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Abstract: Object detection and classification is one of the most crucial computer vision problems. Ever since the in-
troduction of deep learning, we have witnessed a dramatic increase in the accuracy of this object detection
problem. However, most of these improvements have occurred using conventional 2D image processing.
Recently, low-cost 3D-image sensors, such as the Microsoft Kinect (Time-of-Flight) or the Apple FaceID
(Structured-Light), can provide 3D-depth or point cloud data that can be added to a convolutional neural net-
work, acting as an extra set of dimensions. We are proposing a hardware-based approach for Object Detection
by moving region of interest identification closer to sensor node in the hardware. Due to this approach, we do
not need a large dataset with depth images to retrain the network. Our 2D + 3D system takes the 3D-data to
determine the object region followed by any conventional 2D-DNN, such as AlexNet. In this method, our ap-
proach can readily dissociate the information collected from the Point Cloud and 2D-Image data and combine
both operations later. Hence, our system can use any existing trained 2D network on a large image dataset
and does not require a large 3D-depth dataset for new training. Experimental object detection results across
30 images show an accuracy of 0.67, whereas 0.54 and 0.51 for FasterRCNN and YOLO, respectively.

1 INTRODUCTION

The ability for robots and computers to see and under-
stand the environment is becoming a burgeoning field,
needed in autonomous vehicles, augmented reality,
drones, facial recognition, and robotic helpers. Such
systems require the detection and classification of ob-
jects to perform various tasks. In 2012, Krizhevsky
et al. (Krizhevsky et al., 2012) (Deng et al., ) in-
troduced the CNN (Convolutional Neural Network)
based Deep Neural Network technique for image clas-
sification which outperformed existing methods. Af-
ter the successful implementation of image classifi-
cation, Ren et al. (Ren et al., 2015) implemented
Region-Based CNN for Object Detection. The Fully
Convolutional Network provided a solution to seman-
tic segmentation, followed by Mask RCNN (Long
et al., 2015), which further improved the capabilities
of the Deep Neural Network.

All the networks mentioned above were assuming
a standard 2D-image dataset, due to the wide preva-
lence of low-cost 2D-image sensors (i.e., cellphones
with open-source sharing of their RGB data images).

Recently, low-cost 3D-image sensors that can be em-
bedded into cellphones (i.e., FaceID, Google Tango)
have begun arising, enabling the potential for ubiq-
uitous RGB+D sensor data, that can be used to im-
prove object detection. Previous work from Gupta
et al. (Gupta et al., 2014) trained a FasterRCNN on
RGBD dataset NYUD (Silberman et al., 2012), using
HHA encoding of 3D-depth images with 2D-images.
This approach considers depth data as an additional
NN input and not as independent values coming from
different sensors, and thereby needs a large amount of
depth data to train the neural network. Unfortunately,
since 3D-depth sensors are not widely available as of
yet, the ability to create a clean, accurate, and well-
annotated RGB + Point Cloud dataset (~5000 images)
as large as ImageNet (~1.2 million images) is still not
possible. Unavailability of depth sensors also lim-
its researchers from testing a large number of corner
cases (i.e., difficult scenarios such as different SNR
situations for 2Dimages or 3D-depth data.) Hence,
the accuracy of a CNN trained with a small amount of
RGB+D data will be inferior to a CNN trained with a
large amount of RGB data.
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We are purposing a hardware architecture with
3D and 2D sensors in which the 3D sensor has in-
tegrated Region-of-Interest detection, and the 2D im-
age is used for classification. This architecture sepa-
rates the use of depth data from image data. Due to
such architecture, there is no need for a large depth
dataset for training the neural network. Also, we can
use a general-purpose classification network trained
on large image datasets such as Imagenet which re-
duces the need to retrain the network again and again
as well as on local node.

2 PREVIOUS WORK

In this section, we overview and discuss some prior
object detection techniques and network architectures
used for images and depth datasets.

2.1 Faster R-CNN

Ren et. al. (Ren et al., 2015) proposed a Region
Proposal Network (RPN) to obtain bounding region
boxes. These boxes are then sent to a classifica-
tion layer to decide whether it contains an object or
not. Since there are overlapping regions of bound-
ing boxes, non-max suppression (NMS) is used to
combine different adjacent bounding boxes. For their
experiment, both RPN and classification networks
share the VGG-16 model (13 CNN and 3 FCN lay-
ers) for feature extraction and the NMS limit to 0.7,
resulting in bounding boxes of 2000 for each im-
age. Gupta et al. (Gupta et al., 2014) used Faster
RCNN to learn rich features from RGBD images of
the NYUD dataset. They transformed depth informa-
tion into 3-channels into HHA transformation. Figure
1 shows the basic operation of Faster R-CNN, show-
ing the anchor boxes using the Region Proposal Net-
work(RPN), and then the final output.

Figure 1: Region Proposal Network and the Output from
Pascal VOC (Ren et al., 2015).

2.2 Mask R-CNN

He et. al.(He et al., 2017) demonstrates Mask R-
CNN which is an extension of Faster R-CNN. Mask

R-CNN extends Faster R-CNN by adding an object
mask detector in parallel for instance segmentation.

Faster RCNN does not provide a pixel representa-
tion of the object in a scene. Instead, it just provides a
bounding-box around an object. To address this prob-
lem, He et al. uses an ROI align layer that gives pixel
to pixel representation from the bounding boxes. Fur-
thermore, there is an ROI pool layer that combines
local bounding boxes. Figure 2 demonstrates the ROI
pool layer and instance segmentation layers used for
instance segmentation that operates on top of Object
Detection.

Figure 2: Mask R-CNN architecture for instance segmenta-
tion (He et al., 2017).

2.3 You Only Look Once (YOLO)

Redmon et al. (Redmon et al., 2016) propose a
much simpler neural network for Object Detection.
This network does not need Region Proposal Network
(RPN) layer for training. Instead, the picture is di-
vided into several predesigned anchor boxes. Next,
Redmon et al. run classifiers such that overlapping
bounding boxes are removed using Non-max suppres-
sion (NMS). The advantage of this network lies in its
end-to-end training. In this way, Redmon et al. can
train networks faster and easier by sacrificing some
accuracy. Figure 3 shows a detailed YOLO architec-
ture with 24 convolutional layers and three fully con-
nected layers.

Figure 3: YOLO architecture (Redmon et al., 2016).

2.4 VoxelNet

VoxelNet (Zhou and Tuzel, 2017) is a unique way of
running object detection just on 3D point-cloud data
(with no other sensor data input). Point Clouds are
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sparse, such that points clouds are converted to voxels
and therefore just samples with certain chosen thresh-
olds. Next, random samples are chosen and converted
to point-wise inputs for feature learning. Figure 4
shows various layers and final output for VoxelNet ar-
chitecture.

Figure 4: VoxelNet architecture (Zhou and Tuzel, 2017).

2.5 3D Object Detection Networks

Ever since the introduction of depth data from sen-
sors such as Microsoft Kinect, researchers are trying
to incorporate depth data into computer vision prob-
lems. Lin et al. proposed a method for 3D object de-
tection(Lin et al., 2013) using 2D segmentation and
3D geometry. Song et al. (Song et al., 2015) pro-
pose deep sliding models for Amodal 3D object de-
tection. Schwarz et. al.(Schwarz et al., 2018) used
multiview RGBD cameras to perform heuristics on
depth data for their object picking robot. Gupta et
al. (Gupta et al., 2014) provided HHA encoding to
train the network on Faster RCNN. Gupta and Hoff-
man provided several transfer learning techniques to
transfer weights from 2D network to depth data (Hoff-
man et al., 2016) (Gupta et al., 2016).

2.6 Shortcomings of Prior Art

Most of the networks previously described methods
use only conventional 2D image datasets. NYUD
possesses RGB+D data, but unfortunately, the dataset
exhibits a very high density of cluttered objects, with
many of these objects exhibiting no depth features
(curtains, windows, etc.) Unfortunately, with such
a cluttered RGB+D dataset, any training using RGB
data and depth data, depth data will not contribute
much to learning. For example, we previously tried to
use the depth data of NYUD for training, but because
there are not many features to learn from depth. It
is challenging to stop overfitting because of the small
number of images.

In regards to VoxelNet, the network is trained with
a number of different objects (Car, Bike, etc.), such
that training for another network with a different set of

objects is impractical. For both NYUD and VoxelNet,
a large amount of 3D depth data for regular training
of neural-network is required. Unfortunately, there
currently exists no 3D-depth dataset large enough to
rival conventional 2D-image datasets (ImageNet, etc.)

Ever since the publication of RGBD datasets like
NYUD and SUN RGBD (Song et al., 2015), re-
searchers are trying to incorporate depth dataset into
learning and detection processes. Methods range
from using heuristics to use encoding techniques such
as HHA. Researchers also tried to use transfer learn-
ing techniques to train depth weights using ImageNet
datasets. All these techniques are computationally in-
tensive and hard to move closer to hardware such as a
SOC. These techniques also make these systems more
complex.

3 PROPOSED WORK

In this paper, we propose a DNN Object Detection
system that dissociates the depth-data from the RGB
data. In this way, our proposed system does not
need to require a large training dataset for the depth
data but still simultaneously extracts meaningful in-
formation from the depth sensor. Furthermore, our
system combines this depth data with conventional
2D-trained image data to generate a practical, low-
complexity object detection and classification system.

This paper is constructed as follows. First, we will
give a system overview of our system, followed by
test results, a comparison with current state-of-the-art
systems, and then concluding with our future research
direction.

3.1 System Overview

Figure 5 shows an overview of the system architec-
ture. We designed our system with the understanding
that there currently exists no large dataset of depth
data for training. First, our system generates bound-
ing boxes from the depth sensor output by perform-
ing clustering on the 3D point cloud. After denois-
ing and cleaning of the clustered depth objects, we
use the clustered objects to split the 2D image into
sub-images which are fed to a 2D-Image Deep Neu-
ral Classification Network.For Threshold Filtering, a
threshold for the classification top-1 accuracy is set to
judge the availability of the classification result. If the
top-1 accuracy is greater than the threshold, then the
output is accepted. Detailed operation for each sub-
system is explained below.
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Figure 5: FotonNet System Architecture.

3.2 Bounding-box Detection

The bounding box detector generates bounding boxes
proposals based upon the different clusters of point
cloud data. In this system, the K-means Clustering
Algorithm (MacQueen et al., 1967) is picked to pro-
duce a limited number of boxes. Compared with
another classical algorithm Hierarchical clustering
(Ward Jr, 1963), K-means clustering have a low com-
plexity when the number of clusters is fixed. When
the cluster number is 8, for 30000 points of point
cloud the speed of these two algorithms is 28.08s and
1.54s (based on python 2.7, CPU only) separately.
Considering the current depth cameras, they can of-
fer around 3 ~40000 points. So K-means is more ef-
ficient in this situation. The algorithm flow is shown
in Algorithm 1. We set the total number of objects
we can detect as C depending on the scenario. In this
dataset for the indoor scene, we set C to 8 which can
obtain a satisfied result. At the same time, this method
also limits the upper amount we can detect. Due to
the complexity of K-means depending on the itera-
tion times, the number of point cloud is decreased
linearly to speed up. In this paper, the number of
points in point cloud is around 30000. For K-means
clustering, it costs much time to calculate distances
between the current centroids and every point. As a
useful solution observed, decreasing the number of
point cloud linearly before we input the point cloud
into K-means clustering can solve this problem effi-
ciently. The more amount is discarded, then the speed
is higher. In the same time, the accuracy will be ef-
fected for losing some critical information. Balancing
the accuracy and speed, the ratio is set to 0.7, and the
distance metric is Euclidean distance.

3.3 Denoising

After the clustering step, several simple denoising
steps have implemented that act as a pre-processing
and image cleanup that improves the subsequent ob-
ject detection. First, the two clusters from the two
top corners are eliminated since they are likely pe-
ripheral background images and not the main images
for classification. Second, small-sized clusters which
are a small percentage ratio of the entire point-cloud

Algorithm 1: Algorithm for K-means cluster detec-
tor:

Parameter setting: C(C > real number of
objects) Set each point in the pointcloud P as
a cluster

Initialize the center centroids
(µ0

1, ,µ
0
k),(µ

0
j( j = 1, ....,k)) randomly:

while ∑
k
j=0 ||µi+1

j −µi
j||2 > δ do

for every i do
i) Compute the distance between each
cluster to the current k centroids.;

ii) Relabel the nearest centroid to the
cluster.;

iii) Compute the new average point in a
cluster as the new centroid.;

iv) Compute the difference between the
new generating centroids and last
centroids ∑

k
j=0 ||µi+1

j −µi
j||2. ;

end
end

are judged as noise (not real objects) and are also re-
moved. Several other sub-images that are extraneous,
such as point-clouds from the wall and the ground,
have not been eliminated in this preliminary imple-
mentation.

3.4 Sub-images

After the detection of several different bounding
boxes, we split the image into several sub-images so
that we can perform object-detection on several ob-
jects detected by the depth sensor. The 3D-depth
sensor is calibrated with the 2D-camera such that
the bounding boxes can be projected on to the 2D-
image plane, using the method from Park et al. (Park
et al., 2014). In particular, we utilize Parks polygonal
method and calculate the Projection Matrix for Sin-
gular Value Decomposition (SVD).

3.5 Deep Neural Network

Our proposed Object Detection system has the
advantage in that it can use any existing classification
network that has been trained on large datasets of
2D images (as opposed to VoxelNet or NYUD). The
advantage of this system is that we can use an already
pre-trained network and therefore do not need to
train a new network for depth data. For this initial
experiment, we utilize AlexNet due to its widespread
availability.
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Figure 6: Architecture for FotonNet.

One advantage for our system is that it imple-
ments AlexNet inference using available systems like
NVDLA open-source deep learning inference engine
(NVD, b), thereby enabling a future low-cost ASIC
implementation. For the performance estimation of
the system, we used a ZYNQ Ultrascale+ SoC to run
the corresponding parts of the entire system, includ-
ing the image clustering, preprocessing, and AlexNet
inference. The preprocessing part is written in C++,
compiled with the gcc-linario arm-linux cross com-
piler. Sub-images are generated accordingly and fed
into the NVDLA User Mode Driver. The NVDLA
small configuration hardware is programmed into the
programmable logic (PL) part of the Zynq SoC. An
NVDLA full configuration can run AlexNet at 1100
Frames per second with 2048 Multiply-accumulate
units (MACs) when its batch size is 16 (NVD, a). The
NVDLA small configuration we are using exhibits 64
MACs, which uses 32 times less hardware than the
full configuration, as it is not the bottleneck of speed

for our implementation. The implementation work-
flow of the entire system is shown in Figure 7.

3.6 Object Detection Output

After Classification, we obtain the output with corre-
sponding bounding boxes. We apply a threshold λ on
the final sub-images in order to determine if there are
any extra bounding boxes. Depending on the ability
of CNN, if the object in the proposed box is not valid,
then the top-1 score is further lower than a true one. In
our experiments, the classification probability below
a certain threshold (i.e., 0.2) will be discarded..

4 EXPERIMENT

Since the depth data is used here to perform cluster-
ing, it is difficult to compare our system with previ-
ous benchmarks. In order to perform a side by side
comparison of our system versus other algorithms, we
captured both the 2D-Image and 3D-Depth data of 30
images with various indoor objects inside. We tested
our proposed FotonNet using these 30 images and
point cloud data, while for the conventional networks
(Girshick et al., 2018) and YOLO darknet (Redmon
and Farhadi, 2018), we only used the RGB images
from the scenes and ran through detection. The out-
put of FotonNet is shown in Figure 8. We also tried to
train Faster RCNN, YOLO and AlexNet on NYUDv2
dataset with 40 classes with both image and depth
data. All the networks were trained for about 150
epochs and trained on 795 training images and tested
on 654 images. Even after converging error the net-
works were failed to achieve significant object detec-
tion ability. We assume it is because of the small num-
ber of training images and high and dense objects in
the scenes.

We tested this system with our 30 test images and
calculated the mean Average IOU. The Average IOU
for our system is 0.72413, with a measured. The re-
sults of our architecture and the parameters sets are as
follows:

• Clustering Time (ARM A53): 0.5 sec

• Classification Time: 0.0545 sec

In order to compare our system versus others, we
ran our test images through each of the networks,
thereby providing the IOU, latency, and size of each
network. We also provide latency and accuracy as re-
ported by existing neural networks. For the AlexNet
network using Xilinx 's ChaiDNN library on ZCU104
FPGA. We used onboard ARM A53 for clustering
tasks. The speed of our system then will depend on
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Figure 7: Implementation Architecture.

Figure 8: Final output of the system.

the number of clusters we generate. Assuming on av-
erage we generate 8 clusters, the speed of our sys-
tem is approximately 55fps. Please note, we are as-
suming that the clustering algorithm is available and
integrated into the on-board 3D-depth sensor. How-
ever, the speed can be easily increased if we use the
NVDLA classification engine, which reports a speed
of 1100 fps. One significant advantage of FotonNet

is its ease-of-deployment. By dissociating depth from
the RGB data, it will be easier to expand object de-
tection to even more classes and neural networks than
just limited Object Detection classes. Thus, this ap-
proach makes it easier to implement and expand than
currently existing systems.

5 CONCLUSION

We demonstrate a new HW-system architecture for
object detection which leverages low-cost 3D depth
sensors. The size of this network is significantly re-
duced compared with the status quo because of the
reduction in the number of ROIs and the elimination
of any extra training steps needed for object classifi-
cation. We used this approach to keep in mind that we
are going to move Boundary box detection on-chip in
Depth Sensor. We found that our approach outper-
forms YOLO and Faster-RCNN in object detection.
In this paper, we experimented with the hierarchical
clustering algorithm. We will try to come up with
a faster clustering algorithm and try to migrate that
functionality on the chip.
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