
Adaptative Clinical Decision Support System using Machine 
Learning and Authoring Tools 

Jon Kerexeta1 a, Jordi Torres1 b, Naiara Muro1,2,3 c, Kristin Rebescher1 and Nekane Larburu1,2 d 
1Vicomtech Research Centre, Donostia, Spain 

2Biodonostia Health Research Institute, Donostia, Spain 
3Sorbonne Universités, UPMC Univ Paris 06, INSERM, Université Paris 13, Sorbonne, Paris Cité,  

UMR S 1142, LIMICS, Paris, France 

Keywords: Authoring Tool, Machine Learning, CDSS, Decision Tree. 

Abstract: Clinical Decision Support Systems (CDSS) offer the potential to improve quality of clinical care and patients’ 
outcomes while reducing medical errors and economic costs. The development of these systems results 
difficult since (i) generating the knowledge base that CDSS use to evaluate clinical data requires technical 
and clinical knowledge, and (ii) usually the reasoning process of CDSS is difficult to understand for clinicians 
leading to a low adherence to the recommendations provided by these systems. Hereafter, to address these 
issues, we propose a web-based platform, named Knowledge Generation Tool (KGT), which (i) enables 
clinicians to take an active role in the creation of the CDSSs in a simple way, and (ii) clinicians’ involvement 
can turn in an improvement of the model predictor capabilities, while their comprehension of the reasoning 
process of the CDSS is increased. The KGT consist on three main modules: DT building, which implements 
machine learning methods to extract automatically decision trees (DTs) from clinical data frames; an 
authoring tool (AT), which enables the clinicians to modify the DT with their expert knowledge, and the DT 
testing, which allows to test any DT, being able to test objectively any modification made by clinician’s expert 
knowledge.

1 INTRODUCTION 

A Clinical Decision Support System (CDSS) can be 
defined as “Software that is designed to be a direct aid 
to clinical decision-making, in which the 
characteristics of an individual patient are matched to 
a computerized clinical knowledge base and patient-
specific assessments or recommendations are then 
presented to the clinician or the patient for a decision” 
(Sim et al., 2001).These systems provide personalized 
recommendations based on patient’s data in order to 
help clinicians during the decision-making process. 
Its adoption by healthcare systems can improve 
patient’s outcomes and wellbeing, provide best 
clinical practice to clinicians, while reducing medical 
errors and economic costs (Kaushal et al., 2003). 
However the development and deployment of these 
systems is not a simple task. 
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Among the factors that affect most the success of 
a CDSS there is the need of having an easy to 
maintain knowledge base (KB) (Isern and Moreno, 
2008). The KB contains the clinical knowledge of the 
system used to provide personalised 
recommendations for each patient, thus an easy way 
to maintain its contents is necessary to keep the 
system updated with the latest available clinical 
knowledge. However, this demands both technical 
and clinical skills, limiting the role that clinicians can 
play into it (Douali and Jaulent, 2013). Furthermore, 
usually the reasoning process behind the provided 
recommendations is not easy to understand for 
clinicians, especially when complex predictor 
techniques such as as Machine Learning (ML) are 
used during the evaluation of clinical data (Ericsson 
et al., 2003). It has been shown that this non-
comprehension is one of the main reasons why 
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clinicians do not accept the recommendations made 
by CDSSs when deployed in real clinical settings.  

Despite the general complexity of ML models and 
the difficulty to understand and edit its contents, its 
use in CDSSs has the potential to notoriously improve 
the predictive capabilities of already existent CDSSs 
(Larburu et al., 2018; Safdar et al., 2018; Tägil et al., 
2008). Among ML classifiers, Decision Tree (DT) 
classifiers are particularly suitable for clinical 
classification tasks since they are easy to interpret by 
a non-statistician and are intuitive to follow. DTs 
support missing values and are able to combine 
heterogeneous data types into a single model, whilst 
making an automatic selection of the main 
characteristics (Shaikhina et al., 2019).  

This scenario has led us to build a web-based 
Knowledge Generation Tool (KGT) for clinicians 
which allow handling and editing DT models to be 
used in CDSSs. Henceforth, clinicians are involved in 
the construction process of the KB (DT in our case) 
which has shown to be beneficial for deepening the 
understanding of the CDSSs’ recommendations, and 
increasing the predictive capacity of the classifiers 
Furthermore, it deals with the aforementioned trust 
issues of clinicians regarding the origin of the 
provided recommendations, as they can understand 
the reasoning process behind the provided 
recommendation due to their active involvement in 
the creation of the KB of the system. 

Overall, this work presents a methodology to 
create, modify and test an adaptative Clinical 
Decision Support System that combines DT machine 
learning technique and expert’s knowledge using 
authoring tools.  

This paper is structured as follows: in Section 2 
the state of the art regarding ML algorithms to 
generate DTs and frameworks that have been 
developed to generate DTs are presented; Section 3 
presents the methods to build the adaptative DSS; 
Section 4 presents a use case of our application, and 
Section 5 concludes the paper and proposes future 
work lines. 

2 STATE OF THE ART 

In this section, it is shown how the use of ML methods 
improves the performance of CDSS in the literature, 
and, more precisely, the case of DTs. Following, 
several platforms developed to generate trees 
interactively with non-expert users are introduced. 

 
 
 

2.1 Machine Learning Techniques in 
CDSS 

Due to the capacity of Machine Learning (ML) 
methods to extract information from data, they are 
widely used to support CDSS. According to the 
review of Safdar et al. (Safdar et al., 2018), which 
works with ML-based CDSSs for heart disease 
diagnosis, the use of ML (i.e. logistic models, 
Bayesian neural networks and neural networks) in 
CDSS improves the diagnosis of Acute Myocardial 
Infarction from 84 to 95%. In the case of ischemia 
detection, the use of a CDSS based on a neural 
network improves its sensitivity from 81 to 86% 
(Tägil et al., 2008). 

As mentioned before, tree-based ML methods are 
particularly used in CDSSs due to their easy 
comprehension for the clinicians and their suitable 
results. For example, taking a look at the survey of 
data mining algorithms and techniques in mental 
health (Alonso et al., 2018), we notice that the DT 
method is used between 27.27-57.14% among ML 
techniques in health illness (e.g. Alzheimer 33.33%, 
depression 27.27%, and schizophrenia and bipolar 
disorders 57.14%).   

Vidhushavarshini et al. (Vidhushavarshini and 
Sathiyabhama, 2017) propose Naïve Bayes (NB) and 
J48 tree (J48 in Weka, also known as C4.5) ML 
methods to support a CDSS in order to detect thyroid 
disease. In this case, J48 tree outperforms the NB 
method (81.94 vs 51.77% of accuracy). Nijeweme-
d’Hollosy et al. (Lakshmi et al., 2018) also give 
support to CDSS using tree-based ML methods in 
lower back pain use cases. CDSSs assist clinicians by 
advising which would be the best option for the 
patient: consult a GP, consult a physiotherapist or 
perform self-care. They trained a decision tree, a 
random forest and a boosted tree in a database of 
1,288 fictitious cases, and then tested those classifiers 
on a real-life database, reaching accuracies of 71%, 
53%, and 71% respectively in the testing dataset. 
Kumar et al. (Kumar and Sarkar, 2018) made a 
classifier combining  C4.5 and decision tables. They 
compared the performance of this hybrid classifier 
with the performance of C4.5 and decision table 
classifier in ten public datasets. In general, the hybrid 
classifier outperformed both the C4.5 and the 
decision table classifier. Finally,  Kerexeta et al. 
(Kerexeta et al., 2018) presented two classifiers to 
predict readmission within 30-days when a Heart 
Failure patient is discharged. In the first classifier, 
they combined clustering methods with an NB 
classifier. In the second classifier, they combined DT 
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with NB. In this case, the first method is the one that 
showed better results.  

2.2 Web-based Decision Tree 
Authoring tools 

Different platforms have been developed to allow for 
the creation of DT models to analyse clinical data by 
non-expert users. Below, some of these platforms are 
introduced.  

In the work of Kaminski et al. (Kamiński et al., 
2018), a framework that allows the visual generation 
of decision trees was presented. The platform allows 
the user to build DTs from scratch: the user defines 
the nodes and the edges, and manually introduces 
model parameters. However, this platform does not 
generate DTs automatically using ML techniques. 

Additional approaches that allow for user 
interaction are outlined in (Ankerst et al., 1999; Ware 
et al., 2001). Through different data visualization 
techniques, the user determines the splits on the data 
that will form the conditions of the nodes of the tree 
in a recursive manner until the user is satisfied with 
the tree’s results. Trees generated using these 
platforms achieve similar results as automatically 
generated DTs. The main limitation is that the 
constructed DT cannot be pruned once it has been 
built. 

In (S. J. Elzen and J. J. Wijk, 2011), the authors 
describe a platform that allows for the construction of 
trees from datasets combining manual modification 
and automatic methods. The user manually splits the 
data based on statistical parameters and visual 
representations of the data. In addition, the user can 
automatically grow sub-trees starting from a given 
node. 

Lastly, there are many studies (Aoki et al., 2007; 
Poucke et al., 2016; Ramezankhani et al., 2014; 
Tenório et al., 2011) that used platforms that allow for 
the automatic generation of DTs  as well as for their 
visualization. While the platforms used in those 
studies can be used by non-expert users to create DTs, 
test and visualize them, they are not able to cope with 
the lack of adaptability to changes in the tree. For this 
reason, the user´s knowledge cannot be introduced 
into the models.  

Overall, some interactive platforms (Ankerst et 
al., 1999; Kamiński et al., 2018; Ware et al., 2001) 
build DTs to support decision-making with the help 
of dataset visualization methods. These platforms are 
able to modify the DTs as the expert requires, but they 
do not use automatic ML methods to serve as a good 
starting point for the user. Doing so would allow for 
the conditioning of the entire tree. Other experts such 

as (Aoki et al., 2007; Poucke et al., 2016; 
Ramezankhani et al., 2014; Tenório et al., 2011), 
provide the possibility of extracting the tree using ML 
methods, however, doing so does not allow for the 
editing of those DTs. Given this scenario, if any 
branch is non-compliant with the expert´s knowledge, 
the expert is unable to fix the issue within the domain. 
A platform that successfully combines both 
approaches is the one presented in (S. J. Elzen and J. 
J. Wijk, 2011) (“BaobabView: Interactive 
construction and analysis of decision trees - IEEE 
Conference Publication,” n.d.). This publication 
outlines a very good DT generator but cannot be used 
to evaluate single instances of data or generate trees 
without a dataset as our platform does (for 
formalization purposes).  Aside from using a 
combined approach when generating the model, our 
platform allows the user to check the performance of 
the model in new frames as well as provide tools in 
order to easily analyze the DT (e.g. change the color 
of the tree depending on the outcome). In addition, 
the DT is immediately ready-to-use upon 
incorporating new patients´ data as soon as it is built. 

3 KNOWLEDGE GENERATION 
TOOL (KGT) 

In this chapter, the modules of our adaptative web-
based CDSS, named Knowledge Generation Tool 
(KGT) are described. KGT consists of three principal 
modules:  

1. Automatic DT building module. Users are able to 
use five well-known ML methods to build DTs 
classifiers in a selected data frame (Section 3.2). 

2. A web-based Authoring Tool (AT) that allows (i) 
building a DT right from the start and (ii) 
modifying the already built DT models using a 
visual representation of the model (Section 3.3). 

3. A DT testing module to test any DT building 
method, being able to assess which one generalizes 
the best. It also allows the user to test any buildt 
DT, making possible to check if the changes made 
in the DT improve the quality of the model 
(Section 3.4). 

This way, as users are involved in the construction of 
the model, their understanding of it is deeper, while 
the model’s performance can be improved thanks to 
the clinicians’ knowledge (Kwon et al., 2019). Out of 
the mentioned modules, firstly, Section 3.1 
introduces the format that the other modules of the 
KGT follow in order to handle the DTs. 
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3.1 Dynamic Tree Format (DTF) 

The combination of creation, edition and 
visualization of the tree is the core piece of our work. 
The visualization is based on the “Horizontal Tree” 
component of the Angular PrimeNG library 
(“PrimeNG,” n.d.), used to display hierarchical data. 
This component is extended with several new 
properties adding tags to each node of the DT, 
enabling the handling of the DT on the backend. We 
tune the format of the component, so that we can 
introduce the required information about the model in 
each node: (i) the condition(s) that each node 
represents, (ii) a unique ID for each node to identify 
it, (iii) a relational operator (AND / OR) that compares 
the multiple conditions grouped in a node and (iv) the 
probabilities of the outcome value at each node. We 
call this tuned component Dynamic Tree Format 
(DTF). 

Each condition is represented with (i) the name of 
the variable, (ii) the relational operator and (iii) the 
value of the condition statement. Depending on the 
type of the variable, the allowed relational operators 
change. For both Boolean and Categorical variables, 
the possible relations are limited to Equal to and 
Different Than, whilst for numeric variables, the set 
of possible relational operators is extended with 
Greater Than, Greater or Equal Than, Smaller Than, 
Smaller or Equal Than.  

3.2 DT Building 

 

Figure 1: Dashboard of DT building. 

There are two ways to create trees in the KGT. The 
first one is manually (i.e. using the AT), which is very 
useful in order to formalize clinical practice 
guidelines. The second way is by automating the 
process using medical data in conjunction with 
reliable and robust ML methods. When employing 
the automated option, many non-contemplated 

hidden patterns can be discovered in the patient’s data 
that may improve the knowledge-based CDSSs. 
Figure 1 displays the user-interface of the KGT used 
in the second approach. 

When the outcome (e.g. live/dead) is unbalanced 
(large difference between the number of instances of 
each outcome’s class), the DT models usually tend to 
adhere to the most frequent outcome’s class. 
Therefore, our KGT gives the possibility to apply the 
SMOTE (Chawla et al., 2002) balancing method 
before building the DT in order to have a similar 
number of instances for each possible outcome’s class. 

The software R (Team, 2015) is used to build 
these DTs, as it is a very powerful programming 
language and properly handles Boolean, Numerical 
and Categorical variables when building a DT. Our 
development is mainly based on the partykit (Hothorn 
and Zeileis, n.d.) package. A parser is built from the 
party class (how the tree format is represented in the 
partykit package) to the DTF explained in the 
previous section. Therefore, all the trees built in R 
language are transformed into the party format first, 
and then to the DTF to handle it in the KGT. This 
way, any package of R that builds DTs from data can 
be used to extract DTs applicable in the KGT. 

DT generation algorithms recursively split a 
dataset until a stop criterion is met. In the literature, 
there are many methods to make these splits. We 
implemented some of the most frequently used DTs 
in medicine in the literature (Podgorelec et al., 2002), 
which are listed below. 

 
 Generalized Linear Model Trees: It is based on 

the Generalized Linear Model (GLM) (Nummi, 
2015). It evaluates the GLM parameters and 
studies if they are stable along the division 
variables considered. Then, it uses the variable 
with the highest parameter instability to make the 
split. It is implemented with the partykit package 
(Hothorn and Zeileis, n.d.). 

 Ctree: This method uses a significance test to 
select the variable to split (Zeileis et al., n.d.). This 
approach is also implemented with the package 
partykit (Hothorn and Zeileis, n.d.). 

 CART: It finds the variable to split using a split 
measure function which is based on the gini index 
(Rutkowski et al., 2014). rpart package (Therneau 
et al., 2015) is used to implement it. 

 C4.5/J48: The way C4.5 (named J48 in WEKA) 
method makes the split is that it relies on the 
information gain ratio. It chooses the split that 
maximizes the gain ratio (Quinlan, 2014). When 
this method is selected, the KGT is supported by 
the package RWeka (Hornik et al., 2018). 
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 C5.0: It is a C4.5 method’s extension, adding new 
functions, such as boosting for improving the 
accuracy rate and the construction of cost-sensitive 
trees. (Pang and Gong, 2009). The package C50 
(Kuhn et al., 2018) is used in the KGT. 

 
These five methods can be applied independently or 
can be combined to generate a forest of different DTs. 
This way, different DT methods knowledge can be 
combined to obtain a better model. Moreover, as the 
KGT allows to modify these models, the not desired 
part of the forest can be modified. 

3.3 Authoring Tool 

The AT facilitates (i) the modification of existing 
trees and (ii) allows for the construction of new trees 
from scratch. Below the most important features of 
the AT are listed. The AT interface of the KGT is 
shown in Figure 2. 
 
1. New Branches: Starting in an already existing 

node, it is possible to create a new node (child) to 
which the next evaluation step should go if the 
specified conditions are met. In the same way that 
new nodes can be created, a chosen node or all its 
children can be deleted, keeping the selected node 
as a leaf node (end of branch). 

2. Edit Conditions: The conditions of any node can 
be edited, i.e. the value of the checked variable or 
the variable itself can be changed. 

3. Edit Outcome: The probability distribution of the 
outcome (e.g. alive or dead) is given in each node. 
These probabilities can be modified with the AT. 

4. DT Attributes: When editing the conditions of the 
trees, their possible values are restricted (e.g. 
categorical variables have restricted values), which 
are automatically extracted when the tree is 
generated from a data frame. Non-contemplated 
attributes or possible values of an attribute can be 
added using the AT. When the DT is manually 
generated, the attributes must be defined by the user. 
 

The AT provides a way of extending the DTs with 
clinical knowledge to cope with particular or 
complicated clinical cases not evaluated by the 
original model. After using the AT, it is possible that 
some patients fulfill more than one path or none. If 
more than one path is satisfied all fulfilled paths are 
highlighted in the tree. To test the model’s efficiency, 
the average of all the outcomes is considered. If none 
of the branches are followed, the KGT would return 
that the CDSS is not suitable for that patient. 

 

Figure 2: The dashboard of the AT of the KGT model. 

Lastly, in order to facilitate the understanding of 
the reasoning process of the DT, the nodes of the tree 
can be colored according to the probability of each 
possible outcome in a node (green tones reflect higher 
probabilities, red tones indicate lower probabilities). 
This color scheme allows for the visualization of how 
the tree classifies the data, making it easier for the 
user to identify the most appropriate node to edit. 

3.4 DT Testing 

The KGT allows the user to analyse the performance 
of the DT building methods using 5-fold Cross-
Validation (Arlot and Celisse, 2010). The KGT 
returns the precision, recall, f1-score and AUC values 
(Hand and Till, 2001) for each possible outcome (e.g. 
alive or dead). Therefore, this approach quickly 
identifies which DT has the best performance for any 
dataset of the KGT. 

The tool also enables the possibility of testing a 
DT generated from knowledge or the modified DT by 
the AT. In order to carry out this testing, the user must 
select the dataset in which he/she wants to test the DT, 
preferably not with the same dataset that was used to 
build the tree in order to avoid overfitting. 

The outcome of each branch (its leaves) is 
specified as a set of probabilities. As the precision, 
recall and f1-score testing values need an absolute 
answer (e.g. it lives or dies, not its probability), the 
outcome with the highest probability is selected when 
estimating these testing values. 

In the case of the AUC values, originally it is used 
with 2-class outcomes. When there are more than two 
outcome classes (e.g. we want to differentiate Heart 
Failure, Atrial Fibrillation or Cardiomyopathy), the 1- 
vs-all (Hand and Till, 2001) method is used. For each 
possible value of the outcome, the other levels are 
joined which causes the issue to turn into a 2-class 
problem. 
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Figure 3: Visualization of testing values. 

In order to assist the user to understand the 
meaning of the measurements obtained, the table 
above highlights the cells with the best statistical 
measurements obtained for each possible outcome 
when testing the DTs. This way, if the best 
measurements are obtained by one specific algorithm, 
this will be seen clearly as its corresponding cells will 
be highlighted as seen in Figure 3. 

4 USE CASE 

The KGT has been tested in the public data frame of 
readmission of diabetic patients (Strack et al., 2014). 
The original data set consists of 47 attributes and 
101,766 cases, each of which corresponds to a single 
patient diagnosed with diabetes. The variables 
describe encounters with diabetics such as diagnoses, 
medications, and the number of visits in the year prior 
to the encounter. Originally the classification task 
was divided into three classes: readmitted within 30 
days, after 30 days or not readmitted. In this case, it 
has been decided to combine the last two groups in 
order to create a dichotomous classification system 
and hence, to test if the patients were readmitted 
within 30 days or not.  

Before building the tree, the original dataset has 
been split into training (70%) and testing (30%) 
subsets, ensuring that each subset contained the same 
proportion of readmitted vs non-readmitted instances 
(approx. 1:9).  

To demonstrate the functionality of the KGT, the 
addition of variables that improve the predictive 
capacity of a DT will be shown. For that, three 
variables (“admission type”, “number of inpatients” 
and “discharge id”) have been set aside before 

constructing the initial DT. According to Bhuvan 
study (Bhuvan et al., 2016) who have worked on the 
same public dataset, these three variables are the most 
influent ones when predicting readmission. This way, 
it can be shown how clinicians can add new 
knowledge in the already developed DTs, taking 
advantage of the KGT. 

4.1 First DT 

The best DT-building method among the five options 
in the KGT is ctree (i.e. cross-validation shows that 
its performance is the best in the training set, judging 
by the obtained testing measurements). For this 
reason, it is the selected ML method to build the DT 
(shown in Figure 4). 

The First DT consists of 30 nodes and uses 7 
predictor variables. The benefit of using these 
predictor variables is that it provides a feature 
selection that reduces the necessity of the extraction 
from 44 variables to 7. This methodology achieves an 
AUC value of 0.57 in the testing set, which we will 
use as a benchmark to measure the loss/gain of 
predictivity when simplifying/editing the tree. 

Despite obtaining a low predicting capacity 
shown by the AUC value, in literature, models that 
use this database with all the variables, with the same 
data pre-processing as in this study, obtain modest 
values (≈0.65), even for more complex classifiers 
such as Neural Networks or Random Forest (Bhuvan 
et al., 2016).  

4.2 Pruned DT 

The First DT obtained in the previous section is not 
very large, but it is large enough to prevent a correct 
interpretation by the user (e.g. clinician) when it can 
be simplified without losing much predictability. For 
this reason, this tool allows cutting and/or editing 
branches. 

To seek which splits of the original DT can be 
omitted because of their low discriminative capacity, 
the nodes of the DT are colored according to the 
probability to readmit in each node. This way, poor 
splits can be found and deleted using the AT. The size 
of the resulting pruned DT is reduced to 10 nodes and 
uses only 4 predictor variables (see Figure 5). The 
performance of this edited DT has also been tested in 
the testing subset, with only a minor decrease from 
0.57 to 0.56 in the AUC value (see Table 1). The new 
DT is much smaller, easier to follow, and moreover, 
it needs only 4 variables, avoiding the extraction of 3 
features at the cost of a minor loss of predictability. 
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Figure 4: First DT built by the KGT using the ctree method to predict if some diabetic patient will readmit within 30 days. 
Node colors depend on the probability of not readmitting within 30 days (red, more probably to readmit, green more likely 
than not). 

 

Figure 5: Pruned DT: the remainder DT after the pruning of First DT. 

4.3 Extended DT 

Before First DT construction we set aside three 
variables to simulate new discovery and to add them 
to the already developed DT.   

The resulting DT from the combination of the 
previous knowledge and the new DT is shown in 
Figure 6 as Extended DT. It adds complexity to the 
previous DT since the new DT has 32 nodes. It can be 
seen by the coloring feature that the new variables 
discriminate much better than the old ones. Despite 
adding relatively little complexity to the model, the 
new DT performs better, with an AUC testing value 
of 0.64 in the testing set. This new AUC value of 0.64 
demonstrates an improvement over the previous 
results (see Table 1) and nearly reaches the AUC 
values of 0.65 that are achieved in the literature, but 
using more complex and less interpretable ML 

methods, such as Neural Networks or Random Forest 
(Bhuvan et al., 2016). 

4.4 KGT’s Contribution 

In Table 1 the contribution of the KGT is presented for 
the elaboration of the DTs. The First DT has been built 
using the ctree method and has 44 variables in the 
training set. It achieves an AUC score of 0.57 with a 
rather complex tree to follow with 30 nodes and 7 
different attributes. With the AT of the KGT, we have 
been able to get the Pruned DT simplifying the First DT 
to 10 nodes and 4 different attributes at the expense of 
only a 0.01 decrease in the AUC value. Finally, in the 
pruned DT with the additional variables, in which “new 
knowledge” has been added, the accuracy of the DT has 
been increased in terms of AUC to 0.64, at a cost of 
complexity of 32 nodes and 7 different attributes. 
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Figure 6: Extended DT: The produced DT after adding the new knowledge to the Pruned DT. 

 

Figure 7: The evaluation of a simulated patient in the KGT, with its probability to readmit and the reasoning of the tree. It is 
the same DT that is in Figure 6, but cut in order to show the needed piece we are highlighting. 
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Table 1: The summary of the performance of each of the DT achieved in the KGT. The testing values of the DT in the testing 
datasets for each possible oucome (readmitted Yes/No), the number of nodes of the tree and the required number of attributes. 

Outcome AUC Precision Recall F1-score N. nodes Variables
First DT

No 0.57 0.92 0.21 0.35 
30 7 

Yes 0.57 0.12 0.85 0.2 
Pruned DT

No 0.56 0.91 0.58 0.71 
10 4 

Yes 0.56 0.13 0.5 0.2 
Extended DT

No 0.64 0.93 0.52 0.67 
32 7 

Yes 0.64 0.14 0.66 0.23 

4.5 Use Scenario 

Once the DT is constructed, the KGT enables the user 
to apply it with new patients’ data. In Figure 7, it is 
shown the probability to readmit the patient with the 
features shown in Table 2. Moreover, it can be 
appreciated how the KGT illustrates visually the 
reasoning process of the DT for this particular patient, 
highlighting the nodes of the fulfilled branches.  

Table 2: Simulated data of patient evaluated in Figure 7. 

Variables Patient value
N. emergency 0 

time_in_hospital 7 
insulin Down 

N. inpatient 3 
discharge_id_2 Urgency 

5 CONCLUSIONS 

This paper presents an adaptative CDSS based on an 
interactive framework, named Knowledge 
Generation Tool (KGT). This KGT has been created 
for Decision Tree (DT) building and modification, 
mainly for its usage in the medical domain. This tool 
can allow non-data-analysis experts to mine 
databases without the need to know about the insights 
of data-mining algorithms. Overall, our platform 
equips clinicians with an easy-to-use tool that makes 
data mining quick and accessible. 

The KGT has two ways to build the DTs: the first 
one is from scratch, as the AT enables the user even 
to create a DT from the beginning (e.g. to formalize 
clinical practice guidelines). The second one is 
extracting the DT from a medical dataset, using 
Machine Learning (ML) methods. By using the ML 
methods, it is possible to discover non-contemplated 
patterns by clinicians. As the extracted patterns are 

shown in a DT, a comprehensive manner for 
clinicians, they can choose whether or not to accept 
the extracted information. 

In addition, we provide an Authoring Tool in the 
KGT that makes the user capable of editing the DT. 
This means that the clinical expert can add its clinical 
knowledge in the DT.  

Moreover, the performance of the DT can be 
tested in the KGT. This feature not only allows the 
user to check the performance of the DT but to 
identify it also allows the user to analyze how positive 
the changes made in the DT are. This feature allows 
for easy assessment in a situation where the additional 
clinical knowledge that the user includes could 
potentially improve or worsen the DT´s performance. 

This platform is domain-independent, so it can be 
used to make predictions or create models in various 
domains (even if the domain is not clinical). 

To summarize, our platform allows the end-user 
to automatically generate DT models using robust 
ML methods for it use in CDSS. These models can be 
tuned to the user's expert knowledge in a simple and 
understandable way. 

Regarding future steps, clinical validation of our 
platform will be performed. This will consist firstly 
of a usability test and secondly of a clinical test with 
retrospective data in the context of emergency 
triaging for patients with chest pain. By exploiting 
retrospective data, a DT model will be used to help 
diagnose ischemic heart disease in the emergency 
room. 
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