accuracy of cyber-attacks and reduce the time
required for classification.

Table 5: Results on the accuracy, precision, TPR, and FPR
by Friedman’s GBT for each period, A-B, ..., L-M.

 Acc. Pre. TPR FPR
A-B 0.9399 0.9801 0.898 0.0182
B-C 0.9651 0.9907 0.9912 0.0609
C-D 0.9852 0.9862 0.9852 0.0158
D-E 0.9394 0.9335 0.9323 0.0526
E-F 0.9755 0.9859 0.9862 0.0352
F-G 0.9868 0.9913 0.9924 0.0178
G-H 0.9187 0.9916 0.9929 0.1555
H-I 0.9772 0.9697 0.9682 0.0148
I-J 0.8603 0.8658 0.9896 0.269
J-K 0.9886 0.9895 0.988 0.0123
K-L 0.9896 0.9886 0.9901 0.0094
L-M 0.9779 0.974 0.9738 0.0179
Ave. 0.9597 0.9661 0.9761 0.0566

Table 6: Results on the accuracy, precision, TPR, and FPR
by XGBoost for each period, A-B, ..., L-M.

 Acc. Pre. TPR FPR
A-B 0.9518 0.9885 0.9094 0.0105
B-C 0.965 0.9413 0.992 0.0619
C-D 0.9875 0.9856 0.9872 0.0144
D-E 0.9395 0.9546 0.9187 0.0436
E-F 0.9771 0.9672 0.9884 0.0335
F-G 0.9865 0.9829 0.9902 0.0172
G-H 0.935 0.8901 0.9935 0.1236
H-I 0.9786 0.9847 0.9724 0.0152
I-J 0.8686 0.7982 0.9899 0.2526
J-K 0.9892 0.9873 0.9911 0.0127
K-L 0.9898 0.991 0.9886 0.0089
L-M 0.9782 0.9824 0.9739 0.0175
Ave. 0.9622 0.9545 0.9746 0.051

Figure 2: The average elapsed time (seconds) for
classification of one session by random forest (RF),
Friedman’s GBT, and XGBoost.

Tables 7, 8, and 9 show the results on the
accuracy, precision, TPR, and FPR by RF,
Friedman’s GBT, and XGBoost, respectively, for
each period, N-O, ..., Y-Z. Although the average
accuracy by XGBoost was slightly higher than the
others, the difference of the average accuracy was
very small. The average precision, TPR, and FPR,
respectively, were almost the same in the classifiers.

The average elapsed time for classification of one
session in N-O, ..., Y-Z by RF, Friedman’s GBT, and
XGBoost was 0.130 ± 0.0245, 0.0634 ± 0.0103, and
0.0188 ± 0.00356 seconds, respectively. Similarly to
periods, A-B, ..., L-M, the elapsed time by XGBoost
was the shortest also in N-O, ..., Y-Z.

Table 7: Results on the accuracy, precision, TPR, and FPR
by random forests for each period, N-O, ..., Y-Z.

 Acc. Pre. TPR FPR
N-O 0.9606 0.9619 0.9594 0.0381
O-P 0.9374 0.916 0.9634 0.0885
P-Q 0.9486 0.9539 0.9427 0.0455
Q-R 0.708 0.6399 0.9548 0.5372
R-S 0.9244 0.9062 0.9469 0.0982
S-T 0.9293 0.9214 0.9387 0.0801
T-U 0.9303 0.9224 0.9396 0.0789
U-V 0.8165 0.7425 0.9692 0.3361
V-W 0.9072 0.8961 0.9212 0.1067
W-X 0.8915 0.8648 0.9281 0.1451
X-Y 0.8424 0.7832 0.9472 0.2622
Y-Z 0.9049 0.8813 0.936 0.1261
Ave. 0.8918 0.8658 0.9456 0.1619

Table 8: Results on the accuracy, precision, TPR, and FPR
by Friedman’s GBT for each period, N-O, ..., Y-Z.

 Acc. Pre. TPR FPR
N-O 0.9586 0.9611 0.956 0.0387
O-P 0.9366 0.913 0.9653 0.092
P-Q 0.9479 0.9556 0.9395 0.0437
Q-R 0.7098 0.6409 0.9543 0.5348
R-S 0.9267 0.9231 0.931 0.0776
S-T 0.9312 0.9291 0.9338 0.0712
T-U 0.9311 0.9257 0.9376 0.0752
U-V 0.8178 0.7431 0.9715 0.3358
V-W 0.8965 0.8724 0.9291 0.1361
W-X 0.8866 0.9498 0.9393 0.1661
X-Y 0.8379 0.7785 0.9449 0.2689
Y-Z 0.9022 0.8777 0.935 0.1305
Ave. 0.8902 0.8725 0.9448 0.1642

Improving Accuracy and Speed of Network-based Intrusion Detection using Gradient Boosting Trees

495

Table 9: Results on the accuracy, precision, TPR, and FPR
by XGBoost for each period, N-O, ..., Y-Z.

 Acc. Pre. TPR FPR
N-O 0.9573 0.96 0.9544 0.0399
O-P 0.9372 0.9146 0.9644 0.0901
P-Q 0.9485 0.9545 0.942 0.0449
Q-R 0.7134 0.6435 0.9568 0.5301
R-S 0.9265 0.9198 0.9344 0.0816
S-T 0.9321 0.933 0.9309 0.0668
T-U 0.9306 0.9224 0.9402 0.079
U-V 0.8196 0.7448 0.9726 0.3334
V-W 0.8992 0.8761 0.9299 0.1316
W-X 0.8802 0.8407 0.9384 0.178
X-Y 0.8487 0.7929 0.9438 0.2464
Y-Z 0.9093 0.8933 0.9296 0.1111
Ave. 0.8919 0.8663 0.9448 0.1611

5 CONCLUSIONS

We first constructed a fully connected neural network
with one hundred middle layers for detecting cyber-
attacks. Although it is considered that the neural
network had a sufficient number of parameters and
significant flexibility, the classification accuracy by
the neural network was not higher than that by RF,
which was the best in the previous work. We
examined two gradient boosting tree (GBT) methods,
Friedman’s GBT and XGBoost, that are known to
have higher regularization performance, and we
performed computational experiments on newly
constructed Kyoto 2016 dataset. The results suggest
that XGBoost outperforms other machine learning
classifiers including RF. Furthermore, the elapsed
time required for classification by GBTs was much
shorter than those by RF. It is important because an
NIDS must classify a large amount of accesses
immediately. As future work, we would like to model
normal accesses for automatically recognizing new
unknown threats.

ACKNOWLEDGEMENTS

This work was partially supported by National
Institute of Technology, Japan.

REFERENCES

Ambusaidi, M. A., He, X., Nanda, P. and Tan, Z. (2016).
Building an intrusion detection system using a filter-

based feature selection algorithm. IEEE Trans.
Computers, 65(10): 2986-2998.

Amor, N. B., Benfarhat, S. and Elouedi, Z. (2004). Naïve
Bayes vs decision trees in intrusion detection systems.
Proc. 2004 ACM Symposium on Applied Computing,
420-424.

Candora, V., Banerjee, A. and Kumar, V. (2009). Anomaly
detection: a survey. ACM Comput. Surv., 41(3):15:1-
15:58.

Dhaliwal, S. S., Nahid, A. A. and Abbas, R. (2018).
Effective intrusion detection system using XGBoost.
Information, 9(7):149.

Eskin, E., Arnold, A., Prerau, M., Portnoy, L. and Stolfo, S.
(2002). A geometric framework for unsupervised
anomaly detection. Application of Data Mining in
Computer Security, 77-101.

Friedman, J. H. (2001). Greedy function approximation: A
gradient boosting machine. The Annuals of Statistics,
29(5):1189-1232.

Hosseini, Z. S., Chabok, S. J. S. M. and Kamel, S. R. (2015).
DOS intrusion attack detection by using of improved
SVR. Proc. 2015 International Congress on Technology,
Communication and Knowledge，159-164.

Kokila, R. T., Selvi, S. T. and Govindarajan, K. (2014).
DDoS detection and analysis in SDN-based
environment using support vector machine classifier.
Proc. 6th International Conference on Advanced
Computing, 205-210.

Masarat, S., Sharifian, S., and Taheri, H. (2016). Modified
parallel random forest for intrusion detection systems.
J. Supercomput. 72(6): 2235-2258.

Mukkamala, S., Janoski, G. and Sung, A. (2002). Intrusion
detection using neural networks and support vector
machines. Proc. 2002 International Joint Conference on
Neural Networks, 2:1702-1707.

Nadeem, M., Marshall, O., Singh, S., Fang, X. and Yuan X.
(2016). Semi-supervised deep neural network for
network intrusion detection. KSU Proc. Cybersecurity
Education, Research and Practice, 2.

Om, H. and Kundu, A. (2012). A hybrid system for
reducing the false alarm rate of anomaly intrusion
detection system. Proc. 1st International Conference on
Recent Advances in Information Technology, 131-136.

Potluri, S. and Diedrich, C. (2016). Accelerated deep neural
networks for enhanced intrusion detection system.
Proc. 2016 IEEE 21st International Conference on
Emerging Technologies and Factory Automation, 1-8.

Song, J., Takakura, H., Okabe, Y., Eto, M., Inoue, D. and
Nakao, K. (2011). Statistical analysis of honeypot data
and building of Kyoto 2006+dataset for NIDS
evaluation. Proc. 1st Workshop on Building Analysis
Datasets and Gathering Experience Returns for
Security, 29-36.

Stein, G., Chen, B., Wn, A. S. and Hua, K. A. (2005).
Decision tree classifier for network intrusion detection
with GA-based feature selection. Proc. 43rd Annual
Southeast Regional Conference, 136-141.

Tada, R., Kobayashi, R., Shimada, H. and Takakura, H.
(2017). Generating Kyoto 2016 dataset for NIDS

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

496

evaluation. Trans. Inf. Process. Soc. Japan, 58(9): 1450-
1463.

Tianqi, C. & Carlos, G. (2016). XGBoost: A scalable tree
boosting system. Proc. 22nd ACM SIGKDD
International Conference on Knowledge Discovery and
Data Mining, 785-794.

Yin, C., Zhu, Y., Fei, J., and He, X. (2017). A deep learning
approach for intrusion detection using recurrent neural
networks. IEEE Access. 5:21954-21961.

Improving Accuracy and Speed of Network-based Intrusion Detection using Gradient Boosting Trees

497

