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Abstract: In the context of abnormal event detection in videos, only the normal events are available for the learning
process, therefore the implementation of unsupervised learning method becomes paramount. We propose
to use a new architecture denoted Two-Stream Fully Convolutional Networks (TS-FCNs) to extract robust
representations able to describe the shapes and movements that can occur in a monitored scene. The learned
FCNs are obtained by training two Convolutional Auto-Encoders (CAEs) and extracting the encoder part
of each of them. The first CAE is trained with sequences of consecutive frames to extract spatio-temporal
features. The second is learned to reconstruct optical flow images from the original images, which provides
a better description of the movement. We enhance our (TS-FCN) with a Gaussian classifier in order to detect
abnormal spatio-temporal events that could present a security risk. Experimental results on challenging dataset
USCD Ped2 shows the effectiveness of the proposed method compared to the state-of-the-art in abnormal
events detection.

1 INTRODUCTION

Security is a major concern in all modern communi-
ties. It helps to strengthen the climate of peace and
create a sense of safety conducive to the proper de-
velopment of the society. The use of video surveil-
lance, which is a recognized tool in the field of
security, has become widespread over the last few
years. The increase of the video surveillance stream
poses the problem of the efficient treatment of the
large amounts of data generated. In this context,
the automatic detection of abnormal events becomes
an important research task and arouses great inter-
est in the scientific community. An abnormal event
in video footage is often characterized by abnormal
shapes, abnormal movements or their combination.
Precursor works have extensively explored the tra-
jectory analysis for the detection of abnormal events
(S.Zhou, 2015; C.Piciarelli, 2008). Despite their in-
terest in detecting deviant trajectories in non-crowded
scenes, these methods remain sensitive to occlusions
in crowded scenes and many of them require efficient
tracking algorithms that consume high computing
power. Other works proposed to handle these weak-
nesses using the low-level descriptors such as his-
tograms of oriented gradients (HOG) (V.Mahadevan,
2010) or histogram of optical flow (HOF) (W.Li,
2014). The author in (V.Reddy, 2011) proposed the

extraction of multiple characteristics applied on small
regions of frames obtained by foreground segmen-
tation technique, a classifier for each feature is then
used to pick up the abnormalities. However, methods
based on low-level descriptors require prior knowl-
edge to match the features with the corresponded
events and they are too local for complex behav-
iors understanding. Deep Learning (DL) has recently
received a significant attention of researchers since
it achieved good results in various computer vision
tasks. Based on DL technology many works have
been proposed to handle the anomaly detection task.
(J.Sun, 2017) integrated One-Class Support Vector
Machine (OC-SVM) into Convolutional Neural Net-
work (CNN) for end-to-end deep one-class learning
framework adapted for anomaly detection. The author
of (S.Zhou, 2016) proposed to train a spatio-temporal
convolutional neural network on volumes of interest
(SVOI) extracted using optical flow to classify events
as normal or abnormal. The author of (N.Sebe, 2017)
used normal images and corresponding optical-flow
representations to train Generative Adversarial Net-
work (GAN). The GAN is then used to detect ab-
normal shapes and movements based on the princi-
ple that normal data should be generated with greater
accuracy than abnormal one. (Y.S.Chong, 2017) pro-
poses a network composed of temporal CAE and spa-
tial CAE to extract spatio-temporal features and re-
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construct the input data based on these representa-
tions. The reconstruction error is then used to dissoci-
ate between normal and abnormal frames. In addition
to the anomaly detection, our method was inspired
by previous works on action recognition, (B.Zhang,
2016) proposed to fuse two convolutional neural net-
works, one trained on images and the second on Mo-
tion Vectors (MV) to extract robust spatio-temporal
representations allowing the classification of differ-
ent actions. Convolutional Auto-Encoders (CAE) is
an unsupervised artificial neural network that uses the
convolution to learn extracting representations from
which the reconstruction of the input image is pos-
sible. Based on this concept we propose to intro-
duce in this paper, a new architecture for abnormal
event detection . It consists of two fully convolutional
networks (FCNs), one formed on images and other
on optical flow representations. This combination al-
lows extracting high-level representation able to de-
scribe complex behaviors and dissociate between nor-
mal and abnormal events.

2 STATE OF THE ART

For many years, the development of a traditional pat-
tern recognition system required extensive expertise
and knowledge to extract features from the raw data
that could be adapted and used to detect, identify or
classify elements among the input data. The abnor-
mal event detection methods that adopted this model
inherited the same dependencies. These methods re-
quire a priori knowledge to build a feature extrac-
tor adapted to the targeted events and the monitored
scene. These constraints have favoured the emergence
of methods for detecting abnormal events based on
the learning of representations and more precisely on
deep learning. The learning of representations or the
learning of characteristics is a set of methods that au-
tomates the step of extracting characteristics. These
methods make it possible to define through learning
the appropriate transformations to be made to the in-
put data in order to obtain representations that allow
a targeted task to be performed such as action recog-
nition, image classification, human pose estimation,
semantic segmentation, etc. Deep learning is a sub-
domain of representation learning, it aims to learn
high-level abstractions in data using multi-level archi-
tectures. These different levels are obtained by stack-
ing multiple non-linear transformation modules. Each
module transforms the data at a different level until
an adapted representation is obtained that allows the
target task to be performed. Deep learning has over-
take the traditional model in some cases of applica-

tion and it has made the possibility to design effective
pattern recognition systems without in-depth exper-
tise on the targeted elements. Convolutional Neural
Networks (CNNs) are among the most popular super-
vised methods of deep learning. This is largely due
to the remarkable results obtained with CNNs such as
Alexnet, VGG, GoogLeNet and ResNet (K.He, 2016;
C.Szegedy, 2015; K.Simonyan, 2014; A.Krizhevsky,
2012) on the international ILSVRC (ImageNet Large-
Scale Visual Recognition Challenge). The CNN is
a type of artificial neural network whose function-
ing was inspired by the visual cortex of animals. It
consists of several layers that process data hierarchi-
cally. The characteristics extracted in the first lay-
ers of CNN generally describe the presence of sim-
ple shapes (edges and contours), the following layers
extract slightly more complex patterns by detecting
assemblies of simple shapes while neglecting irrele-
vant variations. More we explore the network, more
the deeper layers describe better complex shapes with
an increasing level of abstraction until be able to rep-
resent parts of objects or even complete objects in the
case of the last layers .

2.1 Related Work

In this way, the CNN amplifies those aspects of the
input data that are important for discrimination and
removes irrelevant variations. As mentioned above,
the CNN is a supervised learning method, to fully
exploit these capabilities in terms of feature extrac-
tion and classification for anomaly detection, a la-
belled database containing learning examples from
both classes (normal and abnormal) is required. In
(C.Ding, 2014), a 3D CNN is proposed to clas-
sify video clips into two classes (fight or no fight)
in order to detect acts of violence in ice hockey
videos. A 3D CNN is characterized by 3D con-
volutions, which allows it to extract spatio-temporal
characteristics essential for the description of mo-
tion. In (O.Russakovsky, 2015), a 3D CNN has
also been built to classify video volumes of inter-
est SVOI (Spatial-temporal Volumes of Interest) into
two classes: normal and abnormal. Volumes of inter-
est are selected through the optical flow, those con-
taining little or no movement are not processed by
the CNN. In (R.Hinami, 2017), proposes to com-
bine a multi-tasking Fast R-CNNN with the KDE
kernel density estimation method. The multi-task
Fast R-CNN multi-task is trained in a supervised way
to extract semantic characteristics and classification
scores for different objects present in the input im-
ages. These characteristics are then used in the KDE
to detect anomalies. In this way, not only abnor-
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mal events can be detected but also a description of
the event detected can be given using the labels pro-
vided by the CNN. Dual flow architectures integrat-
ing CNNs have also been explored in the context of
abnormal event detection. Despite the convincing re-
sults of methods based on deep and supervised learn-
ing, the need to use both normal and abnormal train-
ing examples complicates their integration into intel-
ligent video surveillance systems. It has been demon-
strated that a CNN trained to perform a target task
can provide generic and robust characteristics, usable
to perform another computer vision task for which it
has not been specifically trained. (P.Sermanet, 2013;
A.Sharif, 2014) prove that a CNN trained only for
object classification, can be operated for different
tasks such as scene classification, detailed classifica-
tion, attribute detection, visual instance recovery. The
results obtained provide tangible proof of the abil-
ity of CNNs to provide generic and robust features
that can be used for different computer vision tasks.
This principle has been applied in many abnormal
event detection projects. In(M.Ravanbakhsh, 2018),
a pre-trained CNN is fused with a binary quantization
layer whose weights are trained using a binary hash-
ing method called ITQ (Iterative Quantization Hash-
ing)(Y.Gong, 2013). In (M.Sabokrou, 2018b), a pre-
trained CNN is combined with a trainable sparse auto-
encoder to obtain a two-level characteristic extractors.
At the output of the CNN a first Gaussian classifier
is used to classify image regions as normal, abnor-
mal or suspicious. The representations of the suspect
regions are then transformed by the auto-encoder to
obtain more discriminating representations. A sec-
ond Gaussian classifier is used at the output of the
auto-encoder to classify suspect regions into normal
and abnormal. Methods based on learning transfer do
not require a labelled database for feature extraction
and their results in terms of detection and localiza-
tion are promising. Nevertheless, the dependence of
these methods on pre-trained models imposes a cer-
tain rigidity on them and considerably reduces their
prospects for improvement. These criteria have en-
couraged the emergence of work oriented towards ap-
proaches based on unsupervised learning. The devel-
opment of learning methods that do not require a la-
belled database has always been a primary objective
in the field of automatic learning. In addition to the
difficulty of building labelled databases large enough
to capture the complexity of some of the topics cov-
ered, this interest in unsupervised learning is inspired
in part by the fact that human learning is largely un-
supervised (Y.LeCun, 2015). Indeed, man has a con-
siderable capacity to observe, analyse and understand
the world around him without using labels for each

object. Despite the importance and challenges sur-
rounding this type of learning, the rapid success of
the CNN has somewhat eclipsed unsupervised learn-
ing for a period of time. Some recent works based on
Auto-encoders (AEs) or Sparse coding to extract dif-
ferent linear or non-linear representations of appear-
ance (image) or motion (flow), in order to model nor-
mal behaviours in surveillance videos. The AE auto
encoder (Auto-Encoder) is a fully connected neural
network that is widely used in automatic learning. It
consists of an input layer, an output layer and one or
more hidden layers. The training of the AE is done by
back-propagation of the gradient in order to minimize
the reconstruction error between the input and out-
put data. (D.Xu, 2015) proposes AMDN (Appearance
and Motion DeepNet) which is a network consisting
of three SDAEs (stacked denoising auto-encoders), a
first trained to reconstruct patches extracted from nor-
mal images, a second trained with the optical flow
representations corresponding to the patches and a
third trained with the concatenation of the patches and
their optical flow representations. Once the three net-
works have been trained, the representations obtained
are used to train three OC-SVMs. A CAE (Convo-
lution Auto Encoder ) is an AE with added convo-
lution layers. CAE has been widely explored in the
detection of abnormal events.(S.Hamdi, 2019) Abnor-
mal motion is picked by relative thresholding. One-
class SVM is trained with spatial features for robust
classification of abnormal shapes. Moreover, a de-
cision function is applied to correct the false alarms
and the miss detections. (M.Hasan, 2017) proposes
two methods also based on CAEs. In the first, the au-
thors suggest a CAE trained to reconstruct low-level
characteristics (HOG and HOF) extracted from sam-
ples of the normal class. In the second method, they
propose to use a spatio-temporal CAE trained directly
on video volumes. In both approaches, anomalies are
detected thanks to a regularity score calculated with
the reconstruction error. (Y.H.Tay, 2017) proposes to
use the reconstruction error of a spatio-temporal CAE
to detect abnormal events. The proposed CAE inte-
grates 2D convolution layers for learning spatial char-
acteristics and ConvLSTMs (convolutional long short
term memory) for temporal characteristics. In recent
years, the use of GANs (Generative Adversarial Net-
works) has increased considerably in the field of au-
tomatic learning. GAN is an unsupervised learning
algorithm initially proposed by (I.Goodfellow, 2014).
It consists of two sub-networks, a generator and a dis-
criminator placed in competition. During the learning
phase the generator tries to generate convincing data
to lure the discriminator, who tries to detect whether
the data is real or generated. In this way we obtain two
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trained networks, one to generate realistic data and
the other to distinguish real data. After the learning
phase, the generator can be used independently to cre-
ate data (Y.Jin, 2017; P.Isola, 2017), or for discrimina-
tion tasks (W.Liu, 2018; M.Ravanbakhsh, 2017). but
it can also be used in conjunction with the discrimina-
tor (S.Xingjian, 2015). (M.Sabokrou, 2018a) offers a
method called AVID (Adversarial Visual Irregularity
Detection) to detect and locate irregularities in videos.
A GAN composed of a generator trained to remove ir-
regularities in the input images and replace them with
the dominant patterns of the same images and a dis-
criminator in the form of an FCN that predicts the
probability that the different regions (patches) of the
input images will be abnormal. The two networks are
trained in an adversarial manner and the irregularities
are simulated using Gaussian noise. After the learn-
ing phase, each of the two networks is able to detect
irregularities: the generator at the pixel level thanks to
the error between the original and generated images,
the generator has been trained to erase the irregulari-
ties, so when an image containing irregularities is in-
troduced, the generator eliminates these irregularities
and replaces them with other reasons which will re-
sult in a larger generation error. The discriminator, on
the other hand, can directly predict the probability of
a patch containing irregularities.

3 PROPOSED METHODS

Recently deeper two-streams convolutional networks
have been applied successfully on action recognition.
Based on this concept we propose a new efficient ar-
chitecture composed of two FCNs to tackle the prob-
lem of anomaly detection in video into both different
methods.

3.1 TS-FCN 1

Our proposed architecture consists of two parts:
spatio-temporal FCN (ST-FCN) for learning repre-
sentations from video frames, and optical flow FCN
(OF-FCN) to strengthen the movement description
of the learned representations. The learned two
FCNs are obtained by training two convolutional
auto-encoders (CAEs) in order to reconstruct video
volumes and extracting the encoder part of each of
them, Figure (1).

The spatio-temporal CAE and the optical flow
CAE are respectively learned using normal training
samples and corresponding optical-flow representa-
tions. Both CAEs have the same architecture and
each of them is composed by four 3D convolution lay-

Figure 1: Our TS-FCN 1 Architecture.

ers (encoder) and four 3D deconvolution layers (de-
coder) . The convolution layers encode representa-
tions from the input data while the deconvolution re-
flect the encoder part to reconstruct them. The spatio-
temporal CAE takes as input 3D volumes of three
consecutive frames F: {Ft ; Ft−1; Ft−2}. The opti-
cal flow CAE, 3D volumes of three optical flow rep-
resentations OF: {OFt ; OFt−1; OFt−2}, where OFt
is obtained by extracting the optical flow for each
two consecutive frames Figure (2). After training the

Figure 2: Optical flow and original images.

CAEs, the encoder part of each of them represent the
FCNs of our two-stream architecture. For each in-
put frame Ft represented by the video volumes F and
OF, each network provides a feature map of dimen-
sion 676*256. We combine these two features maps
to obtain representation of dimension 676*512, where
each row (feature vector) represents a patch of size
27*27 of the original input frame. This architecture
allows us, by means of the first FCN, to obtain a ro-
bust spatio-temporal representation of each patch of
the input frame and refine this representation using
the second FCN, which allows a more robust repre-
sentation of the movement by using the optical flow
descriptor. Thanks to this architecture, each small
region of the input video volumes is represented by
a feature vector able to describe the shapes and the
movements contained in this region. In test phase
both optical flow and original frames are used and
we propose to complete our architecture with a robust
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Gaussian classifier that allows us to dissociate be-
tween the normal and abnormal patches of each frame
through the classification of their representative fea-
ture vectors. The classification of the feature vectors
corresponding to small regions of the input images is
carried out according to the following process: in the
first step, we extract feature vectors X ={xi},xi ∈R512

from the normal training examples, the mean M and
the inverse of the covariance matrix Q of X are then
calculated. In the second step, we evaluate each fea-
ture vector x j of the testing frames with Mahalanobis
distance d j using M and Q. This is represented in the
following equation:

d j = (x j−M)∗Q∗ (x j−M)′ (1)

The outlier vectors, which actually represents abnor-
mal frames, are then picked by thresholding the dis-
tance. If the distance exceeds a threshold α, the vector
x j is considered as outlier and the frame p j is labeled
as abnormal, Eq (2).

p j :
{

Normal i f d j ≤ α

Abnormal i f d j > α
(2)

Table 1: CAEs parameters.

Layer Filters Kernel (h,w,d) Stride(h,w,d)
Conv1 64 [11,11,1] [2,2,1]
Conv2 96 [3,3,1] [1,1,1]
Conv3 128 [3,3,3] [2,2,1]
Conv4 256 [3,3,1] [2,2,1]

Deconv1 256 [3,3,1] [2,2,1]
Deconv2 128 [3,3,3] [2,2,1]
Deconv3 96 [3,3,1] [1,1,1]
Deconv4 1 [11,11,1] [2,2,1]

3.2 TS-FCN 2

The extraction of optical flow images in the test phase
allows the system to execute an additional task to ex-
tract optical flow images. Moreover, in the training
phase the representations of the two volumes of two
streams are independents. Then we propose a sec-
ond method based on new architecture of one block
to represent our TS-FCN to rectify the imperfections
of the first method. This TS-FCN is learned using
normal training samples representations of original
images only. It is composed by eight 3D convolu-
tion layers (encoder) , eight 3D deconvolution lay-
ers (decoder) and one concatenation layer to com-
bine both presentations. The TS-FCN takes as input
3D volumes of three consecutive frames F: {Ft ; Ft−1;
Ft−2}. and try not only to reconstruct those frames
but also to reconstruct the optical flow 3D volumes
of OF: {OFt ; OFt−1; OFt−2} at the same time. The

Mean Squared Error is used as loss function to train
our model (figure 3). After training phase, the en-
coder part contained 8 convolutions layers represents
our TS-FCN. Our model provides a feature map of
dimension 676*512 in this case. It is capable to ob-
tain a robust spatio-temporal representation of each
both shapes and motion into frames. In test phase, we
do not need to extract the optical flow represention
manually but our model is capable to construct new
representation of optical flow from original frames
which are more dedicated to the task of the detection
of anomalies (figure 4). However, the classification
task is done as the same way of the first method.

Figure 3: Our TS-FCN 2 Architecture.

Figure 4: Constructed optical flow in TS-FCN 2.

4 EXPERIMENT RESULTS

To evaluate the proposed architecture, we used the
USCD Ped2 dataset and compared our results to the
state-of-the-art methods. The UCSD Ped2 dataset has
16 folders of training and 12 for testing. The train-
ing part of the dataset contains only normal events
summarized in pedestrian movements. The testing
folders in addition to pedestrians also contain ab-
normal events that result in the appearance of non-
pedestrians. We evaluate our different methods us-
ing (Error Equal Rate) EER and (Area Under Curve
ROC) AUC as evaluations criteria. A smaller EER
corresponds with better performance. As for the
AUC, a bigger value corresponds with better perfor-
mance. The frames and their corresponding optical
flow representations are extracted from the raw videos
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and resized to 227×227. We then subtract a mean
image from each frame contained in the same folder.
The mean image is obtained by averaging the frames
of each training folder. After the mean subtraction,
we scale the pixel values between -1 and 1. For the
testing images, we use the mean image calculated dur-
ing the training to ensure the condition of real world
applications. We then group these pre-processed im-
ages and the optical flow representations in video vol-
umes composed of 3 consecutive frames. During the
training procedure these video volumes are then in-
troduced as inputs to train the two CAE (method 1).
We train the two CAE by minimizing the reconstruc-
tion error of the input volumes using Adam optimizer.
A hyperbolic tangent is used as activation function of
each convolution and deconvolution layer to ensure
the symmetry of the reconstructed and the input video
volumes. The detailed parameters of our network are
provided in Table [1]. However only group of pre-
processed images is used to train our architecture to
reconstruct both pre-processed images and the opti-
cal flow representations (method 2). During the test-
ing phase we use only the encoder parts (FCNs), with
Gaussian classifier to detect abnormalities in the test-
ing frames. A comparison with state-of-the-art meth-
ods are related in Table [2]. We evaluate not only our
both methods but also the spatio-temporal FCN (ST-
FCN) individually. These experiments demonstrate
the utility of combining the two FCNs as the EER pro-
gresses from 19% to 13% ( method 1). Which make
the importance of using of optical flow image to rep-
resent the motion in each frames. Moreover method 2
proves that the coherence of both shapes and motion
features in the training phase makes our architecture
more robust. It obtained an EER egal to 8.45% and
achieves AUC more than 93%. The ROC curve is
plotted according to the detection results. The FPR
is the rate of incorrectly detected frames to all nor-
mal frames in ground truth and the TPR is the rate
of correctly detected frames to all abnormal frames in
ground truth. We quantify the performance in terms
of the equal error rate (EER) and the area under ROC
curve (AUC). The EER is the point on the ROC curve
that FPR is equal to (1-TPR). Our two-stream fully
convolutional networks combined with simple classi-
fier demonstrates good performances, equivalent with
state-of-the-art methods for anomaly detection detec-
tion.

5 CONCLUSION

In this paper, a new unsupervised methods were pro-
posed to train FCNs. We used these methods to

Table 2: EER and AUC for frame level comparisons on
ped2 dataset

Methods EER AUC
PCA(D.-S. Pham, 2011) 29.20 73.98

CAE(FR)(M. Ribeiro, 2017) 26.00 81.4
ConvAE(M. Hasan, 2016) 21.7 90.00

EAD(Hung Vu, 2018) 16.47 86.43
Chong(Chong and Tay, 2017) 12 -
Sabokrou(M. Sabokrou, 2017) 8.2 -

ours
ST-FCN 19 87.15

TS-FCN 1 13.2 91.6
TS-FCN 2 8.45 93.6

learn a new architectures composed of two FCNs, one
trained on video volumes and the second on optical
flow representations. Our two-stream fully convolu-
tional networks allows extracting high level spatio-
temporal features taking into account the movements
and shapes present in each small region of the video.
This robust representation makes possible, with a sim-
ple classifier, to differentiate between normal and ab-
normal events. We have tested our TS-FCN on chal-
lenging dataset, containing crowded scenes (USCD
Ped2) Our method obtained high results competing
the best state-of-the-art methods in detection of ab-
normal events.

Our future works will investigate the strengthen-
ing of our learning process by adding a custom loss
function. This will ensure not only the good quality
of the features by aiming at the reconstruction of in-
put data but will also guarantee the compactness of
the representations of the data belonging to the same
class. This will allow to efficiently dissociate between
normal and abnormal events.
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