
A UML Profile for Automatic Code Generation of Optimistic Graceful
Degradation Features at the Application Level

Lars Huning, Padma Iyenghar and Elke Pulvermueller
Institute of Computer Science, University of Osnabrück, Wachsbleiche 27, 49090 Osnabrück, Germany

Keywords: Adaptive Systems, Code Generation, Embedded Software Engineering, Embedded Systems, Functional
Safety, Graceful Degradation, Model-Driven Development.

Abstract: Safety standards such as ISO26262 or IEC61508 recommend a variety of safety mechanisms for the devel-
opment of safety-critical systems. One of these mechanisms is graceful degradation, which aims to provide
a degraded service of an application after an error has occurred. While several safety standards recommend
graceful degradation, they do not provide any concrete development or implementation assistance. This paper
employs model-driven development to realize such an automated approach for optimistic graceful degrada-
tion, which is a specific variant of the graceful degradation safety mechanism. We introduce a UML profile
that may be used to model optimistic graceful degradation at the application level within a UML class dia-
gram. We leverage this model representation to automatically generate productive source code that is capable
of optimistic graceful degradation. This source code is generated without requiring any additional developer
actions.

1 INTRODUCTION

The size and complexity of software in safety-critical
embedded systems is growing increasingly (Trindade
et al., 2014; Penha et al., 2015). Safety stan-
dards, such as IEC61508 (IEC61508, 2010) or
ISO26262 (ISO26262, 2018), recommend develop-
ment practices and safety mechanisms to realize such
systems. They propose model-driven development
(MDD) as one alternative to deal with the rising com-
plexity, an idea that is increasingly adopted by the in-
dustry (Laplante and DeFranco, 2017; Trindade et al.,
2014; Penha et al., 2015). While safety standards of-
fer guidelines on the use of safety mechanisms, they
do not provide any concrete development assistance
for their realization. This paper aims to fill this gap,
by providing a model representation and automatic
code generation for one specific safety mechanism:
graceful degradation.

In order to apply graceful degradation to a sys-
tem, it has to be composed of multiple states. In
case an error occurs, a graceful degradation mecha-
nism ensures that the system switches to a safe state.
In contrast to approaches that rely on redundancy, the
newly assumed state is often degraded, i.e., it provides
a service of lower quality than the original state (Sari-
dakis, 2005). On one hand, this may result in stop-

ping a service in a system that provides several ser-
vices, e.g., dropping error logging functionality in or-
der to use the underlying hardware to assume system
control functionality in case the original system con-
trol hardware failed (IEC61508, 2010). On the other
hand, the erroneous service may be replaced by an-
other with lower quality. As an example, we consider
the position sensor of an elevator, which measures the
distance to the next floor. If this sensor fails, another
module may continuously inform the elevator control
software to always use the slowest speed (Shelton and
Koopman, 2004).

Previous research on graceful degradation (cf.
section 5) has not only investigated how to select the
most useful degraded state given some optimization
criteria, but also provided design patterns (Saridakis,
2009) and a meta-model (Penha et al., 2015). How-
ever, there remains an open research challenge. It
concerns the automatic generation of productive code
for graceful degradation, that includes automatic state
transitions in case of an error (Penha et al., 2015).
In this paper, we propose a solution for this research
challenge based on the Unified Modeling Language
(UML) (OMG UML, 2017) by introducing the fol-
lowing novel ideas:

a) a model representation based on UML stereotypes
for specifying which classes inside a UML class

336
Huning, L., Iyenghar, P. and Pulvermueller, E.
A UML Profile for Automatic Code Generation of Optimistic Graceful Degradation Features at the Application Level.
DOI: 10.5220/0008949803360343
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 336-343
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

diagram are capable of graceful degradation.

b) a model representation based on UML stereotypes
to specify which objects may be used to provide
degraded services in case of an error.

c) a proof of concept code generation based on the
novel model representations of contribution a) and
b).

The remainder of this paper is organized as fol-
lows: Section 2 presents our system model and an
existing design pattern for graceful degradation that
serves as the basis for our solution. Section 3 in-
troduces our model representation to specify graceful
degradation at the UML class level, while section 4
provides a proof of concept code generation for the
developed profile. In Section 5 we present related
work, before we conclude the paper in section 6.

2 BACKGROUND

This section presents background knowledge on
graceful degradation and how this concept may be
applied to our system model (cf. section 2.1). Fur-
thermore, we summarize a specific design pattern for
graceful degradation (cf. section 2.2). This design
pattern is the basis for our approach at the code-level.

2.1 Graceful Degradation and System
Model

This section describes the concept of graceful degra-
dation and shows how it may be applied to the system
model used in this paper. We start with the following
definition of graceful degradation: “a smooth change
of some distinct system feature to a lower state as a
response to errors” (Saridakis, 2009, p. 69). Lower-
ing the state may be achieved by either removing an
erroneous component from the system or replacing
it with a pre-existing spare component that provides
lower quality (Saridakis, 2005).

Figure 1 shows an example of graceful degra-
dation by employing a speed control system of an
automobile as an application example (Penha et al.,
2015). In this example, an automobile has two differ-
ent driving modes: Dynamic Cruise Control (DCC)
and Adaptive Cruise Control (ACC). In DCC, the sys-
tem automatically controls the throttle and brake of
the vehicle in order to maintain a steady speed set by
the driver. In ACC (cf. figure 1(a)), the system con-
trols the throttle and brake of the vehicle in order to
maintain a steady speed while also maintaining a safe
distance to the vehicle in front. The ACC system de-
pends on a radar to measure the distance to the vehicle

(a) Original system state, where the speed control con-
sumer gets its data from the ACC provider. (UML 2.5
class diagram).

(b) Degraded system state, in which the ACC provider
has been replaced by the DCC provider (UML 2.5 class
diagram).

Figure 1: Basic concept of graceful degradation exemplified
by a speed control system example.

in front. In case there is an error in the radar, the ACC
functionality needs to be disabled and the system has
to switch gracefully to DCC (cf. figure 1(b)).

The concept of graceful degradation may be re-
alized at different levels of the system. For exam-
ple, the job of an erroneous, safety-critical hardware
module may be taken up by another suitable hard-
ware module that performs non safety-critical op-
erations (IEC61508, 2010). Another example may
consider rescheduling the tasks to be performed
on the CPU in case computing resources are ex-
hausted (Gonzalez et al., 1997). In this scenario,
safety-critical tasks gain priority during scheduling at
the cost of other, non safety-critical tasks.

The two previous examples either concern the
hardware of the application or may be applied with-
out specific application knowledge. In contrast to
this, our approach focuses on graceful degradation
at the software application level. It assumes that the
application consists of several software components
that interact with each other to fulfill the application’s
specification.

In the context of this paper, we use the following
system model: the (software) application runs on a

A UML Profile for Automatic Code Generation of Optimistic Graceful Degradation Features at the Application Level

337

single machine, i.e., we do not consider distributed
systems. Additionally, in the context of this paper,
a component consists of one or more object-oriented
classes. A single class in each component is responsi-
ble for communication with other components. This
class is often referred to as an “interface” in the lit-
erature (Avizienis et al., 2004). However, the ap-
proach presented in this paper heavily uses the object-
oriented programming concept of an interface. In or-
der to differentiate between these two terms, we re-
fer to the class that is responsible for communication
with other components as the boundary class of each
component, while the term interface will be used to
refer to the object-oriented programming concept.

In this paper, we use two categories of compo-
nents. Providers are components that provide some
sort of functionality or service that may be used
by other components. At the implementation level,
providers implement one or more interfaces. Con-
sumers, on the other hand, require and utilize the ser-
vices made available by the providers. At the im-
plementation level, consumers make use of the in-
terfaces implemented by the providers. Consumers
and providers communicate through virtual channels
called bindings (Saridakis, 2005). In this paper, we
represent a binding at the model level via UML ports
(cf. section 3) and at the code-level via reference vari-
ables (cf. section 4). Then, in the context of this sys-
tem model, graceful degradation may be achieved as
follows: if a (runtime) error in a provider has been
detected, the consumers may either interchange this
provider with another provider that implements the
same interface (albeit at a lower quality) (Shelton and
Koopman, 2004) or stop using any services offered by
this provider (Saridakis, 2005).

2.2 A Design Pattern for Optimistic
Graceful Degradation

This section briefly summarizes a specific design pat-
tern for graceful degradation (Saridakis, 2009). This
pattern is the basis of our software architecture used
for automatic code generation of graceful degradation
presented in section 4. Besides the components that
make up the application, the pattern consists of three
notable software entities:

• A notifier is responsible for signaling that an error
has occurred inside a component. There may exist
many notifiers inside the system. For example,
each component may contain its own notifier in
case it detects an error. Another approach may
use concurrent notifiers that observe a component
independently.

• An assessor is responsible for determining which
components, other than the erroneous component,
may be affected by the error. Notifiers signal the
occurrence of an error to the assessor.

• One or more loaders are employed to actually de-
grade the affected components to a lower state.
The loaders gain their information which compo-
nents are affected from the assessor. In this paper,
the loaders are located inside the boundary class
of each component.

In (Saridakis, 2009), this pattern is further refined into
an optimistic, pessimistic and causal variant. They
describe different strategies for the assessor to decide
which components should be removed. The purpose
of the pessimistic and causal variant is to reduce the
runtime overhead of executing the loaders multiple
times in case an error propagates through the system.
In our approach, the runtime overhead for the loaders
amounts to changing the value of a reference variable
(cf. section 4) and is comparably small to other al-
ternatives. Thus, the runtime overhead of running the
loaders several times in a row is also small. Therefore,
we focus only on optimistic graceful degradation, in
which only the component directly affected by the er-
ror is replaced or removed. Future work may also in-
clude the other two variants, which may be achieved
by including an appropriate tagged value in the stereo-
types presented in section 3 and subsequently modi-
fying the code generation for the assessor.

3 MODELING OPTIMISTIC
GRACEFUL DEGRADATION
FOR CODE GENERATION

In order to model optimistic graceful degradation for
automatic code generation, two key challenges need
to be solved. The first challenge concerns how a com-
ponent may be marked as intended for graceful degra-
dation. The second challenge concerns how the state
decrements may be modeled within the application
model.

3.1 Marking a Component as Capable
of Graceful Degradation

The first part of a model representation for optimistic
graceful degradation is to specify how selected com-
ponents may be marked as capable of graceful degra-
dation. In this paper, we examine two alternatives
based on UML how this may be achieved: via UML
class diagrams or via UML component diagrams.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

338

(a) Model representation via UML class diagram.

(b) Model representation via UML component dia-
gram.

Figure 2: Alternative model representations for specifying
that graceful degradation should be added to a component
during automatic code generation.

3.1.1 Specifying Graceful Degradation via UML
Class Diagrams

This section describes an alternative to specify that
a component is capable of graceful degradation via
UML class diagrams. It marks the boundary class
of the component, in order to specify that the whole
component is capable of graceful degradation. We
choose the boundary class to represent the whole
component, because it is responsible for interacting
with other components, and graceful degradation in
this paper entails modifying these interactions (cf.
section 4).

An instance of a boundary class may have multi-
ple bindings to other components. In order to mini-
mize the effect of errors on the system, each binding
should be treated separately by the degradation mech-
anism. This prevents the removal or replacement of
bindings that are unaffected by the error (Saridakis,
2005). In UML, the metaclass “Port” is one viable al-
ternative for specifying the bindings between objects.
A port which is applied to a class may specify an in-
terface that this port either requires or fulfills. This is
analogous to the concept of consumer and producer
components (cf. section 2.1). In general, a single
UML port may be used to represent more than one
binding and more than one interface. In our solution,
we assume that only a single binding and interface is
specified per port. This does not influence the gen-
erality of our solution, as additional bindings may be
specified by adding additional ports to the boundary
class.

In order to mark a port as being capable of grace-
ful degradation, we employ UML stereotypes. Stereo-
types are an inbuilt feature of UML and may be
used to extend any metaclass in the UML meta-

model (OMG UML, 2017). We introduce the novel
stereotype «GDPort», which extends the UML meta-
class “Port”. Applying this stereotype to a port rep-
resents that the class to which the port is applied is
capable of graceful degradation. Additionally, the
«GDPort» stereotype also contains specific tagged
values related to graceful degradation that are further
described in section 3.3.

Figure 2(a) shows how the model representation
based on the «GDPort» stereotype looks like in a
UML class diagram. The boundary class Consumer
requires an interface that is provided by the class
Provider. The «GDPort» stereotype is applied to the
port of the boundary class of the consumer. We mark
consumers as capable of graceful degradation instead
of provider components, because a provider may al-
ready be in an erroneous state when degradation is
required. Thus, from a safety perspective, degrada-
tion should be performed by consumers instead of
providers.

3.1.2 Specifying Graceful Degradation via UML
Component Diagrams

This section describes an approach for marking a
component as capable of graceful degradation based
on UML component diagrams. Similar to class di-
agrams, components in a component diagram are
shown as rectangles and may contain ports that con-
nect a component to another component. Classes that
a component contains are shown within the rectan-
gle that represents the component. Besides classes,
ports may also be applied to components, thus the
«GDPort» stereotype introduced in section 3.1.1 may
be reused in this scenario. This is shown in fig-
ure 2(b). Two components, (ConsumerComponent
and ProviderComponent), are connected via their re-
spective ports. The «GDPort» stereotype is applied
to the port of ConsumerComponent. As a component
encompasses all its classes, there is no need to specif-
ically mark the boundary class.

3.2 Specifying Degradation Fallbacks
for State Decrement

Besides specifying that a component is used for
graceful degradation (cf. section 3.1), it is also nec-
essary to specify which providers may be used as po-
tential fallbacks for a consumer component in case of
an error. These fallbacks may not be specified within
the «GDPort» stereotype, as the potential providers of
a consumer may be different for each instance of the
consumer. Thus, the fallbacks have to be specified at
the instance level, where the bindings between indi-

A UML Profile for Automatic Code Generation of Optimistic Graceful Degradation Features at the Application Level

339

Figure 3: Model representation for specifying degradation
fallbacks (UML 2.5 object diagram). The «GDPort» stereo-
type in this object diagram only serves an illustrative pur-
pose, signifying that the class Consumer has been marked
with the «GDPort» stereotype. All instances of Consumer
share the same values for the tagged values of «GDPort».

vidual instances may be visualized within a UML ob-
ject diagram. Such binding between ports are called
UML connectors. They link one port to another, spec-
ifying which provider a specific consumer should use.

In order to specify degradation fallbacks, we intro-
duce the novel «GDFallback» stereotype. It extends
the UML metaclass “Connector” and thus offers a vi-
sual representation of the fallbacks that is directly vis-
ible in the model. This approach is shown in figure 3.
The instances provB and provC are connected to the
port of the instance con via their respective port. The
connection link between these ports is marked with
the «GDFallback» stereotype.

In order to determine the order in which the fall-
backs are used, a tagged value may be included in the
«GDFallback» stereotype that indicates the priority of
the fallback (cf. section 3.3). Ties may either be bro-
ken arbitrarily, or detected and removed by a simple
model validation check prior to code generation.

A drawback of this approach is its potential am-
biguity during automatic code generation. In general,
a port should contain only a single connector to an-
other port. Multiple connectors provide ambiguity as
to which connector should actually be used at the start
of the program. This drawback is easily solved by
parsing the information from any connectors with the
«GDFallback» stereotype and removing them prior to
code generation.

3.3 UML Profile for Automatic Code
Generation of Optimistic Graceful
Degradation

This section formalizes the results for modeling
application-level graceful degradation described in
section 3.1 and section 3.2 inside a UML profile rep-
resentation. A UML profile is used to group stereo-

Figure 4: UML 2.5. profile diagram for representing grace-
ful degradation in UML models.

types which are defined for a specific purpose. The
profile is shown in figure 4 and consists of two stereo-
types: «GDPort» and «GDFallback».

The «GDPort» stereotype may be applied to the
metaclass “Port” and is intended to be applied to the
boundary class of a consumer component. As ports
may be applied to classes, as well as components, this
enables the use of both alternatives presented in sec-
tion 3.1. The tagged values of the «GDPort» stereo-
type allow to execute custom actions during certain
points of time within a state decrement, as proposed
by (Penha et al., 2015). The actions may be executed
at the following points in time: 1) prior to degrada-
tion, 2) after degradation and 3) in case an opera-
tion from an interface is called when no functioning
provider is available any more. Case three may oc-
cur when the original provider, as well as every fall-
back provider, have been identified as erroneous. In
this case, a default operation may be specified, e.g.,
to stop the service. Note that the tagged values only
specify the names of operations within the boundary
class to which the port is applied. The actual source
code for these methods has to be added manually by
the developer within the boundary class.

The stereotype «GDFallback» may be applied to
the metaclass “Connector”, which is the metaclass
of the link connecting two ports. It specifies the
fallbacks to be used by the port marked with the
«GDPort» stereotype. As it is only intended for this
specific purpose, it should only be applied to connec-
tors of which a single end connects to a port that is
marked with the «GDPort stereotype». This may be
enforced by a simple model validation check prior to
code generation. The tagged value of «GDFallback»
indicates in which order the fallbacks are used in case
of degradation (cf. section 3.2).

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

340

4 PROOF OF CONCEPT: CODE
GENERATION FROM THE
PROFILE

This section briefly examines how actual, produc-
tive source code may be generated from the profile
shown in section 3.3. While code generation for self-
adaptive systems has already been covered by sev-
eral approaches (e.g., Morin et al. (2009); Fleurey
et al. (2009)), these approaches largely rely on the
use of virtual machines to achieve adaption via re-
flection mechanisms. Embedded systems, in con-
trast, are typically written in C or C++ which do
not offer these features. An alternative employs
v-table mappings to reconfigure method call bind-
ings during runtime (Saridakis, 2004). However,
as noted by the authors, this approach may result
in runtime exceptions in case there remain no non-
erroneous fallback providers. Catching these ex-
ceptions requires manual implementation changes in
the application model. Our approach, in contrast,
enables developers to specify a specific operation
that is executed in case there exists no more non-
erroneous fallback provider (via the tagged value
opNoMoreProvidersAvailable shown in figure 4).

Thus, we choose to present yet another alternative,
which is based on the reassignment of reference vari-
ables. For this, we employ the following mappings of
model elements to source code:

• A port tagged with the «GDPort» stereotype in the
application model is realized as its own class X .
This class is instantiated by the consumer of the
port.

• Within the class X , there is a reference
variable y pointing to the correspond-
ing interface that is offered by the port.

• The reference variable y may be set to any other
provider via a specific setter, as long as the
provider fulfills the interface of the corresponding
port.

• The class x also contains an array of references
to the alternative providers that have been marked
with the «GDFallback» stereotype in the applica-
tion model.

In the pattern described in section 2.2, the assessor
is responsible for triggering the degradation step. It
may be realized as a global singleton class that con-
tains references to every boundary class in order to
trigger the degradation of each respective boundary
class. For this, the assessor needs a reference to each
boundary class. This is realized by introducing the

interface GDConsumer that each boundary class of a
consumer has to implement. The interface contains
an error(uintptr_t) method, that triggers the boundary
class to check whether it has been affected by an error
and to degrade gracefully in case it has been affected.
As we only consider graceful degradation on a sin-
gle machine in this paper, this check may be realized
by comparing the machine address of an erroneous
provider with the current provider of a consumer. In
distributed systems, the providers would have to be
distinguishable by some other kind of unique identi-
fier.

Notifiers, which are responsible for informing the
assessor of an error within the application, are able
to access the assessor due to its global nature. The
notifiers itself may be generated by approaches such
as described in (Trindade et al., 2014; Huning et al.,
2019).

The last entity of the pattern presented in sec-
tion 2.2 are the loaders, which are responsible for per-
forming the actual degradation step. If the port classes
are generated as described above, they take the role of
a loader by invoking the setter method to assign one
of the alternative providers as the current provider. In
case the boundary class contains any methods whose
names match the value of one of the tagged values in
the «GDPort» stereotype, these methods are executed
at the relevant point in time of the degradation step.

Listing 1 shows the generated code for the load-
ers. Lines 4-15 contain the code for the generated
port, along with the current provider (line 9) and the
fallbacks (line 10), as well as the respective setters
(line 12-14). The port is instantiated by the surround-
ing boundary class (line 17).

1 c l a s s X : GDConsumer{
2 c l a s s PortY : I n t e r f a c e Y {
3 vo id e r r o r (u i n t p t r _ t a d r) {
4 / / check p o r t i n s t a n c e
5 / / i f a f f e c t e d by f a i l u r e
6 }
7 I n t e r f a c e Y ∗ c u r r e n t ;
8 I n t e r f a c e Y ∗ f a l l b a c k s [1] ;
9 s e t C u r r e n t (I n t e r f a c e Y v a l) ;

10 s e t F a l l b a c k (I n t e r f a c e Y va l ,
11 i n t pos) ;
12 } ;
13 PortY por tY ;
14 / / User−d e f i n e d v a r i a b l e s
15 / / and methods
16 } ;

Listing 1: Excerpt of a consumer’s boundary class, show-
ing the code level realization of a port.

A UML Profile for Automatic Code Generation of Optimistic Graceful Degradation Features at the Application Level

341

5 RELATED WORK

Related work on graceful degradation includes ap-
proaches that study the optimal distribution of pro-
grams on available hardware platforms (Becker and
Voss, 2015; Nace and Koopman, 2001), as well as
approaches that aim at optimizing the use of com-
puting resources in resource-limited situations (Glass
et al., 2009; Gonzalez et al., 1997). Furthermore,
graceful degradation at the system level of an individ-
ual hardware platform has been studied (Schirmeier
et al., 2011). None of these approaches consider
graceful degradation at the application-level which
is targeted by our approach. Approaches that con-
sider graceful degradation at the application level
include (Saridakis, 2009, 2005, 2004; Shelton and
Koopman, 2004). However, they do not consider
MDD or automatic code generation for their graceful
degradation features. Nonetheless, we build upon the
design pattern presented in (Saridakis, 2009) in this
paper (cf. section 2.2).

A group of graceful degradation approaches for
fail-operational systems in automobiles has been pre-
sented in (Penha et al., 2015; Hussein et al., 2017).
In contrast to the previous approaches they consider
model-driven development and provide partial code
generation. However, they exclude the code gener-
ation of the actual degradation step and classify this
as a further research challenge. Our paper provides a
solution to this research challenge.

The approach presented in this paper only con-
siders error handling and omits the automatic genera-
tion of error detection mechanisms via MDD. This re-
search topic has been partially covered by (Trindade
et al., 2014; Huning et al., 2019) and these approaches
may be used in conjunction with the approach pre-
sented in this paper.

The automatic generation of graceful degradation
has also been studied from a theoretical point of
view (Lin et al., 2019). However, they note that their
approach is limited to small and medium scale appli-
cations.

Graceful degradation itself belongs to the field of
self-adaption. Using MDD to enable self-adaption
has been studied by several authors, e.g., (Morin
et al., 2009; Fleurey et al., 2009). However, their
approaches assume that the hardware is capable of
running a Java Virtual Machine in order to use re-
flection mechanisms for self-adaption (Fouquet et al.,
2012). Embedded systems typically do not provide
the required computing resources for this. Addition-
ally, safety standards only allow static memory alloca-
tion in safety-critical applications (IEC61508, 2010),
which is also not considered by these approaches.

The general idea of extending application mod-
els with additional features by invoking MDD has
also been explored in other domains. For exam-
ple, a model-based framework for the validation of
timing requirements in embedded systems has been
proposed in (Noyer et al., 2016). Other approaches
provide model-based tool support for energy-aware
scheduling (Iyenghar et al., 2016; Iyenghar and Pul-
vermueller, 2018).

6 CONCLUSION

This paper proposes an MDD-based approach to au-
tomatically add the safety mechanism graceful degra-
dation to software applications. Graceful degradation
aims at providing continued service of the application
in the presence of errors. It is highly recommended
for several safety integrity levels by safety standards
such as ISO26262 and IEC61508. Our approach in-
troduces new UML stereotypes that may be applied
to a UML application model. By parsing the informa-
tion of these stereotypes, our approach may automati-
cally transform the input model to include (optimistic)
graceful degradation features. Then, automatic code
generation of common MDD tools may be used to ob-
tain productive source code from this model. This
source code is capable of automatically performing
optimistic graceful degradation once an error has been
detected. Our approach does not require any manual
developer interactions besides applying the newly in-
troduced stereotypes and configuring their tagged val-
ues to the application’s requirements.

Future work may extend our approach to dis-
tributed systems. Additionally, we only cover grace-
ful degradation at the software level. (Semi-) au-
tomating hardware graceful degradation may be an-
other area for future work, as well as the inclusion of
other non-functional requirements, such as real-time
requirements.

ACKNOWLEDGMENTS

This work was partially funded by the German Fed-
eral Ministry of Economics and Technology (Bun-
desministeriums fuer Wirtschaft und Technologie-
BMWi) within the project “Holistic model-driven de-
velopment for embedded systems in consideration of
diverse hardware architectures” (HolMES).

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

342

REFERENCES

Avizienis, A., Laprie, J. C., Randell, B., and Landwehr, C.
(2004). Basic concepts and taxonomy of dependable
and secure computing. IEEE Transactions on Depend-
able and Secure Computing, 1(1):11–33.

Becker, K. and Voss, S. (2015). Analyzing graceful degra-
dation for mixed critical fault-tolerant real-time sys-
tems. In 2015 IEEE 18th International Symposium on
Real-Time Distributed Computing, pages 110–118.

Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., and
Jézéquel, J.-M. (2009). Models in software engineer-
ing. chapter Modeling and Validating Dynamic Adap-
tation, pages 97–108. Springer-Verlag, Berlin, Heidel-
berg.

Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau,
N., and Jézéquel, J.-M. (2012). A dynamic component
model for cyber physical systems.

Glass, M., Lukasiewycz, M., Haubelt, C., and Teich, J.
(2009). Incorporating graceful degradation into em-
bedded system design. In Design, Automation and
Test in Europe Conference Exhibition, pages 320–323.

Gonzalez, O., Shrikumar, H., Stankovic, J. A., and Ramam-
ritham, K. (1997). Adaptive fault tolerance and grace-
ful degradation under dynamic hard real-time schedul-
ing. In IEEE 32nd Real-Time Systems Symposium,
pages 79–89.

Huning, L., Iyenghar, P., and Pulvermueller, E. (2019).
UML specification and transformation of safety fea-
tures for memory protection. In Proceedings of
the 14th International Conference on Evaluation of
Novel Approaches to Software Engineering, Herak-
lion, Crete, Greece. INSTICC, SciTePress.

Hussein, M., Nouacer, R., and Radermacher, A. (2017).
Safe adaptation of vehicle software systems. Micro-
processors and Microsystems, 52.

IEC61508 (2010). IEC 61508 Edition 2.0. Functional
safety for electrical/electronic/programmable elec-
tronic safety-related systems.

ISO26262 (2018). ISO 26262 Road vehicles – Functional
safety. Second Edition.

Iyenghar, P. and Pulvermueller, E. (2018). A model-
driven workflow for energy-aware scheduling analy-
sis of IoT-enabled use cases. IEEE Internet of Things
Journal.

Iyenghar, P., Wessels, S., Noyer, A., and Pulvermueller, E.
(2016). Model-based tool support for energy-aware
scheduling. In Forum on Specification and Design
Languages, Bremen, Germany.

Laplante, P. A. and DeFranco, J. F. (2017). Software
engineering of safety-critical systems: Themes from
practitioners. IEEE Transactions on Reliability,
66(3):825–836.

Lin, Y., Kulkarni, S., and Jhumka, A. (2019). Automation of
fault-tolerant graceful degradation. Distributed Com-
puting, 32(1):1–25.

Morin, B., Barais, O., Nain, G., and Jezequel, J.-M. (2009).
Taming dynamically adaptive systems using models
and aspects. In Proceedings of the 31st International
Conference on Software Engineering, ICSE ’09, pages

122–132, Washington, DC, USA. IEEE Computer So-
ciety.

Nace, W. and Koopman, P. (2001). A Product Family
Approach to Graceful Degradation, pages 131–140.
Springer US, Boston, MA.

Noyer, A., Iyenghar, P., Engelhardt, J., Pulvermueller, E.,
and Bikker, G. (2016). A model-based framework en-
compassing a complete workflow from specification
until validation of timing requirements in embedded
software systems. Software Quality Journal.

OMG UML (2017). OMG Unified Modeling Language
Version 2.5.1. Technical report, Object Management
Group.

Penha, D., Weiss, G., and Stante, A. (2015). Pattern-based
approach for designing fail-operational safety-critical
embedded systems. In 2015 IEEE 13th International
Conference on Embedded and Ubiquitous Computing,
pages 52–59.

Saridakis, T. (2004). Towards the integration of fault, re-
source, and power management. In 23rd International
Conference on Computer Safety, Reliability and Secu-
rity, pages 72–86, Potsdam, Germany.

Saridakis, T. (2005). Surviving errors in component-based
software. In 31st EUROMICRO Conference on Soft-
ware Engineering and Advanced Applications, pages
114–123.

Saridakis, T. (2009). Design Patterns for Graceful Degra-
dation, pages 67–93. Springer Berlin Heidelberg,
Berlin, Heidelberg.

Schirmeier, H., Neuhalfen, J., Korb, I., Spinczyk, O., and
Engel, M. (2011). RAMpage: graceful degradation
management for memory errors in commodity linux
servers. In 2011 IEEE 17th Pacific Rim International
Symposium on Dependable Computing, pages 89–98.

Shelton, C. P. and Koopman, P. (2004). Improving system
dependability with functional alternatives. In Inter-
national Conference on Dependable Systems and Net-
works, pages 295–304.

Trindade, R., Bulwahn, L., and Ainhauser, C. (2014).
Automatically generated safety mechanisms from
semi-formal software safety requirements. In Bon-
davalli, A. and Di Giandomenico, F., editors, Com-
puter Safety, Reliability, and Security, pages 278–293,
Cham. Springer International Publishing.

A UML Profile for Automatic Code Generation of Optimistic Graceful Degradation Features at the Application Level

343

