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Abstract: Research into ransomware subspecies classification is ongoing in many organizations, but it is proving diffi-
cult to extract feature quantities from specimens and the accuracy achieved thus far remains unsatisfactory.  
In this paper, we propose a method to classify subspecies that using the correlation coefficient between API 
groups calculated by Application Programming Interfaces (API) frequencies as the Support Vector Machines’ 
(SVM) feature quantities.  The motivation for using the correlation coefficient between API groups as the 
feature quantity is that different ransomware families have different behavior patterns that can be reflected by 
the correlation between API groups. Based on the results of an evaluation experiment, we found that the 
accuracy of the proposed method was 98%, proving that the subspecies were classified correctly. Otherwise, 
it is determined that the contribution of each API for classifying ransomware families is different via analysis 
of the contribution of API. 

1 INTRODUCTION 

According to a 2018 report by Check Point Software 
Technologies Ltd., malware has increased in the num-
ber of year by year. Locky, which is a type of ransom-
ware, ranked third in the global list of malware 
(CheckPoint, 2018). By classifying ransomware var-
iants, it is possible not only to facilitate the creation 
of countermeasures for each ransomware family, 
fight against the ransomware effectively (Hull, John, 
& Arief, 2019) but also to reduce the workload of an-
alysts (Zhang et al., 2019).  

However, in order to classify ransomware, feature 
extraction in static analysis is difficult because of the 
code obfuscation (Moser, Kruegel, & Kirda, 2007). 
Therefore, we propose a method based on the corre-
lation among application programming interfaces 
(APIs) to classify variants via support vector ma-
chines (SVM) by using the dynamic analysis of ran-
somware. The prevailing method for dynamic analy-
sis methods is using API calls to represent malware 
behaviors (Galal, Mahdy, & Atiea, 2016). As the ran-
somware is a type of malware, thus the ransomware’s 
behavior can be reflected by the statistical analysis of 
the windows API calling sequence (Alazab, 
Venkataraman, & Watters, 2010). Because of the 

higher the correlation coefficient between system API 
call, the more similar the two samples are, which 
means that they are likely to belong to the same fam-
ily (Seideman, Khan, & Vargas, 2014). Therefore, we 
utilize the correlation coefficient between API groups 
by the API frequencies as the feature quantity to de-
termine the ransomware behavior pattern and family.  

In this study, benign softwares and nine ransom-
ware samples were collected and used in experiments 
to evaluate our proposed method. Our experimental 
results show that the accuracy level of our method is 
98%, the benign software’s F1 value is 97%, and the 
ransomware variants are correctly classified. Simul-
taneously, we determined the contribution of each 
API to classify each ransomware family. 

The contribution of this paper is mainly the fol-
lowing: 
a) To understand the relationship between the ran-

somwares’ activities easily, we used the Pearson 
Correlation Coefficient to quantify this relation-
ship. 

b) The contribution of each API to classify each ran-
somware family was determined. 

The remainder of this paper is structured as follows. 
Section 2 introduces related works dealing with ran-
somware detection and classification, and Section 3 
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gives an overview of Pearson's correlation coefficient 
(K. Pearson, 1895). Section 4 introduces the proposed 
method. Section 5 describes the evaluation experi-
ments for the proposed method and presents experi-
mental results. Section 6 presents the discussion. Fi-
nally, Section 7 presents a summary of this study and 
discusses future issues. 

2 RELATED WORK 

Malware analysis techniques mainly categorized into 
three parts: static, dynamic and hybrid analysis 
(Sihwail, Omar, & Ariffin, 2018). And studies on 
malware detection and classification are gradually in-
creasing. Idika and Mathur presented a good over-
view of malware detection techniques (Idika & 
Mathur, 2007). A comparison of malware analysis 
and classification techniques was presented by Gan-
dotra et al. (Gandotra, Bansal, & Sofat, 2014). For dy-
namic analysis, Hampton et al. tested the baseline op-
erations of ransomware and normal software in a vir-
tual environment (Hampton, Baig, & Zeadally, 2018). 
Dahl et al. presented a novel, large-scale malware 
classification method which utilizes ransom projec-
tions to reduce the input space (Dahl et al., 2013). The 
main APIs, extensions, cryptographic signatures 
called by ransomware in dynamic terms utilized as 
features to classify and predict known and new ran-
somware variants (Medhat, Gaber, & Abdelbaki, 
2018). Kakisim et al. used API-call, usage system li-
brary and operations to classify malware (Kakisim et 
al., 2019). API calls sequences and deep learning al-
gorithm were utilized to detect and classify malware 
(Kolosnjaji et al., 2016; Liu & Wang, 2019). Other-
wise, Jung et al. proposed a ransomware detection 
method based on context-aware entropy (Jung & 
Won, 2018). By modeling malware’s interaction with 
system resources to classify malware’s subspecies 
was presented by Stiborek et al. (Stiborek, Pevný, & 
Rehák, 2018). For hybrid analysis, static and dynamic 
features and multiple algorithms were utilized to clas-
sify the malware families (Islam et al., 2013; Santos 
et al., 2013). Anderson et al. utilized static, dynamic 
features, and  SVM to classify the malware variants 
(Anderson, Storlie, & Lane, 2012).  

3 CLASSIFICATION OF 
RANSOMWARE APIs 

We contend that ransomware subspecies can be clas-
sified by the correlations between API groups becau-

se of the cosine similarity between the DLLs used in 
the method proposed in Subedi et al.’s work (Subedi, 
Budhathoki, & Dasgupta, 2018). In order to utilize the 
correlation between API groups as the feature quan-
tity, we began by conducting a preliminary survey 
into those correlations. 

3.1 API Groups Correlation 
Coefficient 

In our method, we first calculate the Pearson correla-
tion coefficient between the API groups, and then we 
create a statistical diagram. In order to calculate the 
correlation coefficient between API groups, we col-
lected the calling frequency of the ransomware APIs 
listed in the preliminary survey. The ransomware 
families surveyed were Cerber, CryptoWall, Cryp-
toLocker, Jigsaw, Locky, Genasom, Petya, Reveton, 
and TeslaCrypt. A number of non-malicious software 
types were also surveyed. 

Because the dynamic analysis makes use of the 
system calls which interact with the operating system 
and resources that reflect the ransomware behaviors 
(Hampton et al., 2018; Naval et al., 2015), the sur-
veyed content first identified the API groups by type, 
of which five were used in the preliminary survey: 
FileAPI group which are file-related APIs, CryptAPI 
group which are cryptographic APIs, RegistryAPI 
group which used to modify the registry key, Socket-
API group which used by ransomware to make net-
work communication, and ProcessAPI group which 
used by ransomware for executing threads or files. 
The details are as shown in Table 1. After the calling 
frequencies of the APIs in Table 2 were extracted and 
the correlation coefficients between API groups were 
calculated by (Scipy.org, 2010): 

 (1)
 

where i, j is the API group i and j.  is the correla-
tion coefficient between API group i and j, C is the 
covariance matrix of API groups. A comparison of 
the correlation coefficients between API groups by 
the family was conducted, as shown in Figure 1. In 
this figure, the horizontal axis is the family name of 
the ransomware and the vertical axis is the correlation 
coefficient. The range of a correlation coefficient is [-
1, 1]. However, because this statistical diagram is a 
combined vertical bar, the sum exceeds 1. Addition-
ally, if the correlation coefficient is smaller than 0.2, 
statistics are not generated. Correlation coefficients 
between API groups are defined in Table 2. As shown 
in Figure 1, we found correlation differences between 
API groups for each ransomware family, which 
means our proposed method can use correlation coef-
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Table 1: Classification of API functions. 

 FileAPI CryptAPI RegistAPI SocketAPI ProcessAPI 

Func-
tions 

FindNextFile, Find
FirstFile, FindFirsF
ileEx, SetFilePointe
r, SetFilePointerEx,
 GetFileSize, GetFil
eSizeEx, SetFileAtt
ributes, GetFileTyp
e, CopyFileEx, Cop
yFile, DeleteFile, E
ncryptFile, NtRead
FIle, NtWriteFile, 
GetFileAttributes, 

GetFileAttributesEx 

CryptDerveKey, Cry
ptDecodeObject, Cr
yptGenKey, CryptI

mportPublicKeyInfo
, CryptAcquireConte
xt, CryptAcquireCo

ntextW 

RegCloseKey, RegCrea
teKeyExW, RegDelete
KeyW, RegQueryValue
ExW, RegSetValueEx
W, RegEnumKeyExA, 
RegOpenKeyExW, Nt
QueryValueKey, NtOp

enKey 

socket, InternetOpen, 
shutdown, sendto, con
nect, bind, listen, acce
pt, recv, send, Internet
OpenUrl, InternetRea
dFile, InternetWriteFil

e 

CreateThread, Creat
eRemoteThread, Nt
ResumeThread, NtG
etContextThread, Nt
SetContextThread, C
reateProcessInternal
W, NtOpenProcess, 
Process32NextW, Pr
ocess32FirstW, NtTe

rminateProcess 

 
ficients between API groups as feature quantities 
when working to classify subspecies. However, when 
performing classification experiments, correlation 
coefficients were used as feature quantities even if 
they were smaller than 0.2. 
 

 

Figure 1: Comparison of correlation coefficients quantities 
between API groups of different families. 

4 PROPOSED SCHEME 

After analyzing the Pearson correlation coefficient 
between API groups’, we will present the details of 
the proposed scheme in this section. 

4.1 Method Outline 

An outline of the proposed method in our work is 
shown in Figure 2.  
1) Cause the sample to be executed by dynamic anal-

ysis and then generates an analysis report for the 
sample. 

2) The calling frequency of the API from the list in 
Table 1 is extracted from the generated reports 

3) Obtain the Pearson correlation coefficients. 
4) Finally, the classification is performed using 

SVM. 

The algorithm of the proposed method is shown in 
Figure 3. In the algorithm, api (fre) is the calling fre-
quency of the API. Next, we will explain the algo-
rithm. 

Table 2: List of abbreviations. 

FC API Group for File and API Group for Crypt 
FR API Group for File and API Group for Registry 
FS API Group for File and API Group for Socket 
CR API Group for Crypt and API Group for Registry 
CS API Group for Crypt and API Group for Socket 
RS API Group for Registry and API Group for Socket 
FP API Group for File and API Group for Process 
CP API Group for Crypt and API Group for Process 
RP API Group for Registry and API Group for Process 
SP API Group for Socket and API Group for Process 

4.2 Feature Extraction 

The Cuckoo Sandbox (Cuckoo Sandbox, 2012)  is a 
well-known tool to analysis malware dynamically, 
hence we utilize the Cuckoo Sandbox to analysis ran-
somware samples in order to obtain the dynamic dy-
namic analysis report. 

1) Creating five API groups as shown in Table 1,and 
initialize the API calling frequency to 0, traverse 
the report folder, and then apply the algorithm to 
each file. 

2) If the API in “api_list” is included in [“apistats”], 
the calling frequency of the corresponding API in 
“api_list” is increased by 1 and saved in the cor-
responding list. The dynamical analysis reports 
are saved in JavaScript Object Notation (JSON) 
format, and the statistical information of the called 
API is stored in [“apistats”].  

4.3 Feature Conversion and Label 

After  extracting  features,  we  convert  the frequency 
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list to an array, calculate the Pearson correlation co-
efficients between API groups, and save them in the 
“corrcoef_list”. Once a “corrcoef_list” has been cre-
ated for one file, it is labeled and written to a comma-
separated value (CSV) file. The label is the family 
name of the sample. This process is then repeated to 
extract the calling frequency of the corresponding 
APIs in all JSON files in the report folder. Finally, the 
created CSV file is used as input data and classified 
by SVM. 

5 EXPERIMENT 

As previously mentioned, the purpose of this research 
is to calculate the correlations between API groups 
based on the frequencies of APIs called by ransom-
ware, and then to use those correlations as feature 
quantities to classify ransomware variants. 

5.1 Experiment Setup 

In our classification experiment, Python 3.7 sklearn 
(scikit-learn, 2008) were used, and the classification 
method was SVM. The reason we used SVM is that 
SVM has the advantage of high accuracy and can 
work well even if the data is not linearly separable in 
the basic feature space through an appropriate kernel. 
Before classification, we optimized the SVM param-
eters. We used the dataset mentioned in Section 5.2 
and GridSearchCV to find the best parameter, used 
ShuffleSplit to do cross-validation. We set parameter 
C:[1, 10, 100, 1000], kernel:[linear, rbf, poly, sig-
moid],gamma:[0.001, 0.0001], and degree:[2, 3, 4]. 
The optimal parameters are SVC, C = 1000, and ker-
nel = linear. We use Cuckoo Sandbox to extract the 
frequencies of APIs called by the ransomwares.  
 

 

Figure 2: Proposed method. 

5.2 Dataset 

The ransomware samples used in the experiment are 
collected from several public websites (Hybrid-Anal-
ysis, 2013; Virusshare, 2007; Virusign, 2014; theZoo, 
2015) and the number of samples for each family is 
shown in Table 3. All collected benign software was 
in a portable executable (PE) file format. Addition-
ally, the training and test data used for SVM are ran-
domly divided using train_test_split of sklearn. The 
size of the test data is 30%. Because of the imbal-
anced dataset, we set the SVC’s parameter 
“class_weight” to “balanced” (scikit-learn, 2008) (EE 
Osuna, 1998) to reduce the impact of the unbalanced 
dataset on classification. 

5.3 Experimental Results 

The rating scale of the prediction result is precision, 
recall, F1, and support. The experimental results are 
shown in Table 4 which is based on the ShuffleSplit 
cross-validation. Then, to determine if our algorithm 
is commonly mislabeling one as another, we made a 
confusion matrix shown in Figure 4.  

In addition, the benign classification results were 
all above 0.9, which is considered to be correctly clas-
sified as normal software. The accuracy level reached 
0.98, which is higher than the training results accu-
racy level, 0.933, and the testing result accuracy, 
0.9414, in the previous research (Medhat et al., 2018). 
These results show that the proposed method can be 
considered useful for the classification of ransom-
ware variants. 

Then, we made a comparison between the pro-
posed method’s results and related works’ results. As 
shown in Table 5. From the comparison result, it is 
clear that our proposed method has the highest accu-
racy which is 98.2%. Comparing with the related 
works, the malware’s kinds which we analyzed were 
just ransomware. And in terms of feature selection, 
our feature types are very simple, only the correlation 
between API groups. Therefore, although our pro-
posed method classified ransomware subspecies ef-
fective, it has certain limitations on classifying all 
kinds of malware. Especially in the (Islam et al., 
2013)’s works, their proposed method’s results indi-
cate that integrating static and dynamic features can 
improve accuracy. On the other hand, our work is dif-
ferent from related works in the feature analysis. It is 
possible to understand the ransomware’s activities 
pattern easily and determine the most important API 
of each ransomware family because we analyzed the 
correlation between features and behavior. However, 

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

468



 

 

in the related works, although they analyzed the ran-
somware behavior and utilized multiple features to 
present the behavior pattern, for lack of deeply feature 
analysis. 

 

 

Figure 3: Algorithm of the proposed method. 

Table 3: Dataset. 

Family Name Quantity 
Cerber 247 

CryptoLocker 20 
CryptoWall 47 

Genasom 25 
Jigsaw 29 
Locky 334 
Petya 6 

Reveton 126 
TeslaCrypt 65 

Benign 241 

Table 4: Experimental results. 

 Precision Recall F1 Support 
Cerber 1.00 0.99 0.99 67 

CryptoLocker 0.80 1.00 0.89 4 
CyptoWall 1.00 0.89 0.94 18 
Genasom 1.00 1.00 1.00 5 

Jigsaw 1.00 0.92 0.96 12 
Locky 0.99 1.00 1.00 119 
Petya 1.00 0.50 0.67 2 

Reveton 1.00 1.00 1.00 27 
TeslaCrypt 1.00 0.95 0.97 20 

Benign 0.94 1.00 0.97 68 

6 DISCUSSION 

After classifying the ransomware subspecies, we used 
the sklearn’s library: OneVsRestClassifier and Ran-
domForestClassifier to determine the contribution of 
each API to classify each ransomware family. In this 
method, we used the randomForestClassifier as the 
classifier to output the importance of the feature 
(API) after each classification (feature_impor-
tances_) through OneVsRestClassifier, because On-
eVsRestClassifier involves training a single classifier 
per class, with the samples of that class as positive 
samples, and all other samples as negatives. In the ex-
periment of feature extraction, we used the APIs’ fre-
quencies as the feature quantities, because the corre-
lation coefficient is calculated from the frequencies 
and the contribution of the correlation between the 
APIs’ groups cannot indicate the contribution of indi-
vidual APIs. From the APIs’ contribution, we can de-
termine which type of API is important for classifying 
which type of ransomware subspecies. For this reason, 
we first used the APIs’ frequencies as feature quanti-
ties and OneVsRestClassifier, RandomForestClassi-
fier as the classifier to classify the ransomware sub-
species, the ransomware samples used in this experi-
ment are shown in Table 3. Including the normal soft-
ware, there are ten families, therefore we set Random-
ForestClassifier’s parameter “n_estimators” as 10. In 
addition, we also used the train_test_split of sklearn 
to divide the ransomware samples, and the size of the 
test data is 30%. The accuracy of the classification 
using the APIs’ frequencies as the feature quantities 
is 99%. The experimental result indicates the APSs’ 
frequencies can be used as the feature quantity. Be-
cause of the characteristics of the OneVsRestClassi-
fier, after each classification, we outputted the API’s 
contribution to classify the current family. 
 

 

Figure 4: Confusion Matrix. 
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Table 5: Comparison with Related Works. 

 
Feature extraction 
methods 

Classification method Feature analysis	 Accuracy achieved 

(Medhat et al., 2018) 

API functions, crypto-
graphic signatures, file 
keywords, file exten-
sions 

Novel framework based 
YARA 

Yara rule and fea-
ture thresholds 
groups 

94.14% 

(Islam et al., 2013) 
Dynamic feature set 
(API calls) and static 
features 

Multiple classifier 
Integrated feature 
set 

97.4% 

(Kakisim et al., 2019) 
API call, usage system 
library and file opera-
tion 

Decision Tree, Random 
Forest, SVM, Hidden Mar-
kov Model 

Dynamic features 

HMM:93.38%(API-Bigram) 
USL-Bigram+FS; 
J48:100% RF:100% 
SVM:100% 

(Stiborek et al., 2018) 

Similarity between file 
paths, network traffic, 
mutex names, registry 
names, clustering of re-
source names 

Machine learning based 
Multiple instance learning 

Interactions with 
the operating sys-
tem and network 
resources 

RF:94.3% 
Linear SVM:94.4% 
MLP: 93.8% 

(Kolosnjaji et al., 
2016) 

System calls ConvNet+LSTM API usage 89.4% 

(Liu & Wang, 2019) API sequences BLSTM API usage 97.85% 
(Nunes, Burnap, 
Rana, Reinecke, & 
Lloyd, 2019) 

API call and other dy-
namic features, static 
features 

Machine Learning 
Dynamic and static 
features 

AdaBoost Classifier:93.84% 

Proposed Method 
Correlation between 
API groups 

Linear SVM 

Quantify activities 
relationship, the 
importance of each 
APIs 

98.2% 

 

 

Figure 5: Feature Importances. 

The importance (contribution) of each API to 
classify ransomware families is shown in Figure 5. 
The color depth represents the level of contribution. 
The darker the color, the higher the contribution. For 
example, the “Process32Firstw” has a great impact on 
the classification of Genasom, but it has less effect on 
the Reveton. Likewise, although “NtOpenKey” has a 
great impact on the Locky, it has little effect on the 
Genasom, and so on. From the experimental results 
shown in Table 4 and the confusion matrix shown in 
Figure 4, we figured out the reason for the proposed 
method misclassified the Cerber, CryptoWall, Tes-
laCrypt as the benign, the Jigsaw as the CryptoLocker 
and the Petya as the Locky. Firstly, because of the 

“SetFeilePointerEx”, “NtWriteFile”, “Cryp-
toAcquireContextW”, “RegEnumKeyExA”, and 
“NTGetContextThread” made the almost same af-
fection on classification. For CryptoWall, the reason 
for misclassification is that “GetFileSizeEx”, 
“RegOpenKeyExW”, “bind”, “Process32NextW” 
have made the almost same affection on classification. 
And for TeslaCrypt, “GetFileSizeEx”, 
“RegOpenKeyExW”, “InternetReadFile” have made 
the almost same affection on classification. For the 
same reason misclassified the Petya as the Locky be-
cause of the “GetFileType”, “RegOpenKeyExW”, 
and “send” made the almost same affection on the 
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classification. Finally, misclassified the Jigsaw as the 
CryptoLocker because of “RegSetValueExW”, 
“RegOpenKeyExW”, “NtOpenKey”, “connect”, 
“Process3 2NextW”, “Process32FirstW” have the al-
most same affection on classification. From the re-
sults, as can be seen, the APIs that affect the classifi-
cation of each ransomware family is different. There-
fore, we can select APIs which have a great effect on 
the classification of the ransomware family by the fig-
ure shown in Figure 5 when we want to propose a 
method to detect or classify the ransomware.  

But our proposed method has weaknesses that by 
calling useless APIs to change the ransomware be-
havior pattern. We rely on the correlation coefficient 
between API groups to classify ransomware variants, 
so if the ransomware maker deliberately calls a large 
number of useless APIs, the accuracy of our proposed 
method will be greatly reduced. For example, as 
shown in Figure 1, CryptoLocker and Jigsaw’s FC 
and FS values are very similar. In this case, if an at-
tacker calls a large number of file-related APIs, then 
our proposed method will be difficult to classify 
CryptoLocker and Jigsaw. 

7 CONCLUSION 

In this study, we proposed a method for extracting the 
calling frequency of an API from a report generated 
by the dynamic analysis of the ransomware, obtaining 
Pearson correlation coefficients, using them as fea-
ture quantities and then classifying the ransomware 
via SVM. effective. We also found that it was possi-
ble to determine the types of APIs that influence the 
classification of each ransomware family, and it is 
thought that this capability could reduce the analysis 
time required by other ransomware researchers.  

As additional future tasks, we intend to explore 
more features and samples and use them to improve 
our proposed method. 
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