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Abstract: In the last decade, feature selection (FS), was one of the most investigated preprocessing tasks for heart 

disease prediction. Determining the optimal features which contribute more towards the diagnosis of heart 

disease can reduce the number of clinical tests needed to be taken by a patient, decrease the model cost, 

reduce the storage requirements and improve the comprehensibility of the induced model. In this study a 

comparison of three filter feature ranking methods was carried out. Feature ranking methods need to set a 

threshold (i.e. the percentage of the number of relevant features to be selected) in order to select the final 

subset of features. Thus, the aim of this study is to investigate if there is a threshold value which is an 

optimal choice for three different feature ranking methods and four classifiers used for heart disease 

classification in four heart disease datasets. The used feature ranking methods and selection thresholds 

resulted in optimal classification performance for one or more classifiers over small and large heart disease 

datasets. The size of the dataset takes an important role in the choice of the selection threshold.

1 INTRODUCTION 

Heart disease (HD) is a general term referring to a 

variety of conditions and disorders that affect the 

heart and blood vessels (Mendes et al., 2015). HD 

types include coronary artery disease, valvular heart 

disease, cardiomyopathy, heart rhythm disturbances 

(arrhythmias) and heart infections. According to the 

World Health Organization, an estimation of 17.9 

million people died due to HD in 2016, representing 

31% of all global deaths. An accurate and early 

detection of cardiac diseases can save many lives by 

monitoring heart activities (Mustaqeem, Anwar, 

Majid, & Khan, 2017). Data mining (DM) offers a 

set of powerful techniques that allow the 

identification and extraction of relevant information 

embedded in large data sets (Ting, Shum, Kwok, 

Tsang, & Lee, 2009). DM can be very beneficial for 

doctors and patients particularly in the case of 

diseases with high mortality and morbidity rates 

such as HD. Nonetheless, the quality of the 

knowledge extracted highly depends on the quality 

of the data used (Idri, Benhar, Fernández-Alemán, & 

Kadi, 2018). A rigorous preprocessing of data before 

using DM techniques is, therefore, mandatory (Ting 

et al., 2009). A previous study on data preprocessing 

tasks in heart disease knowledge discovery (Benhar, 

Idri, & Fernández-Alemán, 2019), showed that 

researchers were mainly interested in  data reduction 

and particularly in feature selection in order to 

improve the performance of DM-based decision 

support systems for HD prediction. 

Feature selection is defined as the process of 

detecting relevant features and discarding irrelevant 

and redundant ones with the goal of obtaining a 

subset of features that accurately describe a given 

problem (Guyon, Steve, Masoud, & Lotfi, 2006). In 

addition to its ability to improve the performance of 

a DM model (Bolón-Canedo, Sánchez-Maroño, & 

Alonso-Betanzos, 2015), FS has other advantages 

such as shortening the number of measurements, 

reducing the execution time and improving 

transparency and compactness of the suggested 

diagnosis (Huan & Lei, 2005; Jaganathan & 

Kuppuchamy, 2013). FS algorithms are generally 

classified as filter, wrapper or embedded models 

(Jovic, Brkic, & Bogunovic, 2015). Filter feature 

selection techniques consist of evaluating the 

characteristics of the training data to select feature 

subsets independently of any learning algorithm, 

while wrappers use a targeted learning algorithm in 

order to assess the performance of the selected 
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subsets (Bolón-Canedo, Sánchez-Maroño, & 

Alonso-Betanzos, 2013). Embedded methods embed 

the process of FS into the training process of the 

learning algorithm. In addition to these three types 

of FS techniques, researchers proposed new hybrid 

approaches in order to consolidate the advantages 

and eliminate the drawbacks of the individual ones 

(Peter & Somasundaram, 2012).  

FS methods can also be classified according to:  

(1) univariate techniques (i.e. rankers) which provide 

a ranking of features and the subset of selected 

features can be determined by setting a cutoff 

threshold or specify how many attributes to retain; 

and (2) multivariate techniques which produce the 

best subset of features based on a specific search 

strategy using some performance measures. Several 

studies in the literature made use of feature ranking 

techniques to classify heart disease without 

providing information about the threshold used to 

select the final subset (Jabbar, Deekshatulu, & 

Chandra, 2013, 2015; Peter & Somasundaram, 

2012), or used a default threshold (Almuhaideb & 

Menai, 2016) (e.g. selecting the 10 top ranked 

attributes) for all feature ranking methods and over 

all datasets. 

The main purpose of this study is, therefore, to 

evaluate and compare the impact of ReliefF, Info 

Gain and Correlation feature ranking techniques 

using different threshold values on the performance 

of heart disease classification using four classifiers: 

(K-Nearest Neighbor (KNN), Support Vector 

Machine (SVM), Multilayer Perceptron (MLP) 

neural network architecture and Decision Trees 

(DT). The rationale behind choosing these four 

classifiers is that they were the most frequently 

employed techniques when developing classifiers to 

diagnose HD patients (Kadi, Idri, & Fernandez-

Aleman, 2017; Shouman, Turner, & Stocker, 2012). 

The experiments were performed using the Weka 

3.8.3 software (Hall et al., 2009) using four heart 

disease datasets taken from the UCI Machine 

Learning Repository (Dua & Graff, 2019). The 

classifiers were evaluated using three performance 

criteria: accuracy, kappa statistic and area under the 

ROC curve, and a 10-fold cross validation method. 

   The rest of the paper is organized as follows: 

Section 2 presents an overview of the feature 

selection and classification techniques used. The 

experimental design is described in Section 3. 

Results are presented and discussed in Section 4. 

Findings and future work are presented in Section 5. 

 

 

2 FEATURE SELECTION AND 

CLASSIFICATION 

TECHNIQUES 

2.1 Feature Selection Techniques 

2.1.1 ReliefF 

ReliefF (Kononenko, Robnik-Šikonja, & Pompe, 

1996) is an extension of the original Relief 

algorithm (Kenji & A., 1992) that works by 

randomly sampling an instance from the dataset and 

then locating its nearest neighbor from the same 

class (called nearest hit) and the opposite one (called 

nearest miss). The rationale is that a good attribute 

should have the same value for instances from the 

same class and should differentiate between 

instances from different classes.  

2.1.2 Correlation 

Correlation based feature selection, also known as 

linear correlation or Pearson correlation coefficient, 

measures linear correlation between two variables. 

The resulting value ranges between -1 and 1, with -1 

meaning perfect negative correlation, +1 meaning 

perfect positive correlation and 0 meaning no linear 

correlation between the two variables (Gooch, 

2011). 

2.1.3 Info Gain 

Information Gain  (Quinlan, 1986) is one of the most 

common attribute evaluation methods. It uses 

entropy to measure how much “information” a 

feature gives us about the class considering a single 

feature at a time. 

2.2 Threshold Values 

Several studies in the literature used different 

thresholds that retain different percentages of 

features  (Bolón-Canedo et al., 2013; Hosni, Idri, & 

Abran, 2017; Jaganathan & Kuppuchamy, 2013; 

Seijo-Pardo, Porto-Díaz, Bolón-Canedo, & Alonso-

Betanzos, 2017). In (Bolón-Canedo et al., 2013), the 

authors suggested selecting 40% of features if the 

initial number of features ranges from 10 to 75. 

Studies on fault prediction and software effort 

estimation recommended the use of the top 

Log_2(N) features  of  feature ranking techniques in 

the Weka tool (Hosni et al., 2017), where N is the 

number of features in the initial set. In this study, a 

comparison between five different thresholds, 
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including the aforementioned ones, is conducted. 

The selected thresholds used are: 

▪ Log_2(N): where N is the number of features in a 

given dataset. 

▪ 10%, 20%, 40%, and 50%: these thresholds select 

the top 10%, 20%, 40%, and 50% of the most 

relevant features of the final ordered rankings 

respectively. 

2.3 Classification Techniques 

2.3.1 K-Nearest Neighbor 

The k-nearest neighbor (KNN) algorithm assumes 

that similar instances have similar classifications: 

novel instances are classified according to the 

classifications of their most similar neighbors. K is a 

positive, and typically small, integer. An object is 

classified by a plurality vote of its neighbours 

(Cover & Hart, 1967). 

2.3.2 Support Vector Machine 

Support Vector Machines (SVMs) are a set of 

related methods for supervised learning which 

consist of creating a maximum-margin hyperplane 

that lies in a transformed input space and splits the 

example classes, while maximizing the distance to 

the nearest cleanly split examples  (Vapnik, 2000).  

2.3.3 Multilayer Perceptron 

Multilayer perceptron (MLP) is a feedforward neural 

network model used for classification and regression 

tasks and consists of, at least, three layers of nodes: 

an input layer, a hidden layer and an output layer. In 

the input layer each node represents an independent 

variable. The outputs of the first layer are used as 

inputs of the next layer and this procedure is 

repeated recursively until finally the output layer is 

reached (Gardner & Dorling, 1998). 

2.3.4 Decision Trees 

A decision tree (DT) is a decision support tool that 

uses a tree-like model of decisions and their possible 

consequences (Bhargava, Sharma, Bhargava, & 

Mathuria, 2013). In a DT each node represents a 

feature (attribute), each link (branch) represents a 

decision (rule) and each leaf represents an outcome. 

The variant of DTs used in this paper is C4.5 known 

as J48 in Weka. 

 

 

 

3 EXPERIMENTAL DESIGN 

3.1 Datasets Description 

Statlog Heart Dataset: This dataset contains 270 

instances belonging to two classes: the absence 

(class absent) or presence (class present) of heart 

disease. The number of instances belonging to the 

class absent is 150 while 120 instances belong to the 

class present. The dataset contains 13 attributes in 

addition to the class attribute.  

Cleveland Heart Disease Dataset: Experiments 

published on this dataset refer to using its processed 

version which contains 13 attributes in addition to 

the class attribute and 303 instances. In addition to 

this version we used the unprocessed dataset which 

contains 75 attributes and 282 instances, as we 

believe it might contain valuable information.  The 

instances of both datasets belong to five classes 

integer valued from 0 (no presence of heart disease) 

to 4. Experiments with the Cleveland database have 

concentrated on simply attempting to distinguish 

presence (values 1, 2, 3, 4) from absence (value 0) of 

heart disease. Therefore, all values from 2 to 4 were 

replaced by 1 to determine patients with heart 

disease. The number of healthy patients (belonging 

to class 0) in the processed and the unprocessed 

datasets is 164 and 157 respectively while the 

number of heart disease patients is 139 and 125 

respectively. The processed and unprocessed 

datasets contain a total of 6 and 5968 missing values 

respectively.  

Arrhythmia Dataset: This database contains 452 

instances belonging to 16 classes integer valued 

from 1 (no presence of heart disease) to 16. In this 

study we only concentrate on binary classification to 

distinguish between the presence and absence of 

heart disease. Therefore, the absence of heart disease 

was indicated with the value 0 by replacing values of 

1, and its presence with 1 by replacing all values 

from 2 to 16. The number of healthy patients 

(belonging to class 0) is 245 while 207 patients have 

heart disease (class 1). The dataset contains 279 

attributes in addition to the class attribute. The 

dataset contains a total of 408 missing values.  

3.2 Performance Measures  

Three criteria were used to evaluate the performance 

of the classifiers (Ferri, Hernández-Orallo, & 

Modroiu, 2009): Accuracy, Kappa statistic and Area 

Under the ROC (Receiver Operating Characteristics) 

Curve or simply AUC.  
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Accuracy is the rate of correct predictions made by a 

classifier. The Area Under the Receiver Operating 

Characteristics (ROC) Curve known as Area under 

the curve (AUC) is an evaluation metric which 

calculates the performance of a binary classifier by 

adjusting the appearance of true positive results and 

false positive results in the model. Furthermore, the 

Kappa statistic measures the agreement between two 

raters who each classify N items into C mutually 

exclusive categories.  

3.3 Methodology 

In this study 10-fold cross validation method is used 

to evaluate the performances of the classifiers (Arlot 

& Celisse, 2010). KNN, SVM, MLP and DT 

classifiers were applied using the default parameters 

of the Weka tool. The procedure of the experiments 

is as follows: 

Step 1: For each dataset and each feature ranking 

method, a feature ranking list is returned and the top 

ranked features are selected using five thresholds. 

Step 2: Build the different classifiers with each 

feature subset as well as the entire feature set and 

evaluate the classification performance using a10-

fold cross validation method to obtain accuracy, 

kappa statistic and AUC scores. 

Step 3: Cluster the classifiers using Scott-Knott test 

(Scott & Knott, 1974) based on the Kappa criterion 

in order to assess whether there is a significant 

difference between the different classifiers. 

Step 4: Rank the classifiers that belong to the best 

Scott-Knott (SK) cluster using the Borda Count 

voting system based on three performance criteria: 

Accuracy, Kappa and AUC. 

For the sake of clarity, the following 

abbreviations were used: the feature ranking 

technique ReliefF was denoted R, Info Gain was 

denoted I and Correlation was denoted C. 

Furthermore, to describe a feature subset selected 

with a threshold and a ranker, the first number or 

letter of the threshold was used along with the 

abbreviation of the ranker. Furthemore, the entire 

feature set was denoted ORG. For instance, SVMI4 

means the classifier SVM trained using the subset 

obtained with Info Gain and the threshold 40%. 

4 RESULTS AND DISCUSSIONS 

This section presents the empirical results of the 

experiments. In order to apply feature selection and 

train the different classifiers, a software prototype 

based on Weka API was developed using Java 

programming language under a Microsoft 

environment, while the SK statistical test was 

performed using R Software.  

4.1 Missing Data Handling 

The unprocessed Cleveland dataset contains twenty 

attributes with a percentage of 100% of missing 

values and two attributes with a percentage of 92% 

and 24% missing values. As high percentages of 

missing values can severely degrade the 

classification performance (Almuhaideb & Menai, 

2016), those attributes were removed from the 

dataset along with the patient’s identification 

number (id), the social security number (ccf) and the 

name (name) attributes. Nine other attributes 

contained a few missing values that did not 
exceed 2%, and thus were not removed. After this 

step, we are left with a total of 50 features in 

addition to the class attribute. Furthermore, an 

attribute containing 376 missing values (83%) was 

removed from the Arrhythmia dataset resulting in a 

total of 278 attributes in addition to the class 

attribute. 

4.2 Feature Ranking Results 

Due to the limit number of pages, the datasets that 

was further preprocessed by the authors to handle 

missing values in addition to the datasets obtained 

with feature selection will be available upon request. 

4.3 Classification Results and 
Discussions 

For each dataset, a total of 64 variants were 

evaluated. The SK test results in terms of kappa 

measure for the four datasets are depicted in Fig. 1-

Fig.4. The SK identified two clusters in processed 

Cleveland and Statlog datasets, four clusters in 

unprocessed Cleveland and three clusters in 

Arrhythmia dataset.  

Fig. 1 shows that the best cluster contains a total 

of 31 variants (lines in black) for the processed 

Cleveland dataset. A diversity of classifiers trained 

using different subsets appear in this cluster. Eight 

SVM classifiers trained on subsets selected with I4, 

I5, R4, R5, C4, CL, C5 and R5, in addition to 

SVMORG, appear in this cluster. Furthermore, nine 

MLP classifiers based on the original feature set and 

subsets obtained with CL, IL, R4, R5, C4, C5, I4 

and I5 belong to this cluster. The rest of the 

classifiers belonging to the best cluster consist of 

eight DTs based on subsets selected with I4, I5, C4, 
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C5, R4, R5, IL, CL and five KNNs trained with 

subsets obtained with C4, R4, R5, CL and IL. 

From Fig. 2, it can be noticed that the best cluster 

contains 32 classifiers for the Statlog dataset. As can  

be observed, nine MLP classifiers induced from 

subsets selected with IL, CL, R4, R5, I4, I5, C4, C5 

and C2, in addition to MLPORG, appear in this 

cluster. Moreover, eight SVM classifiers trained on 

the original feature set and subsets selected with C4, 

C5, I4, I5, R4, R5 and CL belong to this cluster. The 

rest of the classifiers of the best cluster consist of 

eight DTs based on subsets selected with R4, R5, I4, 

I5, IL, CL, C5 and C2 and six KNNs trained with 

subsets obtained with I4, R4, R5, IL, CL, C2. 

Fig. 3 shows that the best cluster contains a total 

of 29 best classifiers for the unprocessed Cleveland 

dataset. Among these 29 classifiers we find ten 

MLPs and ten SVMs induced from the original 

feature set and subsets obtained using C2, C4, C5, 

R2, R4, R5, I2, I4 and I5, and eight DT classifiers 

trained using the original feature set and subsets 

selected with R2, R4, R5, I4, I5, C4 and C5. 

Besides, only KNNC5 belong to the best cluster. 

As can be seen from Fig. 4, a total of 39 variants 

are present in the first cluster for the Arrhythmia 

dataset. In this cluster we can notice the presence of 

fourteen SVM classifiers based on the original 

feature set and reduced subsets selected with CL , 

C1, C2, C4, C5, R1, R2, R4, R5, I1, I2, I4, I5. In 

addition, thirteen MLP classifiers based on subsets 

selected with RL, R1, R2, R4, R5, IL, I1, I2, I4, I5, 

CL, C1 and C4 belong to the best cluster. The rest of 

the classifiers of the best cluster are DTs trained 

with the original features and feature subsets 

obtained with IL , I1, I2, I4, I5, R1, R2, R4, C4, R5, 

C5. Note that no KNN classifier appears in the best 

cluster for this dataset. 

The first ten ranks of the best classifiers 

according to the Borda count voting system are 

given in Table 1.Borda count ranks the classifiers of 

the best cluster based on kappa, accuracy and AUC 

measures in order to gain more insight into the 

results. Classifiers marked with the same letter (e.g. 

ᵃ) have the same rank. 

From Table 1, we observe that four classifiers 

based on reduced feature subsets gave the best 

performance for the Cleveland dataset. These 

classifiers include SVMI5, SVMC5, MLPCL and 

KNNCL with accuracies of 83.81%, 83.81%, 

83.15% and 82.82% respectively. For the Statlog 

dataset, the first ranked classifier is MLPIL 

achieving an accuracy of 85.19%. For the 

unprocessed Cleveland dataset all the ten first 

classifiers achieved an accuracy of 100% while for 

Arrhythmia dataset the best classifier is DTI2 with 

an accuracy of 80.92%.  

From the obtained results, different remarks can 

be made: 

- SVM classifiers proved to be very powerful 

since even SVMs trained on the whole feature set 

belonged to the best SK clusters for all datasets. 

- The larger the dataset is the poorer KNN 

classifiers perform since only one KNN 

classifier(KNNC2) appears in the best SK cluster of 

the unprocessed Cleveland dataset and no KNN 

classifier belongs to the best cluster for Arrhythmia 

which is not surprising since KNN is a memory-

based method.. 

- From the Borda count results we can notice that 

the different subsets on which the best ten 

classifiers, for Statlog and Cleveland datasets, were 

based were mainly obtained with Log, 40% or 50% 

thresholds which selected more attributes than 10% 

and 20%. For the unprocessed Cleveland the subsets 

were mainly obtained with 20%, 40% and 50% 

which select more attributes than 10% and Log 

while for Arrhythmia the selected subsets were 

mostly obtained with 10%, 20%, 40% which 

selected more attributes than Log and less than 50%. 

Therefore, the size of the datasets plays an important 

role in the choice of the thresholds. 

- We believe that the different thresholds and 

feature ranking methods presented in this study can 

be tested with different datasets and classifiers in 

other domains in order to obtain optimal results. In 

fact, the results we obtained are very promising. For 

example, for Cleveland dataset SVMI5 and SVMC5 

trained on six attributes outperformed the results of 

other studies, such as those of RBF trained on 

subsets selected with Fuzzy Entropy and  Mean 

selection  (81.75% with six selected attributes) or 

Half selection (83.44% with seven selected 

attributes) (Jaganathan & Kuppuchamy, 2013). 

Furthemore, our SVM classifiers outperformed the 

accuracy of fuzzy AHP and feed-forward neural 

network (83%) trained on nine attributes selected 

form Cleveland dataset with a modified differential 

evolution algorithm (Vivekanandan & Sriman, 

2017). Also for Statlog dataset MLPIL with only 

three features achieved the same results of RBF 

(85.19% with four selected attributes) with Fuzzy 

Entropy feature ranking and Neural Network for 

threshold selection. Moreover the MLPIL classifier 

achieved the same accuracy of  MLP classifier with 

a hybrid feature selection method which also 

selected three features in 
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Figure 1: SK test results on processed Cleveland dataset. 

 

Figure 2: SK test results on Statlog dataset. 

 
 

 

Figure 3: SK test results on unprocessed Cleveland 

dataset. 

 

Figure 4: SK test results on Arrhythmia dataset. 
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Table 1: Classifiers ranked at the top ten positions of Borda count. 

Cleveland  Statlog  Unprocessed cleveland Arrhythmia 

Rank Classifiers Rank Classifiers Rank Classifiers Rank Classifiers 

1 ᵃSVMI5 1 MLPIL 1 ᵃMLPC2 1 DTI2 

1 ᵃSVMC5 2 ᵃDTIL 1 ᵃMLPI2 2 ᵃDTC4 

1 ᵃMLPCL 2 ᵃMLPR4 1 ᵃMLPR2 2 ᵃDTR4 

1 ᵃKNNCL 3 ᵇSVMC4 1 ᵃSVMC2 3 DTR1 

2 SVMORG 3 ᵇSVMORG 1 ᵃSVMC4 4 SVMC4 

3 MLPR4 3 ᵇDTR4 1 ᵃSVMC5 5 ᵇSVMR4 

4 SVMC4 3 ᵇDTR5 1 ᵃSVMI2 5 ᵇDTR2 

5 ᵇSVMI4 3 ᵇKNNCL 1 ᵃSVMI4 6 DTORG 

5 ᵇSVMR4 3 ᵇKNNIL 1 ᵃSVMI5 7 SVMC5 

6 SVMR5 3 ᵇMLPCL 1 ᵃSVMORG 8 DTI1 

.

(Peter & Somasundaram, 2012). For Arrhythmia 

dataset, the accuracy of DTI2 outperformed the 

accuracy results of DT and four other classifiers 

obtained in (Sasikala, Appavu, & Geetha, 2014) with 

feature extraction and hybrid feature selection. 
- The results obtained for unprocessed Cleveland 
considerably outperform those obtained for the 
processed Cleveland dataset which shows that this 
dataset contains features that can be very informative 
about heart disease and thus this dataset should be 
more investigated. 

5 CONCLUSION 

The use of univariate filter methods with different 
thresholds for feature selection resulted in optimal 
classification performance for one or more classifiers 
over small and large heart disease datasets. The best 
results obtained in this study are very competitive 
with results of other methods in the literature which 
used multivariate filters, hybrid or multivariate 
wrapper feature selection methods on the same heart 
disease datasets. The results of this study suggest that 
the unprocessed Cleveland dataset might contain 
highly informative features about heart disease 
diagnosis. 

Ongoing work aims to investigate more feature 
ranking techniques to construct ensemble feature 
ranking methods along with hyper-parameter tuning 
for better results. 
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