
A DSL-Driven Development Framework for Components to Provide
Environmental Data in Simulation based Testing

Liqun Wu and Axel Hahn
University of Oldenburg, Ammerländer Heerstraße 114-118, 26129 Oldenburg, Germany

Keywords: Simulated Environment Description Language, CIM-PIM Transformation, Model-Driven Development.

Abstract: Developing components that produce data representing simulated environments for spatial-aware simulations
could be difficult and error-prone. Knowledges of the required outputs of these components and
computational models of the environmental phenomena are often held by different roles in the development.
Miscommunications may appear among involved roles due to their different perspectives to view
environmental phenomena. Consequently, requirements of simulated environments in simulation scenarios
may not be correctly preserved in the developed components. This paper presents a domain-specific
development framework to overcome this problem. It focuses on bridging the gap between human-view
requirement descriptions of simulated environments and system-view component design models to produce
digital representations of these environments. It specifies a CIM (Computation-Independent Model) -layer
language which supports system of interest modelers to document required context of simulated environments
in their simulation scenarios in a half-formal manner. Transformation rules from these CIMs are established
to derive necessary data structures and computation flows as PIM (Platform-Independent Model) -layer
models of simulated environment components. These transformations are further combined with general
Model-Driven Development (MDD) solutions to create platform-specific component skeletons.

1 INTRODUCTION

In a computer simulation, the system of interest is
often modelled with the logic about how the system
behaves in reaction to the influence from phenomena
in its situated environment. At an execution step of
this simulation, a component should feed the system
model with data of these phenomena, which are
needed by the system model to compute a new state.
This component provides the simulated environment
(Klügl, Fehler, & Herrler, 2004) in the simulation.

The environment component may need to enclose
realistic observation data or its own simulation
models of the involved phenomena types. Due to the
inherited complexity from their real-world
counterparts, these data and models are not
straightforward to be adjusted and integrated into the
simulation by non-experts. Safety-critical simulations
in the marine domain provide a typical example.
Maritime systems situate in the environment with
spatio-temporal varied phenomena such as other
artificial systems, wind and ocean currents. The
influences of these phenomena cannot be ignored in
safety-critical simulations, while modelling such

complex phenomena are likely beyond the expertise
of the system of modelers.

Thus, environment components in these
simulations may have to be developed by experts
other than the system modelers. However, for
acquiring meaningful simulation outcomes,
environmental data produced by such a component
should match simulation scenarios that the system
modelers want to execute. Thus, requirements about
the simulated environments in the scenarios must be
communicated between system modelers and experts
who are able to develop this environment component.
Mismatches may appear during the communication
due to different perspective of involved roles to view
the environmental phenomena. This could cause that
the developed component does not correctly preserve
requirements from system modelers. The produced
data may miss some aspects that are required inputs
of the system model. Further, the data values
produced in an execution may not match the expected
environmental conditions of the executed scenario.

To overcome the above-mentioned problems, this
paper proposes a language-driven framework to assist
the development of environment components in

328
Wu, L. and Hahn, A.
A DSL-Driven Development Framework for Components to Provide Environmental Data in Simulation based Testing.
DOI: 10.5220/0008948403280335
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 328-335
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

simulations. It focuses on bridging the gap between
conceptual level requirements of simulated
environments and design models of environment
components, which is comparable to the view switch
when transforming domain-oriented CIMs to system-
oriented PIMs in Model-Driven Architecture (MDA)
(OMG, 2014). This framework follows the MDA
principles. It uses Domain-Specific Languages
(DSLs) (van Deursen, Klint, & Visser, 2000) to
describe simulated environments as CIMs and
environment component models as PIMs.
Transformation rules are established between these
two types of models, so that necessary elements of an
environment component to produce a described
environment can be derived from the description of
the environment via transformations.

The rest of the paper is organized as follows.
Section 2 reviews existing works related to the
presented framework. Section 3 gives an overview of
this framework. Section 4 and 5 introduce modelling
languages used in the framework and transformations
among them. Section 6 shows a prototypical
implementation of the framework, followed by a use
case to demonstrate the transformation process.
Section 7 summarizes the contributions of this
framework and discusses open issues.

2 RELATED WORK

Most researches on CIM-PIM transformations focus
on the business processes and requirements
modelling. These works rely on OMG-managed
modelling languages to describe CIMs and PIMs, as
well as transformation languages to specify
transformations among them. At the CIM layer, the
business processes are often expressed by BPMN
(OMG, 2011) or its specialization (Hahn, Panfilenko,
& Fischer, 2010; Rodríguez et al., 2011; Bousetta, El
Beggar, & Gadi, 2013; Kriouile, Addamssiri, & Gadi,
2015; Rhazali, Hadi, & Mouloudi, 2015a). Some
approaches also model functional requirements as use
case diagrams. (Gutiérrez et al., 2008; Bousetta et al.,
2013; Kriouile et al., 2015) PIMs in these researches
usually cover the structural aspect and the behaviour
aspect of a system. The former is frequently
expressed by class diagrams (Bousetta et al., 2013;
Kriouile et al., 2014; Rhazali et al., 2015a), while
activity diagrams (Gutiérrez et al., 2008), sequence
diagrams (Bousetta et al., 2013) and state machines
(Rhazali, Hadi, & Mouloudi, 2015b) have been used
to express the latter. Some approaches also define
specialized metamodels for describing PIMs, such as
the PIM4Agent from (Hahn et al., 2010) and DSLs

used by (De Castro, Marcos, & Vara, 2011).
Transformations in existing researches are

formulized using QVT languages (Gutiérrez et al.,
2008; Rodríguez et al., 2010; Kriouile et al., 2014;
Kriouile et al., 2014) or ATL (Hahn et al., 2010; De
Castro et al., 2011; Rhazali, Hadi, & Mouloudi,
2016). Most of them have multiple steps. The overall
transformation chains of these researches are usually
performed in a semi-automatic manner with human
interference between steps to improve the model
quality.

Similar researches can be found in other
application domains, e.g., for the development of data
warehouses (Mazón, Pardillo, & Trujillo, 2007) and
Web applications (Kraus, Knapp, & Koch, 2007;
Fatolahi, Somé, & Lethbridge, 2008). Existing
researches provide the foundation on the components
which our framework should have and references
about how it may be built. However, they focus on
other context domains.

In the context domain we are interested in,
human-oriented DSLs to express spatial phenomena
based on common sense conceptualizations have
been proposed, such as database languages using the
“moving objects” concept (Güting & Schneider,
2005), the general type "field" to represent and
operate on spatio-temporal data (Camara et al., 2014)
and core concepts for spatial computations (Kuhn &
Ballatore, 2015) etc. Their implementations are often
embedded in spatial DBMS, GIS software or code
libraries. They aim to raise the usability of spatial
database and systems by hiding a fixed
implementation behind cognitive level concepts. On
the other side, various system-oriented models have
been adapted as ISO/TC 211 (ISO, n.d.) and OGC
(Open Geospatial Consortium, n.d.) standards to
support to build and exchange spatial data or
information services. Models of these standards focus
on spatial data sharing and system interoperability.
These researches provide fundamental terms of
spatial representations that we can utilize. These
models are defined at various abstraction levels and
are not clearly aligned with the software development
phases. The development of environment
components in simulations with or without using
some of these models is still solved in a case-by-case
manner.

3 THE PROPOSED
FRAMEWORK

Functional scenarios described at the conceptual level

A DSL-Driven Development Framework for Components to Provide Environmental Data in Simulation based Testing

329

are determined in the requirement analysis phase
when developing computer simulations. (Menzel et
al., 2018). Our research classifies the context of
description about environmental phenomena in the
functional scenarios based on conceptual forms of
phenomena and types of their exhibited changes.
After that, necessary elements in the simulation
program for producing the described context type are
identified. The proposed framework in this paper is
built on the research outcome and MDA as introduced
below.

First, a DSL Simulated Environment Description
Language (SEDL) is specified to describe the
required context of simulated environments as CIMs.
A SEDL description corresponds to a simulation
program. It is half-formal with application-specific
requirements captured by free text and enclosed by a
SEDL description item. A phenomenon expressed in
SEDL corresponds to all possible phenomena
instances of the same type that can be produced by a
component under development.

Then, mapping rules are established from SEDL
descriptions to PIM-layer component models in
UML. They enable automatic transformations which
derive artefacts of environment components from
SEDL descriptions. Three types of sub models are
included in the PIMs: the configuration schema that
describes the parameters to be set for running a
component; the data structure that carries state values
of computed phenomena during simulations; the
computation flows that compute the states of
phenomena at a simulation step.

Further transformations from PIMs to models and
code in a specific platform can utilize general MDA
solutions, since they are rather technical refinement
which does not involve the view switch or the domain
knowledge. An implementation of the framework
supports to describe simulated environments as
SEDL descriptions, execute transformations of SEDL
descriptions to derive component models and code
skeletons. Application-specific requirements
captured in the free text are preserved within model
elements or code units to guide implementation.

4 LANGUAGES FOR
SIMULATED ENVIRONMENTS

This section introduces modelling languages used in
this framework at the CIM layer and the PIM layer.

4.1 Simulated Environment
Description Language (SEDL)

Terms in the CIM-layer language SEDL classifies
pieces of descriptions about simulated environments
in simulation scenarios. All SEDL terms are made as
subtypes of DescriptionItem which has an attribute
description to capture application-specific
requirements in the free text. Besides, each type has
attributes to capture the type-specific context.

Figure 1: The Description Structure of SEDL.

SEDL uses an entity-property hierarchy to
organize description pieces as show in Figure 1. An
instance of the entry term SimulatedEnvironment
encloses all description pieces about an environment
component. Terms that describe environmental
phenomena are subtypes of Configurable. Their
instances may have ConfigurableParameter-s, each
of which describe a modifiable condition about this
Configurable for different executions. Two concrete
types can be chosen to describe a type of
environmental phenomena. SpatialIndividuality
describes a type of phenomena which appear as an
identifiable individual substance in space.
FieldOfIndividualities describes a set of
individuality from the same type with no significant
member, such as a group of randomly moving ships.
All members in this field together exhibit some
spatial pattern. Which subtype to choose depends on
the simulation scale, the way that system modelers
view the phenomenon etc. It does not mean to reflect
the “truth" of the real-world entities.

SEDL supports to classify description of changes
that environmental phenomena should exhibit in
simulation scenarios.

The CharacteristicVariation is used to describe
the value variation of a characteristic index or several
correlated indexes among a whole set of instances of
a phenomenon type, e.g., some initial state. The
described variation is a value distribution of these
indexes. A CharacteristicVariation instance
belongs to an EnvironmentalPhenomenon E. If E is

SimulatedEnvironment

- dimensionNum: Integer

SpatialIndividuality

- dimensionNum: Integer

FieldOfIndividualities

«enumeration»
ParameterType

 FreeText
 DataSource
 Spatial
 Time
 Options
 Switch
 Number

ThematicProperty

EnvironmentalPhenomenon

CharacteristicVariation

- indexName: String [1.."]

DescriptionItem

ConfigurableParameter

- type: ParameterType

DescriptionItem

Configurable

0..*

1

+memeber

1
+field 1

0..*
1

+theme
0..*

+individuality 1

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

330

Figure 2: Change Types of SpatialIndividuality.

the member of a FieldOfIndividualities F, when
creating an instance of the phenomenon described by
F, relevant index values of its members should be
drawn from the distribution. Otherwise, when
creating an instance of the type described by E,
relevant index values of this instance should be drawn
from the distribution.

Change types about an individuality that shall be
perceived by human are identified as shown in Figure
2. An instance of them expresses a change pattern
which a phenomenon type should exhibit during
simulations. Essentially, it is the pattern of difference
about one characteristic of a phenomenon P, when
another characteristic of P is altered in a controlled
way. It can be viewed as a relationship between states
of this phenomenon in two value domains: A → B.
Change types are identified based on rational
combinations of the A’s type and B’s type.

The types of the value domains can be spatial
locations, temporal locations and thematic properties
(Guttag & Horning, 1978). Further, location
differences in high-level descriptions shall be
approximately viewed as self-referenced and
externally-referenced. E.g., the “Movement” in
Figure 3 is the observed spatial location differences
relative to an external reference (often the earth) over
time. The application-specific pattern of a change
description instance is informally captured by its
description slot.

4.2 PIM-Layer Metamodels of
Environment Components

In this framework, UML is used as the metamodel to
describe PIMs. To facilitate the object-oriented code
generation, PIMs are expressed in the class view. A
computation flow is presented as a uml:Class and a
uml:Operation in this class. Each of its computation

units is presented in the class as a uml:Operation and
statements within the body of the flow operation that
invokes the unit operation.

Figure 3: Stereotypes of Simulated Feature Types.

The framework specifies a UML profile to
provide a set of stereotypes for describing structural
models of environment component more concisely as
shown in Figure 3. It includes subtypes of
SimulatedFeatureType which represent the data
structure to hold state values about a phenomenon
type during simulation executions. Each subtype
restricts following aspects of a class: 1) how the
geometry of a phenomenon type is represented by this
class; 2) how property values representing the
phenomenon's thematic characteristics are linked to
its geometry. These types are introduced in a two-
dimensional context here. Nevertheless, each of them
has its three-dimensional counterpart. They are
specified based on popular spatial computation
paradigms. For instance, subtypes of

Configurable

ThematicProperty

Configurable
Variation

IndividualityChange

GeometryLocationDependency

- roleOfGeometry: RoleInVariation

Deformation

LocationThemeDependency

- roleOfTheme: RoleInVariation

RigidBodyMovement

GeometryThemeDependency

- roleOfTheme: RoleInVariation

Configurable
Variation

ThematicValueDistribution

Configurable
Variation

ThemeDependency

Variation

ThemeDynamics

EnvironmentalPhenomenon

SpatialIndividuality

0..*

1

+variant
1

+variable
0..*

1

1

0..*

1

0..*

SimulatedFeatureType

- timestamp: TemporalPosition

CollectiveFeatureTypePointSetFeature

PointSitesFeature

GridOfPointsFeature

TesserlatedFeature

SquareGridsFeature

HaxagonalGridsFeature

PolygonalMapFeature

VoronoiTesserlatedFeature

«metaclass»
Class

GlobeFeature

LocalFeature

- geometry: Geometry

CollectiveFeatureUnit

- geometry: Geometry

PolygonSetFeature

SpatialFunction

- timestamp: TemperalPosition

1«hasUnit»

+unit

1

A DSL-Driven Development Framework for Components to Provide Environmental Data in Simulation based Testing

331

CollectiveFeatureType are used to represent
phenomenon types that are computed as a set of units,
each of which occupies a spatial location. Such
representations are used in multi-agent spatial
simulations. Each subtype of the
CollectiveFeatureType regulates a spatial
representation of the units, including the type of their
geometries and spatial relationships among them.

Besides, SpatialFunction is a class which holds
the function to represent the form of a spatially
heterogeneous theme. It shall appear as the attribute
type of a GlobeFeature or a LocalFeature.

5 CIM-PIM TRANSFORMATIONS

This framework specifies three CIM-PIM
transformations to derive design models of
environment components from SEDL descriptions.

First, the transformation SEDL2Config generates
a configuration schema whose structure is aligned
with the structure of the input SEDL description. In
general, it transforms each Configurable to a
uml:Class. The parameters of the Configurable are
mapped to attributes of the output class.

Then, the transformation SEDL2Structure derives
data structure models of environment components
based on following principles:
1) A class stereotyped with a
SimulatedFeatureType subtype is created for each
EnvironmentalPhenomenon. The applied
stereotype is derived from the type and the spatial
form of Environmental Phenomenon and its change
types. For instance, a FieldOfInvidualities whose
members are 0-dimensional entities and have changes
involving locations is transformed to a
PointSetFeature.
2) For each ThematicProperty of a
SpatialIndividuality, an attribute is added to the
output feature class, or the output unit class when this
Spatial Individualties is the member of a
FieldOfIndividualities.
3) A SpatialFunction class is created for a
ThematicValueDistribution to hold the distribution
function that determines a value at a spatial location.
This class is set to be the attribute type created from
the ThematicProperty with this distribution.

The transformation SEDL2Computation uses the
output of the above two transformations and the input
SEDL description to generate computation units and
build computation flows with these units, which
update states of simulated feature properties.

First, it creates a uml:Class for each
EnvironmentalPhenomenon Ep. An uml:Operation

is added to the class for each of its
CharacteristicVariations and individuality changes.

Then, a directed graph is derived based on
individual changes of Ep, or of its member if Ep is a
FieldOfIndividualities. Nodes of the graph represent
properties of Ep. Edges correspond to the relation
between the connected nodes expressed by a change
description, e.g., an edge t → tp denotes a
ThemeDynamics of its ThematicProperty tp. A
reference to the generated operation of this
ThemeDynamics is stored with the edge. This graph
implies the appropriate order to update properties of
an instance phenomenon. Cycles in the graph are
detected and replaced by a compound node. The
compound node corresponds to a sub-computation
that determines the values of the nodes in the cycle.

An uml:Operation is generated, which executes
the computation flow to update states of a simulated
feature at a simulation step. It contains statements that
invoke the operations to update the attributes of the
feature data object held by the computation class, in a
sequence based on the topological order of the
generated graph. This flow applies to an individual
feature. For a FieldOfIndividualities, the generated
operation updates a unit of the
CollectiveFeatureType generated from it. An
iteration is also generated to execute this function
over units of this CollectiveFeatureType.

It is suggested to have a manual refinement on the
intermediate output to bring in more details which is
not derivable. For instance, the unit geometry of a
TessellatedFeature is decided by the developers.
The transformation generates a TessellatedFeature
with denotation that the applied stereotype should be
replaced by a subtype of the TessellatedFeature.

6 USE CASE

A prototype of the framework is implemented based
on Eclipse Modeling Framework (EMF) (Steinberg et
al., 2008) as summarized in Figure 4.

The SEDL Abstract Syntax is encoded as an Ecore
(Steinberg et al., 2008) model. The SEDL2Config
and SEDL2Structure are implemented as ATL
transformations. The data structure profile is encoded
using the UML2 plugin (Eclipse, n.d.). The Platform-
Specific Translator can be varied in different
implementations of the framework. In this prototype,
they are three code generators which create Java files
for developing Eclipse plugins. The EMF code
generator is used to create code for configuration
schemas. The other two generators are implemented
as Acceleo (OBEO, n.d.) templates. PIMs from

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

332

SEDL2Computation are made implicit in the
prototype. The generator for computation models
uses SEDL descriptions as inputs and produced Java
files. Operations on graphs are implemented by Java.
The simulation library Mason (Luke et al., 2005) and
its spatial extension GeoMason (Sullivan, Coletti, &
Luke, 2010) are used in the output code to deal with
simulation routines and spatial-related issues.

Figure 4: Components of the Framework Prototype.

The SEDL Toolset is implemented using
EMFText(Heidenreich, Johannes, Karol, Seifert, &
Wende, 2009). A textual SEDL Concrete Syntax is
specified in a file with “.cs” extension and referenced
to the SEDL Ecore model. EMFText creates various
language facilitates from this “.cs” file, which are
customized afterwards. The prototype can be used to
write SEDL descriptions in the concrete syntax and
store them in files with the ".sedl" extension. The
transformations are integrated into the SEDL
processor, which can be invoked to execute a file with
this extension.

Figure 5: Transformation Steps and Outputs.

A demonstrative use case is presented, which uses

the prototype to develop an environment component
for a vessel simulation. This component is
implemented as an Eclipse plugin. The functional
scenario is that a cargo vessel executes a planned path
under various weather conditions. During the
simulation, the environment component should
simulate environmental data required by the vessel
model execution with desired conditions, e.g., force
of wave, information of other ships etc.

The required environment is documented in the
“Sea.sedl” file using the implemented textual syntax.
Various artefacts are generated from this file by the
framework prototype. Figure 5 shows the
transformation flows. Classes in the “seaCon”
package are generated by EMF.

Figure 6: SEDL Description of BackgroundTraffic.

Figure 6 shows a description piece of a
phenomenon type in the “Sea.sedl” file for
illustration, in which the free-text descriptions are
displayed in green. The key word “Dynamics” in the
concrete syntax corresponds to the ThemeDynamics.

Figure 7 shows a visualized diagram of the
generated configuration schema for the
“BackgroundTraffic” in Figure 6 (left) and the data
class for a ship in the background traffic (right).
Attribute access methods are omitted due to space
limitation. The PIM layer data class for the
“BackgrounTraffic” is mapped to a PointSetFeature
as Section 5 introduced. In the prototype, it is further
transformed to a GeomVectorField object whose
geometry is initialized as a set of points managed by
the generated class “ComputeSea.java” in Figure 5.

A DSL-Driven Development Framework for Components to Provide Environmental Data in Simulation based Testing

333

Figure 7: Structural Models for BackgroundTraffic.

Figure 8 shows a visualized diagram of the
“ComputeShip.java” class. It is a Mason Steppable
which is used to implement the computation model
for a ship in the background traffic. It includes
Mason-specific supportive structures such as
“GeometryFactory fact”, objects to hold states of the
computed ship and attributes to hold the ship indexes.
The following methods are generated in this class: the
constructor method “ComputerShip(…)” that is used
to initialize an instance of this class with given ship
indexes; the “step(SimState)” which holds the
computation flow to update states of the “ship”
object; method skeletons which should implement a
computation unit or the combined effort of involved
units to update an attribute of the “ship” object. The
free-text descriptions of corresponding SEDL items
are generated as Java comments near these methods
to guide the implementation. Same as the
GeomVectorField object that represents the whole
traffic set, code for iterating over the ships are placed
in “ComputeSea.java” class.

Figure 8: Computation Class for BackgroundTraffic.

A transformation step costs between 1~ 1×100
seconds, which can be neglected compared with the
total development time of this component.

7 CONCLUSIONS

A domain-specific framework is presented in this
paper, which eases the development of environment
components in computer simulations by following
means. First, it provides a CIM-layer DSL SEDL as a
communication tool to discuss and document the
requirements of components under development.
Second, it establishes mappings between conceptual
contexts of simulated environments expressed in
SEDL and necessary artefacts in computer programs
in order to produce them. Thus, system-perspective
design models can be derived from human-
perspective requirements. Third, it enables automatic
generations of program models from the requirements
descriptions. Architectural code can be further
generated with only application-specific methods to
be filled. The application-specific requirements are
preserved within corresponding code units to guide
the implementation.

Our future work focuses on the optimization of
transformations to the chosen technical platforms, the
test of the implemented framework with our marine
simulation development and the strategies to reuse
programs of environmental phenomena developed
within this framework in other simulations.

REFERENCES

Bousetta, B., El Beggar, O., & Gadi, T. (2013). A
methodology for CIM modelling and its transformation
to PIM. Journal of Information Engineering and
Applications, 3(2).

Camara, G., Egenhofer, M. J., Ferreira, K., & Andrade, P.
(2014). Fields as a generic data type for big spatial data.
Proceedings of 8th International Conference,
GIScience 2014. Presented at the Vienna, Austria.
Vienna, Austria.

De Castro, V., Marcos, E., & Vara, J. M. (2011). Applying
CIM-to-PIM model transformations for the service-
oriented development of information systems.
Information and Software Technology, 53(1), 87–105.

Eclipse. (n.d.). Model Development Tools (MDT).
Retrieved from http://www.eclipse.org/modeling/
mdt/uml2

Fatolahi, A., Somé, S. S., & Lethbridge, T. C. (2008).
Towards A Semi-Automated Model-Driven Method for
the Generation of Web-based Applications from Use
Cases.

Gutiérrez, J. J., Nebut, C., Escalona, M. J., Mejías, M., &
Ramos, I. M. (2008). Visualization of Use Cases
through Automatically Generated Activity Diagrams.
In K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, & M.
Völter (Eds.), Model Driven Engineering Languages
and Systems: 11th International Conference, MoDELS

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

334

2008, Toulouse, France, September 28—October 3,
2008. Proceedings (pp. 83–96).

Güting, R. H., & Schneider, M. (2005). Moving objects
databases.

Guttag, J. V., & Horning, J. J. (1978). The algeraic
specification of abstract data types. Acta Informatica,
10(1), 27–52.

Hahn, C., Panfilenko, D., & Fischer, K. (2010). A Model-
Driven Approach to Close the Gap between Business
Requirements and Agent-Based Execution.
Proceedings of the 4th Workshop on Agent-Based
Technologies and Applications for Enterprise
Interoperability. International Joint Conference on
Autonomous Agents and Multiagent Systems (AAMAS-
10), May 10-14, Toronto, Canada, 13–24.

Heidenreich, F., Johannes, J., Karol, S., Seifert, M., &
Wende, C. (2009). Derivation and Refinement of
Textual Syntax for Models. Model Driven Architecture
- Foundations and Applications, 114–129. Enschede,
The Netherlands: Springer.

International Organization for Standardization. (n.d.). ISO
TC 211 Technical Committee on Geographic
Information and Geomatics. Retrieved from
https://www.isotc211.org/

Klügl, F., Fehler, M., & Herrler, R. (2004). About the Role
of the Environment in Multi-agent Simulations.
Proceedings of First International Workshop, E4MAS
2004, 127–149. New Yourk, NY, USA.

Kraus, A., Knapp, A., & Koch, N. (2007). Model-Driven
Generation of Web Applications in UWE. MDWE, 261.

Kriouile, A., Addamssiri, A., & Gadi, T. (2015). An MDA
Method for Automatic Transformation of Models from
CIM to PIM. American Journal of Software
Engineering and Applications, 4(1), 1–14.

Kriouile, A., Addamssiri, N., Gadi, T., & Balouki, Y.
(2014). Getting the static model of PIM from the CIM.
2014 Third IEEE International Colloquium in
Information Science and Technology (CIST), 168–173.

Kriouile, A., Gadi, T., Addamssiri, N., & Khadimi, A. E.
(2014). Obtaining behavioral model of PIM from the
CIM. 2014 International Conference on Multimedia
Computing and Systems (ICMCS), 949–954.

Kuhn, W., & Ballatore, A. (2015). Designing a language for
spatial computing. Proceedings of AGILE 2015,
Geographic Information Science as an Enabler of
Smarter Cities and Communities, 309–326.
Lisbon,Portugal.

Luke, S., Cioffi-Revilla, C., Panait, L., Sullivan, K., &
Balan, G. (2005). MASON: A Multi-Agent Simulation
Environment. Simulation: Transactions of the Society
for Modeling and Simulation International, 82(7), 517–
527.

Mazón, J.-N., Pardillo, J., & Trujillo, J. (2007). A Model-
Driven Goal-Oriented Requirement Engineering
Approach for Data Warehouses. In J.-L. Hainaut, E. A.
Rundensteiner, M. Kirchberg, M. Bertolotto, M.
Brochhausen, Y.-P. P. Chen, … E. Zimányie (Eds.),
Advances in Conceptual Modeling – Foundations and
Applications: ER 2007 Workshops CMLSA, FP-UML,

ONISW, QoIS, RIGiM,SeCoGIS, Auckland, New
Zealand, November 5-9, 2007. Proceedings (pp. 255–

OBEO. (n.d.). Generate Anything From Any EMF Model.
Retrieved from https://www.eclipse.org/acceleo/

Object Management Group. (2011). Business Process
Model and Notation (BPMN), Version 2.0. Retrieved
from https://www.omg.org/spec/BPMN/2.0/

Object Management Group. (2014). Model Driven
Architecture (MDA)—MDA Guide rev. 2.0. Retrieved
from http://www.omg.org/mda/

Open Geospatial Consortium. (n.d.). Open Geospatial
Consortium Site. Retrieved from
https://www.opengeospatial.org/

Rhazali, Y., Hadi, Y., & Mouloudi, A. (2015a). Disciplined
approach for transformation CIM to PIM in MDA. 2015
3rd International Conference on Model-Driven
Engineering and Software Development
(MODELSWARD), 312–320.

Rhazali, Y., Hadi, Y., & Mouloudi, A. (2015b).
Transformation approach CIM to PIM: from business
processes models to state machine and package models.
2015 International Conference on Open Source
Software Computing (OSSCOM), 1–6.

Rhazali, Y., Hadi, Y., & Mouloudi, A. (2016). A new
methodology CIM to PIM transformation resulting
from an analytical survey. 2016 4th International
Conference on Model-Driven Engineering and
Software Development (MODELSWARD), 266–273.

Rodríguez, A., Fernández-Medina, E., Trujillo, J., &
Piattini, M. (2011). Secure Business Process Model
Specification Through a UML 2.0 Activity Diagram
Profile. Decis. Support Syst., 51(3), 446–465.

Rodríguez, A., Guzmán, I. G.-R. de, Fernández-Medina, E.,
& Piattini, M. (2010). Semi-formal transformation of
secure business processes into analysis class and use
case models: An MDA approach. Information and
Software Technology, 52(9), 945–971.

Steinberg, D., Budinsky, F., Paternostro, M., & Merks, E.
(2008). EMF: Eclipse Modeling Framework (2nd ed.).
Addison-Wesley Professional.

Sullivan, K., Coletti, M., & Luke, S. (2010). GeoMason:
Geospatial Support for MASON [Technical Report
Series]. Retrieved from Department of Computer
Science, George Mason University website:
http://mars.gmu.edu/handle/1920/8739

Till Menzel, Gerrit Bagschik, & Markus Maurer. (2018).
Scenarios for Development, Test and Validation of
Automated Vehicles. 2018 IEEE Intelligent Vehicles
Symposium (IV), 1821–1827.

van Deursen, A., Klint, P., & Visser, J. (2000). Domain-
specific languages: An annotated bibliography. Sigplan
Notices, 35(6), 26–36.

A DSL-Driven Development Framework for Components to Provide Environmental Data in Simulation based Testing

335

