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Abstract: This paper proposes a method to improve the quality of omnidirectional free-viewpoint images using gener-
ative adversarial networks (GAN). By estimating the 3D information of the capturing space while integrating 
the omnidirectional images taken from multiple viewpoints, it is possible to generate an arbitrary omnidirec-
tional appearance. However, the image quality of free-viewpoint images deteriorates due to artifacts caused 
by 3D estimation errors and occlusion. We solve this problem by using GAN and, moreover, by focusing on 
projective geometry during training, we further improve image quality by converting the omnidirectional 
image into perspective-projection images. 

1 INTRODUCTION 

Image shooting with an omnidirectional camera (360-
camera) is an effective technique for observations 
around an environment. In recent years, this tech-
nique has attracted more attention for its ability to 
achieve immersive observations in combination with 
a head-mounted display. In Google Street View 
(Google, 2007), multi-directional observation with a 
moving viewpoint is possible by properly choosing 
omnidirectional images shot from multiple view-
points.  

By applying a 3D estimation process such as 
Structure from Motion (SfM) to the omnidirectional 
multi-viewpoint images, it is possible to estimate the 
position and rotation of the omnidirectional camera 
and the 3D shape of the target space. We proposed the 
Bullet-Time video generation method to smoothly 
switch the viewpoint while gazing at the point to be 
observed using the estimated information (Takeuchi 
et al., 2018). In this method, omnidirectional obser-
vation is possible only at the captured viewpoint, not 
at non-captured positions. When the interval between 
the multi-viewpoint cameras becomes wider, the 
smoothness of viewpoint movement is degraded. 
Moreover, another serious problem is the complete 
inability of the viewer to move the viewpoint from the 
capturing viewpoint.  

Free-viewpoint image generation with the aim of 
reproducing an appearance from an arbitrary view-
point is one of the most active research fields in com-
puter vision (Agarwal et al., 2009; Kitahara et al., 
2004; Kanade et al., 1997; Shin et al., 2010; New-
combe et al., 2011; Orts-Escolano et al., 2016; Seitz 
et al., 1996; Levoy et al., 1996; Tanimoto et al., 2012; 
Matusik et al., 2000; Hedman et al., 2016), but arti-
facts due to 3D reconstruction errors (caused by an 
error in correspondence search) and occlusion, which 
degrade the image quality, are still important research 
issues. It is possible to improve 3D reconstruction ac-
curacy by using devices that acquire depth infor-
mation, such as RGB-D cameras (Newcombe et al., 
2011; Orts-Escolano et al., 2016; Hedman et al., 
2016), but this reduces the simplicity of the capturing 
system, making it more difficult for use in practical 
applications. We attempt to solve this issue by using 
an omnidirectional camera. Among multiple omnidi-
rectional images, there are many overlapping areas 
due to the wide field of view. As a result, the same 
region in the 3D space is observed from various view-
points, and thus the accuracy of the correspondence 
search can be improved. 

Research has been conducted to recover the de-
graded image quality by using an image reconstruc-
tion technique (Barnes et al., 2009). In recent years, 
methods using deep learning have been proposed 
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(Pathak et al., 2016; Iizuka et al., 2017), and more 
natural image-quality improvement has been 
achieved. However, these methods are based on the 
assumption that the region to be complemented is 
known. On the other hand, in free-viewpoint video 
generation, it is difficult to identify regions of low im-
age quality, since this depends on the capturing con-
dition. This makes it difficult to apply the conven-
tional image reconstruction technique to solving im-
age-quality degradation. 

In this paper, we employ deep learning by gener-
ative adversarial networks (GAN) to learn the rela-
tionship in appearance between generated omnidirec-
tional free-viewpoint (OFV) images and captured im-
ages. By using the learning results (Generator of 
GAN), a method to improve the image quality of 
OFV images has been developed. It is well known 
that the variation in training data affects the efficiency 
of deep learning. The appearance of an omnidirec-
tional image is significantly distorted by a unique op-
tical system. Therefore, when the viewpoint of the 
omnidirectional camera changes, the appearance of 
the same region is also drastically changed. In other 
words, the same region is observed with various ap-
pearances. We reduce changes in appearance due to 
lens distortion to improve the learning efficiency of 
deep learning. In particular, we divide an omnidirec-
tional image into multiple perspective projection im-
ages to reduce the variation in appearance.  

2 RELATED WORKS 

2.1 Display of Multi-viewpoint  
Omnidirectional Images 

In Google Street View (Google, 2007), it is possible 
to observe the surrounding view by using omnidirec-
tional images. By switching omnidirectional images 
shot from multiple viewpoints according to the view-
point movement specified by the observer, it is possi-
ble to grasp the situation in more detail while looking 
around the scene. By combining image-blending pro-
cessing and image-shape transform, the observer gets 
the sensation that he/she is moving around the scene. 
We also estimate the position and rotation of the om-
nidirectional camera and the 3D shape of the captur-
ing space by applying 3D reconstruction processing 
to the multi-viewpoint omnidirectional images. Using 
the estimated 3D information, we developed the Bul-
let-Time video generation method to switch the view-
point while gazing at the point to be observed 
(Takeuchi et al., 2018). However, the omnidirectional 

image-switching method has the problem of allowing 
the viewer to move only at the capturing position. 

2.2 Free-viewpoint Images 

There has been much research on free-viewpoint im-
ages. Model-based rendering (MBR) (Agarwal et al., 
2009; Kitahara et al., 2004; Kanade et al., 1997; Shin 
et al., 2010; Newcombe et al., 2011; Orts-Escolano et 
al., 2016) reproduces a view from an arbitrary view-
point using a 3D computer graphics (CG) model re-
constructed from multi-viewpoint images of the cap-
turing space. Image-based rendering (IBR) (Seitz et 
al., 1996; Levoy et al., 1996; Tanimoto et al., 2012; 
Matusik et al., 2000; Hedman et al., 2016) synthesizes 
the appearance directly from the captured multiple 
viewpoint images. 

In MBR, the quality of the generated free-view-
point images depends on the accuracy of the recon-
structed 3D CG model. For this reason, when captur-
ing a complicated space where a 3D reconstruction 
error is likely to occur, an artifact may occur in the 
generated view. Furthermore, the occlusion inherent 
in observations with multiple cameras makes it chal-
lenging to reconstruct an accurate 3D shape, thus de-
grading the quality of generated images (Shin et al., 
2010). 

Since IBR does not explicitly reconstruct the 3D 
shape but applies a simple shape, it is possible to gen-
erate free-viewpoint images without considering the 
complexity of the capturing space. However, when 
the applied shape of the capturing space is largely dif-
ferent from the actual shape, the appearance of the 
generated view is significantly distorted by the image 
fitting error. To reduce this distortion and generate an 
acceptable view, it is necessary to increase the num-
ber of capturing cameras. 

2.3 Image-quality Improvement 

Research on image-quality improvement has been 
conducted actively. There is a method that comple-
ments the appearance of the image by finding the cor-
responding image information using peripheral image 
continuity (Barnes et al., 2009), and this method has 
also been applied to complement free-viewpoint 
video (Shishido et al., 2017). However, this method 
cannot reconstruct information that is not observed in 
the image. Various approaches of using convolutional 
neural networks and GAN to reconstruct information 
not included in the image have been proposed, but 
these methods assume that the missing region is 
known (Pathak et al., 2016; Iizuka et al., 2017). By 
applying reconstruction utilizing GAN to transform 
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the entire image (Isola et al., 2017), we propose a 
method to reproduce an appearance that is equivalent 
to the captured image by compensating for the image-
quality degradation due to movement of the view-
point. 

3 IMAGE-QUALITY  
IMPROVEMENT OF OFV  
IMAGE 

Figure 1 shows an overview of our proposed method. 
By applying SfM to multi-viewpoint omnidirectional 
images capturing the target space, the position and ro-
tation of each omnidirectional camera and the 3D 
point cloud of the target space are estimated. Based 
on the estimated camera parameters, the 3D point 
cloud is projected onto each omnidirectional image 
plane to generate sparse depth images. By interpolat-
ing the gap among the projected points, dense omni-
directional depth images are generated at each view-
point. It is possible to synthesize an omnidirectional 
image at any viewpoint by using the omnidirectional 
depth image and the captured omnidirectional image 
as the texture. As a result, we obtain a dataset of ac-
tually captured omnidirectional images and synthe-
sized omnidirectional images at the same viewpoints.  
 

 

Figure 1: Image-quality improvement of OFV images. 

We apply the dataset to GAN, which learns a way to 
generate the appearance of an image from the synthe-

sized image. By using the results of deep learning 
(image generator) provided by GAN, the image-qual-
ity of the synthesized OFV image can be improved. 

4 GENERATION METHOD FOR 
OFV IMAGES 

4.1 Capturing Multiple  
Omnidirectional Images and  
3D Estimation 

Multiple omnidirectional images are captured at var-
ious viewpoints surrounding a target object. Due to 
the active research and development on 3D infor-
mation estimation from multi-viewpoint images, 
some excellent SfM libraries (Wu, 2011; Schönberger 
et al., 2016; Sweeney et al., 2015) have become avail-
able. However, these libraries are usually based on 
perspective projection, which is different from the 
projective geometry of an omnidirectional image. 
Therefore, in our method, we divide an omnidirec-
tional image into perspective images (i.e., virtually 
setting cameras using perspective geometry) and ap-
ply an SfM library to each perspective projection im-
age captured by a virtual camera. As a result, the cam-
era parameters of the images and sparse 3D point 
clouds are estimated. The position and orientation of 
the omnidirectional camera can be calculated from 
the estimated camera parameters of the virtual cam-
eras (Takeuchi et al., 2018). Based on the estimated 
camera parameters and sparse 3D point cloud, multi-
view stereo processing (Seitz et al., 2006) is carried 
out to obtain a dense 3D point cloud. 

4.2 Generation of Omnidirectional 
Depth Images 

By calculating the distance from each viewpoint of 
multiple omnidirectional cameras to the 3D point 
cloud estimated in Section 4.1, we generate the sparse 
omnidirectional depth image shown in Figure 2(a). 
We calculate the color difference between the pro-
jected 3D point cloud and the pixel of the captured 
image at the viewpoint where the depth information 
is generated. The color difference is calculated as the 
Euclidean distance between the two colors described 
in the CIELAB color space. This color difference in-
creases when the 3D information of the point cloud is 
estimated incorrectly. In order to reduce the error of 
3D information, we apply threshold processing to the 
color difference. When the color difference is 20.0 or 
more, the depth value is not calculated. 
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Since we cannot estimate the depth value of the 
pixels where the 3D point cloud is not projected, as 
shown in Figure 2(a), there are vast missing regions 
in a depth image. We interpolate these regions using 
a cross bilateral filter (Chen et al., 2012). The cross 
bilateral filter uses two different modal images (e.g., 
a color image and the depth image). It filters one of 
the images based on the other one that has smaller ob-
servation noise. In our case, depth images having 
much observation noise are filtered using captured 
color images having smaller observation noise. The 
following filter equations are applied: 

 

ܦ ൌ
∑ ௗሺ࢘,ሻ ൫ூ,ூ࢘൯࢘࢘∈ಿ

∑ ௗሺ࢘,ሻ ൫ூ,ூ࢘൯࢘∈ಿ
, 

݀ሺ, ሻ࢘ ൌ ݔ݁ ቀെ
మ‖࢘ି‖
ଶఙభ

మ ቁ, 

ܿ൫ܫ, ൯࢘ܫ ൌ ݔ݁ ൬െ
ฮூିூ࢘ฮమ
ଶఙమ

మ ൰, 

(1)

 

where  is the pixel coordinate of interest, ࢘ is the 
reference pixel coordinate, ܦ is the depth value, ܫ is 
the luminance value, ܰ is the set of reference pixel 
coordinates, and σ is a constant. ݀ሺ, ,ܫሻ and ܿ൫࢘  ൯࢘ܫ
are weights for distance and color difference, respec-
tively. We calculate the depth value by weighting the 
distance between the pixel position of interest and the 
reference pixel position as well as the color  difference 
on the captured image. As a result, as shown in Figure 
2(b), it is possible to interpolate the depth image 
while maintaining the contour of the captured image. 

 
(a) 

 
(b) 

Figure 2: Generated omnidirectional depth image. (a): Be-
fore interpolation processing. (b): After interpolation pro-
cessing. 

4.3 Generation of OFV Image 

As shown in Figure 3, an OFV image at an arbitrary 

viewpoint is generated from the omnidirectional im-
age captured in Section 4.1 and the omnidirectional 
depth image created in Section 4.2.  

 
(a) 

 
(b) 

 
(c) 

Figure 3: Generation method for an OFV image. (a): Select 
multi-view cameras to be used for free-viewpoint image. 
(b): By referring to the depth information, every pixel value 
(color information) of the captured multiple omnidirec-
tional images is projected onto a 3D space. (c): The OFV 
image is generated by back-projecting these 3D point 
clouds onto the omnidirectional image plane. 

When the free viewpoint for generating a new om-
nidirectional image is determined, the distance from 
the free viewpoint to each multi-view camera is cal-
culated. Then, a certain number of multi-view cam-
eras are selected in order from the closest one (Figure 
3(a)). By referring to the depth information, every 
pixel value (color information) of the captured multi-
ple omnidirectional images is projected onto a 3D 
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space to generate a dense 3D point cloud model (Fig-
ure 3(b)). The OFV image is generated by back-pro-
jecting these 3D point clouds onto the omnidirec-
tional image plane at the free-viewpoint. When dif-
ferent point clouds are projected on the same pixel of 
a free-viewpoint image, the closer point cloud from 
the free viewpoint is adopted to remove the hidden 
surface (Figure 3(c)). 

With the same processing, it is possible to gener-
ate a free-viewpoint image at the viewpoint where 
multiple omnidirectional images are actually cap-
tured. We prepare a learning dataset (a pair of synthe-
sized free-viewpoint images and captured images) for 
GAN used in image-quality improvement, which is 
described in the next section. 

5 IMAGE-QUALITY  
IMPROVEMENT 

Some artifacts are observed in the OFV images gen-
erated in Section 4.3. Typical causes of these artifacts 
include 3D shape estimation errors and missing 3D 
information due to occlusion. This section describes 
how to reduce these problems using GAN. In this re-
search, we employee Pix2Pix (Isola et al., 2017) as a 
way to implement GAN. Pix2Pix is a type of condi-
tional GAN that learns the correspondence between 
two images of different styles, such as line-drawn im-
ages and photos or aerial photos and maps, and then 
converts one to the other. In this research, Pix2Pix is 
applied to image conversion between a free-view-
point image and a captured image to improve the 
quality of free-viewpoint images. 

Pix2Pix consists of two networks: an image gen-
erator and a discriminator. A pair of pre-conversion 
and post-conversion images are prepared as training 
data, the pre-conversion image is input to the image 
generator, and either the image generated by the im-
age generator or the prepared post-conversion image 
is input to the discriminator. The discriminator deter-
mines which image is input. Learning is done while 
the images compete with each other, so the image 
generator can deceive the discriminator, while the 
discriminator can make an accurate decision. After 
learning, image conversion is achieved by using an 
image generator. 

As the training data, the OFV image synthesized 
at the capturing viewpoint in Section 4.3 is prepared 
as the pre-conversion image, and the omnidirectional 
image captured in Section 4.1 is prepared as the post-
conversion image. After the image generator is 
trained using the training data, an OFV image at the 
virtual viewpoint is given as an input to the learned 

image generator to generate a highly realistic image 
with reduced image-quality degradation. 

We focus on the projective geometry of learning 
images to achieve learning efficiency. The diversity 
of appearance among learning samples increases, 
making learning difficult because omnidirectional 
images based on equirectangular projections cause a 
significant change in appearance due to the move-
ment of the viewpoint based on their projection char-
acteristics. Therefore, we reduce the diversity of ap-
pearance by dividing the omnidirectional images into 
multiple perspective projection images and then per-
form efficient GAN learning. In this paper, as shown 
in Figure 4, we adopt cube mapping to divide an om-
nidirectional image into six image planes and con-
struct an image generator using perspective projec-
tion images on each plane. 

 
Figure 4: Division of an omnidirectional image into six im-
age planes by cube mapping. 

6 EXPERIMENTS 

6.1 Experimental Environment 

We conducted demonstration experiments on the ef-
fect of improving the image quality of OFV images 
by deep learning and on the impact of image division 
on learning efficiency. As shown in Figure 5, we in-
stalled a tripod with an omnidirectional camera 
(RICOH THETA S) at 42 viewpoints in the indoor 
environment (University of Tsukuba) and captured 
multi-view omnidirectional images. For the pro-
cessing, we used a notebook PC with the following 
specifications: CPU: Intel Core i7-7700HQ 2.8 GHz, 
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GPU: NVIDIA GeForce GTX 1060, Memory: 16 GB 
RAM. SfM was executed using VisualSFM (Wu, 
2011). We generated 42 OFV images at the capturing 
viewpoints using the method described in Section 4.3. 
Of these, we used 22 OFV images, as well as images 
shot from the same viewpoint as these images, as the 
Pix2Pix training data. 

To verify the learning effect of GAN by the image 
division described in the previous section, we trained 
the image generator for the case of using an 
equirectangular image as is and for the case of using 
a perspective projection image divided by cube map-
ping. The OFV image based on equirectangular pro-
jection was 2,048ൈ1,024 pixels, each perspective 
projection image was 512ൈ512 pixels, and the num-
ber of learning steps was 1,000 epochs. For evalua-
tion, we input the 20 OFV images that were not used 
for training to the image generator and observed the 
generated images. Moreover, the image quality was 
quantitatively evaluated using the peak signal-to-
noise ratio (PSNR), which is one of the image-quality 
evaluation indexes. 

 

Figure 5: Arrangement of omnidirectional cameras in cap-
turing experiments (viewed from above). 

6.2 Results 

Figure 6 compares examples of the images generated. 
Figure 6(a) is an OFV image (before image-quality 
improvement) made by the method described in Sec-
tion 4. Figures 6(b, c) are OFV images with improved 
image quality: Figure 6(b) is the case where the di-
vided image is input, and Figure 6(c) is the case where 
the omnidirectional image of the equirectangular pro-
jection is input. Figure 6(d) shows the captured image 
(correct image). Comparing Figure 6(a) with (b, c), 
we can confirm that the image generator constructed 
by deep learning improves the missing regions in the 
image. Comparing Figure 6(b) with (c), the former, 
which uses the divided images as input, produces a 
more precise image with fewer artifacts and less blur.  

Using the average value of PSNR calculated from 
OFV images at 20 viewpoints, we perform a quanti-
tative evaluation on the effect of image-quality im-
provement and the presence or absence of image di-
vision. Table 1 shows the evaluation results. 

Table 1 shows that PSNR is improved and the im-
age generator constructed by deep learning improves 
the image quality. In addition, the image-dividing 
method produces a higher PSNR value than the non-
dividing method, thus confirming the effectiveness of 
image division. 

Table 1: Average PSNR with standard deviation in 20 view-
points images. 

Before  
image-quality 
improvement 

After image-quality improvement 

With image  
division 

Without image 
division 

12.68 (±1.37) dB 27.39 (±0.45) dB 23.01 (±0.18) dB

7 CONCLUSIONS 

In this paper, we proposed an image-quality improve-
ment method for OFV images using GAN. We recon-
structed the 3D information of the capturing space 
from an omnidirectional multi-viewpoint image and 
generated the OFV image after interpolation of the 
depth information by image processing. By using 
deep learning (GAN), we improved the image quality 
of artifacts and the missing regions observed in con-
ventional free-viewpoint images. By focusing on the 
projective geometry during training, we raised the 
performance of image-quality improvement by con-
verting an omnidirectional image into perspective 
projection images. 

This work was partially supported by JSPS KA-
KENHI Grant Number 17H01772 and by JST 
CREST Grant Number JPMJCR14E2, Japan. 
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