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Abstract: As computers become more widespread, they are exposed to threats such as cyber-attacks. In recent years, 
attacks have gradually changed, and security software’s must be frequently updated. Network-based intrusion 
detection systems (NIDSs) have been developed for detecting such attacks. It, however, is difficult to detect 
unknown attacks by the signature-based NIDS that decides whether or not an access is malicious based on 
known attacks. We aim at developing a methodology to efficiently detect new unidentified attacks by 
constructing a model from latest access records. Kyoto 2016 dataset was constructed for the evaluation of 
such methods, and machine learning methods including random forest (RF) were applied to the dataset. In 
this paper, we examine a deep neural network and gradient boosting tree methods additionally for session data 
with twelve features excluding IP addresses and port numbers on Kyoto 2016 dataset. The average accuracy 
by a gradient boosting method XGBoost achieved 0.9622 more than five times faster than RF. The results 
suggest that XGBoost outperforms other machine learning classifiers, and the elapsed time for the 
classification is significantly shorter. 

1 INTRODUCTION 

In recent years, information technology has been 
promoted by technological advances, while the 
increase in the number of cyber-attacks has been 
regarded as a problem. In particular, attacks through 
computer networks on most important infrastructures 
such as power plants, large-scale factories, medical 
care, transportation, and government-related facilities 
can disrupt our power, water, and gas supply 
networks. One of the defense methods against such 
attacks is to detect them using a network-based 
intrusion detection system (NIDS), which is a system 
that detects in real time and informs us of malicious 
accesses in the network to be monitored. Currently, 
the signature-based NIDS that stores patterns of 
attacks and detects whether or not an observed access 
matches one of the stored patterns is mainly used. 

Since the signature-based system is not effective 
to unknown attacks, various studies on the 
performance of NIDS have been conducted (Candora 
et al., 2009), and especially NIDSs using machine 
learning methods have attracted attention. An 
effective feature selection method for an IDS was 

proposed, and the IDS was combined with least 
squares support vector machine (LSSVM) 
(Ambusaidi et al., 2016). An IDS combined with 
three machine learning methods, k-means clustering 
(k-means), k-nearest neighbors (k-NN), and naïve 
Bayes (NB) was proposed (Om and Kundu, 2012). 
Support vector regression (SVR) optimized by 
combining the ant colony optimization and firefly 
algorithm was developed for detecting denial of 
service (DoS) attacks (Hosseini et al., 2015). An 
intrusion detection method was proposed using 
anomaly detection using three unsupervised learning 
methods, cluster-based classification, k-NN, and one-
class support vector machine (OCSVM) (Eskin et al., 
2002). It was reported that a network controlled by 
software-defined networking technology is 
vulnerable to distributed denial of service (DDoS) 
attacks, and an SVM-based DDoS attack detection 
method was proposed (Kokila et al., 2014). IDSs 
based on neural network (NN) and SVM were 
constructed and compared (Mukkamala et al., 2002). 
A random forest (RF)-based ensemble learning 
method for IDS was improved (Masarat et al., 2016). 
An intrusion detection method combining a decision 

490
Terado, R. and Hayashida, M.
Improving Accuracy and Speed of Network-based Intrusion Detection using Gradient Boosting Trees.
DOI: 10.5220/0008963504900497
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 490-497
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



tree (DT) with a genetic algorithm was proposed for 
feature selection (Stein et al., 2005). The 
classification performance by DT and NB was 
compared (Amor et al., 2004). Deep neural networks 
including recurrent neural networks have been 
examined for intrusion detection (Nadeem et al., 
2016; Potluri and Diedrich, 2016; Yin et al., 2017).  

In these studies, DARPA intrusion detection data 
sets (https://www.ll.mit.edu/r-d/datasets), KDD Cup 
1999 data (http://kdd.ics.uci.edu/databases/ 
kddcup99/kddcup99.html), and Kyoto 2006+ dataset 
(Song et al., 2011) have been used for evaluation of 
developed detection methods. These datasets are 
already old, and the latest attack tendency is not 
reflected and the period of data collection is too short. 
Hence, Kyoto 2016 dataset for enhancing the 
detection accuracy of NIDSs was constructed, the 
effectivity of machine learning methods, RF, DT, NB, 
SVM, k-NN, and OCSVM was confirmed for the 
dataset, and it was reported that the detection 
accuracy by RF was the best (Tada et al., 2017). 

In this paper, we consider the following problem: 
Given a network access behavior, obtained mainly 
from IP packets, discriminate whether or not the 
access is malicious. We first construct a deep neural 
network (DNN), and investigate whether or not attack 
detection tasks by neural networks are really 
practical. In addition, we examine two gradient 
boosting trees (GBTs), Friedman’s GBT (Friedman, 
2001) and XGBoost (Tianqi and Carlos, 2016), that 
are known to have higher regularization performance. 
In fact, it was reported that XGBoost was useful to 
the NSL-KDD dataset (Dhaliwal et al., 2018). We 
perform computational experiments on Kyoto 2016 
dataset. The results suggest that XGBoost 
outperforms other machine learning classifiers in the 
previous work. Furthermore, the elapsed time 
required for classification by GBTs was much shorter 
than those by other methods. It is important because 
an NIDS must classify a large amount of accesses. 

2 METHODS 

We propose a deep neural network for detecting 
attacks from IP packets, and briefly review two 
gradient boosting tree methods, Friedman’s GBT 
(Friedman, 2001) and XGBoost (Tianqi and Carlos, 
2016). Suppose that N data ሺ࢞, ሻୀଵݕ

ே  with a vector 
 ݕ  having features on the i-th session and a label࢞
representing whether or not the session is malicious 
are given, where we expect features such as the 
amount of transmitted data, and the number of 

sessions having the same destination IP address, 
given in Kyoto 2016 dataset as elements of ࢞. 

2.1 Deep Neural Network Model 

Neural networks are often used in various research 
fields because it can respond flexibly to any problem. 
It, however, is not easy to build a highly accurate 
model in general. Figure 1 illustrates a fully 
connected neural network model. Given the value 

ݔ
ሺሻ of the j-th neuron in the input layer, the value ݖ 

of the k-th neuron in the next layer is calculated by  

ݖ ൌ ݄ቌݓݔ
ሺሻ െ ܾ



ቍ, (1)

where h denotes an activation function, ݓ denotes 
the weight between the k-th neuron and j-th neuron, 
and ܾ denotes a bias. The design of middle layers is 
very important to construct a model with high 
regularization performance. If the number of middle 
layers and the number of nodes are small, there is a 
high possibility that it will not be sufficiently trained. 
Hence, we construct a fully connected neural network 
with one hundred middle layers, where each middle 
layer has one hundred neurons, the output layer has 
two neurons corresponding to attack and normal 
accesses, the activation function from the input layer 
and a middle layer to another middle layer are the 
hyperbolic tangent function, and the activation 
function from the last middle layer to the output layer 
is the softmax function. 

 
Figure 1: Illustration on a fully connected neural network. 

2.2 Friedman’s GBT Algorithm 

Friedman’s Gradient Boosting Algorithm is the first 
GBT algorithm, which is one of the ensemble 
learning methods that combine multiple classifiers 
with low classification performance, called weak 
learners. Ensemble learning includes three types of 
learning, bagging, boosting, and stacking. A GBT 
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belongs to boosting. In boosting, the first weak 
learner learns one dataset, and the next weak learner 
learns so that the example misclassified by the 
previous weak learner can be preferentially classified 
correctly. Thus, parallel processing is impossible, but 
classification accuracy tends to be high. The 
Friedman’s GBT tries to construct learners with 
parameters that minimizes the error function ߖ൫ݕ,
݂ሺ࢞ሻ൯ for ܰ input data. It, however, is difficult to find 
the minimum solution. Hence, the following gradient 
݃௧ሺ࢞ሻ for the training data is calculated. 

݃௧ሺ࢞ሻ ൌ ௬ܧ ቆ
,ݕ൫ߖ߲ ݂ሺ࢞ሻ൯

߲݂ሺ࢞ሻ
ቤ ቇ࢞

ሺ࢞ሻୀመషభሺ࢞ሻ

 (2)

Then, the parameters ߩ௧, ௧ߠ  of the weak learner at 
the t-th step are obtained by minimizing the following 
function. 

൫െ݃௧ሺ࢞ሻ  ,࢞௧݄ሺߩ ௧ሻ൯ߠ
ଶ

ே

ୀଵ

, (3)

where h denotes a base-learner model. 

2.3 XGBoost Algorithm 

XGBoost is also a gradient boosting tree method. Let 
a function ௧݂  represent the ݐ-th decision tree,  ݕො  be 
the predicted value of the i-th decision tree after i 
steps, that is, ݕො ൌ ∑ ݂ሺ࢞ሻ


ୀଵ   be the ݅-th actualݕ ,

value,  ߖ  be an error function, and Ωሺ ௧݂ሻ  be a 

penalty function written by ܶߛ 
ଵ

ଶ
ห|࢝|หߣ

ଶ
, where T 

denotes the size of a decision tree, ߛ denotes a penalty 
for T, ߣ denotes the contribution ratio of the previous 
tree in constructing a new tree, and ࢝  denotes a 
vector returned by the decision tree ௧݂ . Then, the 
objective function ܮሺ௧ሻ  to be minimized is defined 
using ௧݂ሺ࢞ሻ by 

ሺ௧ሻሺܮ ௧݂ሻ ൌߖቀݕ, ොݕ
ሺ௧ିଵሻ  ௧݂ሺ࢞ሻቁ



ୀଵ

 ሺߗ ௧݂ሻ. (4)

The quadratic Taylor expansion around 0 with 
respect to ௧݂ is taken as follows. 

ሺ௧ሻሺܮ ௧݂ሻ ൎቆߖ൫ݕ, ොݕ
ሺ௧ିଵሻ൯  ݃ ௧݂ሺ࢞ሻ



ୀଵ


1
2
݄ ௧݂

ଶሺ࢞ሻቇ  ሺߗ ௧݂ሻ, 

(5)

where ݃ ൌ ߲
௬ො
ሺషభሻߖ൫ݕ, ොݕ

ሺ௧ିଵሻ൯ and  

݄ ൌ ߲ଶ
௬ො
ሺషభሻߖ൫ݕ, ොݕ

ሺ௧ିଵሻ൯. 

By removing terms that are not related to the 
optimization, that is, terms not related to ௧݂ , from 
Eq.(5), we have 

෨ሺ௧ሻሺܮ ௧݂ሻ ൌቌ ݃ݓ
∈ூೕ


1
2
ቌ݄
∈ூೕ

 ଶቍݓቍߣ

்

ୀଵ

 .ܶߛ

(6)

Then, the optimal solution ݓ∗ that is returned by 
the final node ݆ of the ݐ-th decision tree minimizing 
the objective function is represented by  

∗ݓ ൌ െ
∑ ݃∈ூೕ

∑ ݄  ∈ூೕߣ

. (7)

In this formula, the first and second gradient of 
the ݐ -1 decision trees is used to construct ݐ -th 
decision tree. By substituting ݓ∗ to Eq.(6), we have 

ሻݍ෨ሺ௧ሻሺܮ ൌ െ
1
2


ቀ∑ ݃∈ூೕ ቁ
ଶ

∑ ݄  ∈ூೕߣ

்

ୀଵ

 (8) .ܶߛ

Since it is difficult to find the optimal tree 
structure, the greedy algorithm tries to iteratively add 
branches to the tree. Suppose that an instance set I is 
splitted to IL and IR. Then, if ܮ෨ሺ௧ሻሺݍሻ decreases, the 
branch is adopted. 

The major difference from the Friedman’s 
algorithm is that XGBoost uses not only the first-
order gradient but also the second-order gradient to 
minimize the loss function. Therefore, the 
convergence of the loss function is fast, the number 
of trees can be reduced compared to the Friedman’s 
algorithm, and the time required for training can be 
reduced. If the number of trees can be reduced, the 
model can be simplified and the time required for 
classification of test data can be reduced. It is more 
practical to be able to discriminate in a short time 
even if a large number of cyber-attacks are received. 

3 COMPUTATIONAL 
EXPERIMENTS 

3.1 Kyoto 2016 Dataset 

It is important that datasets used for evaluation of 
attack detection performance contain sufficient long 
period of data collection and the latest attack 
tendency. Kyoto 2016 dataset (Tada et al., 2017) was 
constructed to deal with more shrewd attacks and 
includes the following features: (1) the latest attack 
trends included (2) constructed from actual traffic (3) 
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long period of data collection (approximately 10 
years from November 2006 to December 2015).  

The number of sessions observed in about 10 
years is 806,095,624, of which 160,873,849 were 
normal sessions and 640,618,555 sessions were 
malignant sessions. Each session has the following 
twelve features: (1) session length (2) the amount of 
transmitted data (3) the amount of received data (4) 
among the sessions in the past 2 seconds, the number 
of sessions having the same destination IP address as 
the current session (5) among (4), the percentage of 
sessions having the same service type as the current 
session (6) among (4), the percentage of sessions that 
caused a SYN error (7) among the sessions in the past 
2 seconds, the percentage of sessions that caused a 
SYN error and the service type is the same as the 
current session (8) among the past 100 sessions with 
the same destination port, the number of sessions 
having the same source IP address as the current 
session (9) among the past 100 sessions with the same 
destination port, the number of sessions having the 
same destination IP address as the current session 
(10) among (8), the percentage of sessions having the 
same source port as the current session (11) among 
(8), the percentage of sessions that caused a SYN 
error (12) among (9), the percentage of sessions that 
caused a SYN error. We also used these twelve 
features that were the same as the features used in the 
previous work by Tada et al.  

The dataset was divided into two-month units 
from November 2006 to December 2008 and from 
November 2013 to December 2015 as shown in Table 
1. Then, we evaluated the classifiers as follows. First, 
10,000 sessions were randomly selected from each 
period. After sessions selected in period A were used 
for training, sessions selected in period B were used 
for test (called A-B). Similarly, after sessions in 
period B were used for training, sessions in period C 
were used for test (called B-C), and the same 
procedure was repeated until period M in the previous 
work. In addition to A, ..., M, we evaluated the 
classifiers for newer periods, N, ..., Z to investigate 
whether or not gradient boosting tree algorithms and 
random forests can deal with tendency of newer 
attacks. 

3.2 Implementation  

For optimization of our neural network, the number 
of epochs was set to 100, the softmax cross entropy 
function and stochastic gradient descent in tensorflow 
package (https://www.tensorflow.org/) were used. 
For Friedman’s GBT and XGBoost, we used 
GradientBoostingClassifier in scikit-learn package  

Table 1: Periods from Nov. 2006 to Dec. 2008 and from 
Nov. 2013 to Dec. 2015, and the corresponding symbols. 

Period Symbol 
Nov. 2006 ～ Dec. 2006 A 
Jan. 2007 ～ Feb. 2007 B 
Mar. 2007 ～ Apr. 2007 C 
May 2007 ～ Jun. 2007 D 
Jul. 2007 ～ Aug. 2007 E 
Sep. 2007 ～ Oct. 2007 F 
Nov. 2007 ～ Dec. 2007 G 
Jan. 2008 ～ Feb. 2008 H 
Mar. 2008 ～ Apr. 2008 I 
May 2008 ～ Jun. 2008 J 
Jul. 2008 ～ Aug. 2008 K 
Sep. 2008 ～ Oct. 2008 L 
Nov. 2008 ～ Dec. 2008 M 
Nov. 2013 ～ Dec. 2013 N 
Jan.2014 ～ Feb. 2014 O 
Mar. 2014 ～ Apr. 2014 P 
May 2014 ～ Jun. 2014 Q 
Jul. 2014 ～ Aug. 2014 R 
Sep. 2014 ～ Oct. 2014 S 
Nov. 2014 ～ Dec. 2014 T 
Jan. 2015 ～ Feb. 2015 U 
Mar. 2015 ～ Apr. 2015 V 
May 2015 ～ Jun. 2015 W 
Jul. 2015 ～ Aug. 2015 X 
Sep. 2015 ～ Oct. 2015 Y 
Nov. 2015 ～ Dec. 2015 Z 
 
(http://scikit-learn.org/), and XGBoost python 
package, respectively. We used fixed parameters as 
shown in Table 2 during all our experiments for 
Friedman’s GBT and XGBoost, where parameters 
were previously tuned using grid search for 120,000 
sessions randomly selected from period A to M. For 
random forests, the number of decision trees to be 
weak learners was fixed to 100, the depth of the 
decision tree was not fixed, and leaves were expanded 
until the number of terminal node data was less than 
two. 

Table 2: Parameters, the number of decision trees, depth of 
trees, and learning rate, in our experiments for Friedman’s 
GBT and XGBoost. 

 Friedman’s GBT XGBoost 

# decision trees 400 90 
Depth of trees 3 6 
Learning rate 0.3 0.45 

Improving Accuracy and Speed of Network-based Intrusion Detection using Gradient Boosting Trees

493



We used a computer with intel core i9 processor 
3.6GHz and 64G bytes memory under linux OS in all 
experiments. Since cyber-attacks often force a large 
amount of accesses at one time, an NIDS must 
classify the accesses as accurately and quickly as 
possible. Our purpose is not only to improve the 
accuracy but also to reduce the time required for 
classification.  

We calculated accuracy, precision, true positive 
rate (TPR), and false positive rate (FPR) from 
classification results as follows.  

ݕܿܽݎݑܿܿܣ ൌ 	
்ା்ே

்ାிା்ேାிே
, 

݊݅ݏ݅ܿ݁ݎܲ ൌ 	
்

்ାி
, 

ܴܶܲ ൌ
்

்ାிே
, 

ܴܲܨ ൌ
ி

்ேାி
, 

where TP denotes the number of sessions that were 
actually attacks and predicted to be attacks, FP 
denotes the number of sessions that were predicted to 
be attacks but were actually normal (type 1 error), TN 
denotes the number of sessions that were actually 
normal and predicted to be normal, and FN denotes 
the number of sessions that were predicted to be 
normal but were actually attacks (type 2 error). 

4 RESULTS 

Table 3 shows the results on the accuracy by our deep 
neural network for each period, where the standard 
deviation of the accuracy was 0.0458. Table 4 shows 
the results on the accuracy, precision, TPR, and FPR 
by random forests, which was best in the previous 
work by Tada et al.  

Table 3: Results on the accuracy by our deep neural 
network for each period, A-B, ..., L-M. 

 Acc. 
A-B 0.8814 
B-C 0.8853 
C-D 0.9301 
D-E 0.9165 
E-F 0.8998 
F-G 0.905 
G-H 0.8394 
H-I 0.8996 
I-J 0.7585 
J-K 0.9031 
K-L 0.9385 
L-M 0.8932 
Average 0.8875 

From the tables, we can see that the accuracy by fully 
connected neural networks with one hundred middle 
layers was lower than that by random forests with one 
hundred decision trees although the accuracy by our 
neural network was not so low. 

Table 4: Results on the accuracy, precision, TPR, and FPR 
for each period, A-B, ..., L-M, by random forests, which 
was best in the previous work by Tada et al.  

 Acc. Pre. TPR FPR 
A-B 0.9399 0.9801 0.898 0.0182 
B-C 0.9647 0.9416 0.991 0.0615 
C-D 0.9083 0.9722 0.8405 0.0239 
D-E 0.9253 0.9469 0.901 0.0504 
E-F 0.9747 0.9635 0.9867 0.0374 
F-G 0.9848 0.9811 0.9886 0.019 
G-H 0.9221 0.8794 0.9794 0.1352 
H-I 0.9762 0.9846 0.9676 0.0151 
I-J 0.8145 0.7365 0.9892 0.3602 
J-K 0.9874 0.9857 0.9891 0.0144 
K-L 0.9885 0.9891 0.988 0.0109 
L-M 0.9752 0.9747 0.9757 0.0253 
Ave. 0.9468 0.9446 0.9579 0.0643 

 
Tables 5 and 6 show the results on the accuracy, 

precision, TPR, and FPR by Friedman’s GBT and 
XGBoost, respectively, for each period, A-B, ..., L-
M. The average accuracy, precision, and TPR by the 
GBT methods were higher than those by RF, which 
had the highest classification accuracy in the previous 
study by Tada et al. In addition, the average false 
positive rate (FPR) by the GBT methods was smaller 
than that by RF. Especially, although FPRs in G-H 
and I-J were relatively high, XGBoost could reduce 
FPRs in both periods. In period C-D, the accuracy 
0.9852 by Friedman’s GBT increased from that by 
RF. The accuracy 0.9898 by XGBoost in period K-L 
was the highest, and the accuracy by Friedman’s GBT 
and RF in the same period was also high. It is 
considered that features in sessions between periods 
K and L were very similar. In another experiment, by 
adding source and destination port numbers as 
features of a session, the average accuracy by 
XGBoost achieved 0.9879. 

Moreover, we measured the elapsed time for 
classification of one session in A-B,..., L-M. The 
average elapsed time by RF, Friedman’s GBT, and 
XGBoost, was 0.113 ± 0.0201, 0.0671 ± 0.0106, and 
0.0192 ± 0.00369 seconds, respectively (also shown 
in Fig. 2). The average elapsed time by XGBoost was 
the shortest, and XGBoost could do the classification 
more than five times faster than RF. These results 
mean that XGBoost can improve the detection 
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accuracy of cyber-attacks and reduce the time 
required for classification. 

Table 5: Results on the accuracy, precision, TPR, and FPR 
by Friedman’s GBT for each period, A-B, ..., L-M. 

 Acc. Pre. TPR FPR 
A-B 0.9399 0.9801 0.898 0.0182 
B-C 0.9651 0.9907 0.9912 0.0609 
C-D 0.9852 0.9862 0.9852 0.0158 
D-E 0.9394 0.9335 0.9323 0.0526 
E-F 0.9755 0.9859 0.9862 0.0352 
F-G 0.9868 0.9913 0.9924 0.0178 
G-H 0.9187 0.9916 0.9929 0.1555 
H-I 0.9772 0.9697 0.9682 0.0148 
I-J 0.8603 0.8658 0.9896 0.269 
J-K 0.9886 0.9895 0.988 0.0123 
K-L 0.9896 0.9886 0.9901 0.0094 
L-M 0.9779 0.974 0.9738 0.0179 
Ave. 0.9597 0.9661 0.9761 0.0566 

Table 6: Results on the accuracy, precision, TPR, and FPR 
by XGBoost for each period, A-B, ..., L-M. 

 Acc. Pre. TPR FPR 
A-B 0.9518 0.9885 0.9094 0.0105 
B-C 0.965 0.9413 0.992 0.0619 
C-D 0.9875 0.9856 0.9872 0.0144 
D-E 0.9395 0.9546 0.9187 0.0436 
E-F 0.9771 0.9672 0.9884 0.0335 
F-G 0.9865 0.9829 0.9902 0.0172 
G-H 0.935 0.8901 0.9935 0.1236 
H-I 0.9786 0.9847 0.9724 0.0152 
I-J 0.8686 0.7982 0.9899 0.2526 
J-K 0.9892 0.9873 0.9911 0.0127 
K-L 0.9898 0.991 0.9886 0.0089 
L-M 0.9782 0.9824 0.9739 0.0175 
Ave. 0.9622 0.9545 0.9746 0.051 
 

 

Figure 2: The average elapsed time (seconds) for 
classification of one session by random forest (RF), 
Friedman’s GBT, and XGBoost. 

Tables 7, 8, and 9 show the results on the 
accuracy, precision, TPR, and FPR by RF, 
Friedman’s GBT, and XGBoost, respectively, for 
each period, N-O, ..., Y-Z. Although the average 
accuracy by XGBoost was slightly higher than the 
others, the difference of the average accuracy was 
very small. The average precision, TPR, and FPR, 
respectively, were almost the same in the classifiers.  

The average elapsed time for classification of one 
session in N-O, ..., Y-Z by RF, Friedman’s GBT, and 
XGBoost was 0.130 ± 0.0245, 0.0634 ± 0.0103, and 
0.0188 ± 0.00356 seconds, respectively. Similarly to 
periods, A-B, ..., L-M, the elapsed time by XGBoost 
was the shortest also in N-O, ..., Y-Z. 

Table 7: Results on the accuracy, precision, TPR, and FPR 
by random forests for each period, N-O, ..., Y-Z. 

 Acc. Pre. TPR FPR 
N-O 0.9606 0.9619 0.9594 0.0381 
O-P 0.9374 0.916 0.9634 0.0885 
P-Q 0.9486 0.9539 0.9427 0.0455 
Q-R 0.708 0.6399 0.9548 0.5372 
R-S 0.9244 0.9062 0.9469 0.0982 
S-T 0.9293 0.9214 0.9387 0.0801 
T-U 0.9303 0.9224 0.9396 0.0789 
U-V 0.8165 0.7425 0.9692 0.3361 
V-W 0.9072 0.8961 0.9212 0.1067 
W-X 0.8915 0.8648 0.9281 0.1451 
X-Y 0.8424 0.7832 0.9472 0.2622 
Y-Z 0.9049 0.8813 0.936 0.1261 
Ave. 0.8918 0.8658 0.9456 0.1619 

Table 8: Results on the accuracy, precision, TPR, and FPR 
by Friedman’s GBT for each period, N-O, ..., Y-Z. 

 Acc. Pre. TPR FPR 
N-O 0.9586 0.9611 0.956 0.0387 
O-P 0.9366 0.913 0.9653 0.092 
P-Q 0.9479 0.9556 0.9395 0.0437 
Q-R 0.7098 0.6409 0.9543 0.5348 
R-S 0.9267 0.9231 0.931 0.0776 
S-T 0.9312 0.9291 0.9338 0.0712 
T-U 0.9311 0.9257 0.9376 0.0752 
U-V 0.8178 0.7431 0.9715 0.3358 
V-W 0.8965 0.8724 0.9291 0.1361 
W-X 0.8866 0.9498 0.9393 0.1661 
X-Y 0.8379 0.7785 0.9449 0.2689 
Y-Z 0.9022 0.8777 0.935 0.1305 
Ave. 0.8902 0.8725 0.9448 0.1642 
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Table 9: Results on the accuracy, precision, TPR, and FPR 
by XGBoost for each period, N-O, ..., Y-Z. 

 Acc. Pre. TPR FPR 
N-O 0.9573 0.96 0.9544 0.0399 
O-P 0.9372 0.9146 0.9644 0.0901 
P-Q 0.9485 0.9545 0.942 0.0449 
Q-R 0.7134 0.6435 0.9568 0.5301 
R-S 0.9265 0.9198 0.9344 0.0816 
S-T 0.9321 0.933 0.9309 0.0668 
T-U 0.9306 0.9224 0.9402 0.079 
U-V 0.8196 0.7448 0.9726 0.3334 
V-W 0.8992 0.8761 0.9299 0.1316 
W-X 0.8802 0.8407 0.9384 0.178 
X-Y 0.8487 0.7929 0.9438 0.2464 
Y-Z 0.9093 0.8933 0.9296 0.1111 
Ave. 0.8919 0.8663 0.9448 0.1611 

5 CONCLUSIONS 

We first constructed a fully connected neural network 
with one hundred middle layers for detecting cyber-
attacks. Although it is considered that the neural 
network had a sufficient number of parameters and 
significant flexibility, the classification accuracy by 
the neural network was not higher than that by RF, 
which was the best in the previous work. We 
examined two gradient boosting tree (GBT) methods, 
Friedman’s GBT and XGBoost, that are known to 
have higher regularization performance, and we 
performed computational experiments on newly 
constructed Kyoto 2016 dataset. The results suggest 
that XGBoost outperforms other machine learning 
classifiers including RF. Furthermore, the elapsed 
time required for classification by GBTs was much 
shorter than those by RF. It is important because an 
NIDS must classify a large amount of accesses 
immediately. As future work, we would like to model 
normal accesses for automatically recognizing new 
unknown threats.  
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