
Revisiting Privacy-aware Blockchain Public Key Infrastructure

Paul Plessing a and Olamide Omolola b

Institute of Applied Information Processing and Communication, Technische Universitaet Graz, Austria

Keywords: Blockchain, Public Key Infrastructure, Privacy, RSA.

Abstract: Privacy-aware Blockchain Public Key Infrastructure (PB-PKI) is a recent proposal by Louise Axon (2017)
to create a privacy-preserving Public Key Infrastructure on the Blockchain. However, PB-PKI suffers from
operational problems. We found that the most important change, i.e., the key update process proposed in PB-
PKI for privacy is broken. Other issues include authenticating a user during key update and ensuring proper key
revocation. In this paper, we provide solutions to the problems of PB-PKI. We suggest generating fresh keys
during key update. Furthermore, we use ring signatures for authenticating the user requesting key updates and
use Asynchronous accumulators to handle the deletion of revoked keys. We show that the approach is feasible
and implement a proof of concept.

1 INTRODUCTION

Nowadays, Public Key Infrastructure (PKI) plays a
major role in ensuring secure communication. PKI
works on the principle that a trusted third-party or-
ganization called Certificate Authority (CA) can sign
certificates and vouch for the authenticity of the link
between the public key and the subject name con-
tained within the certificate. The trusted third-party
verifies a client’s identity and confirms the client’s
identity before signing. This third-party signs a cer-
tificate with its private key1. The certificate of the
trusted third-party is assumed to be widely known,
and another entity can verify the signed client certifi-
cate by verifying the signature of the trusted third-
party organization affixed to it.

However, PKI is a centralized infrastructure and
attacks like those carried out on Comodo2 or DigiNo-
tar3 compromises the CAs, and that can compromise
the integrity of the certificates issued thereby compro-
mising the whole infrastructure.

Phil Zimmerman proposed the Web of Trust
(WoT) in 1992 (Zimmermann, 1994) as a decentral-

a https://orcid.org/0000-0002-2679-1862
b https://orcid.org/0000-0002-4655-4274
1The public key is included in the certificate.
2https://www.comodo.com/Comodo-Fraud-Incident-

2011-03-23.html(last accessed on 20/03/2019)
3https://security.googleblog.com/2011/08/update-

on-attempted-man-in-middle.html(last accessed on
20/03/2019)

ized alternative to PKIs. The initial processes lead-
ing to trust in WoT is different from that in PKI. For
example, if Alice knows the public key of Bob and
trusts him, and Bob knows the public key of Claire,
then Alice can ask Bob for Claire’s key and trust that
it is indeed Claire’s key. Alice and Bob exchange their
keys initially in person. This exchange event is called
a “Key Signing Party”, where people exchange their
keys with each other in person. However, this per-
sonal exchange poses two problems. The first prob-
lem is an efficiency problem as only a few keys can
be exchanged initially in a particular time frame. The
second problem is a trust chain problem as it is possi-
ble that Alice is unable to find a trust chain that con-
nects with Claire, thereby giving rise to isolated trust
communities.

Researchers are continually trying to improve the
two mechanisms above in different ways. Blockchain
has recently come to the center stage of the research
community (Nakamoto, 2009), and many researchers
have proposed using the Blockchain to solve some of
the PKI and WoT problems. One of such propos-
als is the Privacy-aware Blockchain-based PKI (PB-
PKI) (Axon and Goldsmith, 2017). PB-PKI4 aims to
use the Blockchain to solve the problems of WoT and
also ensure privacy.

However, some of the goals were not achieved,
and we discovered some problems with the key up-
date process and the key revocation in the proposal.

4PB-PKI is actually an implementation of WoT on the
Blockchain.

Plessing, P. and Omolola, O.
Revisiting Privacy-aware Blockchain Public Key Infrastructure.
DOI: 10.5220/0008947104150423
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 415-423
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

415

Our contributions in this paper include the follow-
ing:

1. We show that the key update process in PB-
PKI (Axon and Goldsmith, 2017) does not en-
sure privacy.

2. We propose the use of ring signatures to solve
the problem of authenticating registered mem-
bers of the blockchain during key update to en-
sure that only registered members can perform
key updates.

3. We propose a revocation mechanism that in-
volves key deletion from the blockchain for PB-
PKI.

4. We implement a PoC and show that it is feasi-
ble in practice.

The rest of the paper is structured as follows: Sec-
tion 2 gives a short overview of previous research;
Section 3 gives a short introduction into Asyn-
chronous accumulators and Ring Signatures; Sec-
tion 4 describes the privacy notions in PB-PKI; Sec-
tion 5 describes PB-PKI; Section 6 discusses the
problems of PB-PKI and provides our solutions to
them; we evaluate our ideas in Section 7; Section 8
discusses the implications of our changes to PB-PKI
and we conclude in Section 9.

2 RELATED WORK

Blockchain became popular in 2009 with the intro-
duction of Bitcoin (Nakamoto, 2009). Blockchains
are decentralized and store transactions between par-
ties. All the transactions are publicly auditable by all
participants, and once a transaction is recorded and
confirmed, it is practically immutable. These charac-
teristics have led researchers to propose implement-
ing PKIs and WoT on the Blockchain (Karaarslan
and Adiguzel, 2018; Singla and Bertino, 2018;
Yakubov et al., 2018; Matsumoto and Reischuk,
2016; Garay et al., 2018; Conner Fromknecht, 2014).
One example of such a proposal is Certcoin (Con-
ner Fromknecht, 2014). Certcoin is a blockchain vari-
ant built upon Namecoin5 that also functions as a
WoT.

The simplest version of Certcoin uses Name-
coin as a bulletin board where blockchain posts
and blockchain traversals support its functionalities.
Data structures such as Asynchronous Accumula-
tors (Reyzin and Yakoubov, 2015) and Kademlia
Distributed Hash Table (DHT) (Maymounkov and

5Namecoin is a fork of Bitcoin.

Mazières, 2002) were introduced in successive ver-
sions so that Certcoin is time- and space-efficient.
However, Certcoin was not built with privacy taken
into consideration.

Certcoin transactions store information about pub-
lic key events. The public key events are registration,
update, revocation, and verification. Certcoin man-
dates every entity to register two key pairs. The entity
uses the first key pair called online key pair for com-
munication and uses the second key pair called offline
key pair for security purposes such as key revocation6

and update. The offline key pair is stored offline to
protect it.

The authors of Certcoin provide an incomplete
implementation of Certcoin in the language Go. The
implementation uses RSA keys and the Asynchronous
Accumulator for key verification. PB-PKI builds on
the foundation of Certcoin.

3 PRELIMINARIES

This section briefly describes the algorithms that are
used in the rest of the paper

3.1 Asynchronous Accumulator

Reyzin and Yakoubov proposed the Asynchronous ac-
cumulator(AA) (Reyzin and Yakoubov, 2015). AA is
the dynamic form of the accumulator called Merkle
tree (Derler et al., 2015), and it provides algorithms
for adding or deleting elements from the original set.
AA (see figure 1) is a container of several Merkle
roots, i.e., an array of Merkle roots. Every index of
the AA can contain only the root of one Merkle tree
at a particular time.

AA preserves efficiency in an environment, where
modifications of a Merkle tree happen often due to
frequent addition of leaves. Recalculating the whole
tree after a modification requires logn time, therefore,
it is desirable to optimize this process. AA works sim-
ilar to a Merkle tree regarding verification.

1. Initially, the AA is empty

2. To add a message m1, m1 is hashed to H1 and put
into the first slot of the AA at index 0.

3. Suppose a second message m2 needs to be added.
Since index 0 is occupied by H1, H1 and H2

7 are
concatenated and hashed to H12. The hash H12 is
put at index 1 of the AA. Simultaneously, H1 gets

6The offline key pair can revoke the online key by sign-
ing a revoke-event.

7H2 is the hash of message m2.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

416

Figure 1: Illustration of an Asynchronous Accumulator
with its empty (”-”) and filled (”H****”) Merkle roots and
their corresponding Merkle trees.

removed from index 0. To verify that message m1

is part of the AA, the prover has to remember m1

and H2. With this knowledge, he can reconstruct
the Merkle root at index 1.

4. When a third message m3 arrives, it is hashed to
H3 and placed at index 0 since index 0 is empty.

5. The next message m4 is also hashed to H4. How-
ever, index 0 contains H3. Therefore, H3 and H4

are concatenated and hashed into H34. H34 should
be placed at index 1, but it is occupied by H12.
Thus, H12 and H34 are concatenated and hashed
into H1234. H1234 is then placed at index 2. To
verify the existence of message m1, only message
m1, H2 and H34 need to be remembered. Simul-
taneously, H3 and H12 are removed from index 0
and index 1.

The worst case scenario for an addition to AA is logn
operations (concatenating and hashing), with n leaves
of the biggest tree. In the best case, the addition can
be done after one hash if index 0 is free. The trade-
off of faster additions is that more space is needed
for storing an AA compared to one Merkle root. The
storage requirement of AA for n leaves is logn.

3.2 Ring Signatures

Ring signatures allow a user to sign a message and
specify a set of possible signers without revealing
which member actually signed the message (Rivest
et al., 2001). The user can choose any set of possi-
ble signers that includes himself and sign by using his
secret key and the other’s public keys without getting
their approval or assistance. A ring signature does not
need any set-up, and the ring signature scheme is de-
fined by two procedures:

1. Sign(m,P1, . . . ,Pr,Ss) which produces a ring sig-
nature σ for the message m, given the public keys
P1,P2, . . . ,Pr of the r ring members, together with
the secret key Ss of the s-th member (who is the
actual signer).

2. Verify(m,σ) which accepts a message m and a
signature σ (the signature includes the public keys
of all the possible signers), and outputs either true
or false

4 PRIVACY CONCERNS

Users sometimes assume that public blockchains are
anonymous. This assumption is true to the extent that
personal information is not connected to the accounts
of the blockchain user. An account is the hash of the
public key of a user’s key pair on the blockchain. Two
possibilities for tracking users exist. For example, it
is possible to find out the IP-address of a blockchain
address by observing the blockchain network. A user
can prevent this possibility by masking his IP-address
using anonymizing technologies like Tor. The sec-
ond violation of privacy happens by design because

Revisiting Privacy-aware Blockchain Public Key Infrastructure

417

the public can audit Blockchains. Therefore, the pub-
lic knows what data is in a blockchain address’ wal-
let, the meta information of the data such as its origin
and more. A naive solution would be to use a new
public key for each transaction. However, this has no
real privacy gain since the mapping between the pub-
lic key and the account is available for the public.

In terms of blockchain based PKIs, this violation
of privacy would translate to linking any public key
and its transactions even when the public key has been
updated. At the moment a public key is used in any
service, an adversary could track its activities across
services. PB-PKI provides unlinkability between an
updated public key and its identity without compro-
mising the ability to verify that a specific public key
is authorized to take an action.

5 PB-PKI

In this section, we give a short introduction into the
original PB-PKI (Axon and Goldsmith, 2017).

PB-PKI modifies part of Certcoin to achieve pri-
vacy. Registering, revoking and verifying a key in
PB-PKI is the same as that of Certcoin. An entity
registers its identity by posting its public key on the
blockchain. The main difference between Certcoin
and PB-PKI is the key update process. The unique key
update procedure in PB-PKI aims to provide untrack-
ability and provide a way to disclose the link between
an identity and its key by the entity at a later point.
This user-controlled disclosure enables the entity to
prove that a message is signed with its unlinkable key
which is connected to the certified key. PB-PKI hides
the link between an identity represented by its current
public key and its previous actions as well as keys,
while still retaining the authenticity of the key.

Since the PB-PKI Key update process is the main
improvement over Certcoin, we will focus on it in the
rest of this paper. The PB-PKI Key update process
(RSA keys) involves two steps:

1. Generate a new offline key pair, pkfn and skfn (of-
fline public key at time n and offline secret key at
time n), where:

2. Compute the new online key pair pknn and sknn
(online public key at time n, and online secret key
at time n) in the following manner:
With this formula, the new keys are a valid RSA
key pair, where:

pknn · sknn = 1 (mod Nn) (1)

The two steps form a chain of keys as shown in
figure 2 after every update. When a user wishes to

pkn1Posted online:

Online keys: (pkn1,skn1)

skf1Stored offline:

Offline keys: (pkf1,skf1)

f1

pkn2

(pkn2,skn2)

skf2

(pkf2,skf2)

f2

pkn3

(pkn3,skn3)

skf3

(pkf3,skf3)

Figure 2: Key update procedure to facilitate user-controlled
disclosure.

disclose the public keys, the user has to publish all
offline public keys. With that knowledge, anyone can
recompute the chain of public keys and verify that a
specific key leads back to a particular identity.

Regarding the key update transaction, it must be
guaranteed that this new unlinkable public key is from
a registered member. Louise Axon (Axon and Gold-
smith, 2017) proposed that the identity that wants to
update must provide a signature signed with the cur-
rent key. However, this would mean a public link-
age of all keys. Therefore, the author proposed that
the link is disguised by encrypting the signature with
the public keys of a randomly chosen subset of the
network members. These network members are then
included in the verification process because they can
decrypt the signature and verify that it is indeed from
a key that was already on the network. This of course
still enables the verifiers to track that two keys belong
to the same person. However, since the subset is cho-
sen randomly for every key update, a verifier can only
track the identity link between two keys.

Furthermore, the changed usage of the offline key
pair means that it cannot be used the same way as
in Certcoin. In Certcoin, the offline key provided a
way to revoke compromised keys. In case of online
key theft, a user can still prevent the malicious usage
of the stolen online key by revoking it with the of-
fline key. However, the user stores the offline keys
securely after its generation in PB-PKI and only pub-
lishes them to disclose its identity. To obtain the same
revocation abilities as Certcoin, PB-PKI introduces
the so-called “Master Key”. The Master key func-
tions the same way as offline keys in Certcoin, i.e., it
can revoke a current compromised online key.

6 ENHANCEMENTS TO PB-PKI

This section describes the problems encountered in
the implementation of PB-PKI and the solutions to
these problems8. Some of the problems required a to-

8We refer to our improved version of PB-PKI as En-
hanced PB-PKI.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

418

Table 1: Comparison of PB-PKI with NOOB-PKI regarding key operations.

PB-PKI Enhanced PB-PKI

Setup Phase User U generates an online, offline and master RSA key pair.9 Setup Phase User U generates an online and offline RSA key pair.

Key Registration: U posts a registration transaction with

• his identity

• a timestamp

• the public part of the generated online key

• a signature of the generated online public key

• a signature of the master key

It has to be verified that the identity and the online key have not been
registered previously and that the signature of the online key is valid.

Key Registration: U posts a registration transaction with

• his identity

• a timestamp

• the public part of the generated online key (registration key)

• a signature of the online public key

• the witness of the online public key

• the public part of the generated offline key

• a signature of the offline public key

It has to be verified that the identity and the public online key have not been
registered previously. The signatures of the online and offline keys and the
witness are also validated.

Key Update: User U generates a new offline RSA key pair with public part
pkf and private part skf. To generate the new online key with public part
pkn and private part skn, U calculates:

pknn = pknn−1 · skfn(ModNn) (2)

sknn = sknn−1÷ skfn(ModNn) (3)

U then posts an update transaction with

• a timestamp

• the public part of the newly calculated online key

• a signature of the online public key

• a signature of the previous online public key to ensure that U is
already part of the network. This signature is encrypted with the
public keys of a subset of network members. The subset is chosen
randomly at each update and has to verify the signature of U’s
previous online key.

U secret shares the new offline public key between a majority of the
network members.
It has to be verified that the online public key has not been registered
previously, that the first signature is valid, and that the second signature is
valid and done with a currently valid public key on the network.

Key Update: User U generates a new online and offline RSA key pair and
posts an update transaction with:

• a timestamp

• the public part of the new online key

• a signature of the new online public key

• the witness of the new online public key

• the public part of the new offline key

• a signature of the new offline public key

• a ring signature by use of a randomly selected subset of registration
keys and U’s registration key

• all registration keys used for the ring signature

The network members verify that the online public key has not been
registered previously, the signatures of the online and offline keys are valid,
and the witness is valid. Additionally, the network verifies that the ring
signature is valid and that all used registration keys exist.

Key Revocation: User U posts a revocation transaction with

• a timestamp

• the public part of the to be revoked public key

• a signature of the public key

Key revocation can be executed either by the key holder.

Key Revocation: User U posts a revocation transaction with

• a timestamp

• the public part of the to be revoked key

• a signature of the public key

• the witness of the public key

• the new ancestors of the revoked public key

The network members verify that the revoked key is indeed part of the
network and that the signature, the witness, the ancestors are valid. The
ancestors of a given message are all its parent nodes in a Merkle tree. The
revoked key is replaced with ”⊥” in the Merkle tree, and the ancestors of
”⊥” have to be posted so that other users can update their witnesses
accordingly.

tal change of procedure while the others needed some

9 RSA is used because it is based on a computationally
hard problem.

modifications to the existing procedures. The issues
and their solutions are given below:

Revisiting Privacy-aware Blockchain Public Key Infrastructure

419

6.1 Creation of New Keys

In PB-PKI (Axon and Goldsmith, 2017) new keys are
generated with the novel update procedure described
in section 5. This update procedure should ensure
unlinkable keys while allowing user-controlled dis-
closure at the same time. However, this novel pro-
cedure has a side effect - it uses the same modu-
lus for every updated key pair. An attack where en-
crypted messages can be decrypted when two public
keys have the same modulus was documented by Dan
Boneh (Boneh, 1998). We present equations below
that involves two different public keys e1,e2, and two
cipher texts of the same message encrypted by the two
public keys A,B. The equations show that the mes-
sage can be decrypted even without the private keys.
Given:

A=Me1 (mod n)

B=Me2 (mod n)
(4)

If gcd(e1,e2) = 1 ,there exists some x,y such that
xe1+ye2 = 1
Therefore:

Ax ·By =Me1x ·Me2y

=Mxe1 ·Mye2

=Mxe1+ye2 (5)

=M1

=M

The attacker could also trick the user to sign sensitive
information twice with a past and current key. The at-
tacker can then decrypt the message using the process
we described. Furthermore, an adversary can scan the
blockchain for public keys with equal modulus, and
be sure that these keys belong to the same user. In-
stead of user-controlled disclosure, the novel update
process actually ensures linkability by design.

6.1.1 Solution

As the proposed update procedure could not disguise
links between keys, we sought another mechanism.
We found that the key update mechanism in PB-PKI is
not critical to ensuring privacy. The mechanism helps
in disclosure since a user can provide the link between
his keys to a verifier. However, there are other ways
that one can use to prove the ownership of a key with-
out linking one’s keys by design.

We propose generating a new random key pair at
each update event. A user can still disclose that a spe-
cific key belongs to him. He does it by providing a

signature with the key to be disclosed and his regis-
tration key. Thus, a verifier can be sure of the owner-
ship of the disclosed key. In addition, the disclosure
of a key does not disclose any other keys of the same
identity.

6.2 Key Deletion

In previous papers about Certcoin (Con-
ner Fromknecht, 2014) and PB-PKI (Axon and
Goldsmith, 2017), fast key verification is achieved
with the Merkle root of a Merkle tree containing all
valid public keys. Specifically, many Merkle roots
are involved because Certcoin and PB-PKI use the
AA as explained in Subsection 3.1. To quickly verify
whether a key is valid, a verifier takes the key as well
as its witness and computes its Merkle root. Then the
verifier takes the Merkle roots of the latest block and
checks whether one of them matches the computed
one. This process is quick because it needs at most
logn operations (for n number of keys in the Merkle
tree) to calculate the Merkle root. In addition, it is
space-efficient, because the verifier only needs to
store the latest blockheader plus the public key and
the witness10.

Adding keys is very efficient as well because of
the Asynchronous Accumulator. The maximum of
operations needed per addition of a key is logn (for n
number of all keys in the Merkle tree). Consequently,
the Merkle tree does not need to be fully recalculated
but it is merged with other trees of the same size, i.e.,
concatenating the roots and hashing them.

This works very well when one adds keys only.
However, the event of a key deletion in the case of
key revocation was not discussed intensively by the
authors of Certcoin and PB-PKI. Even though in both
papers it is mentioned that deletion is possible, only
Certcoin gives a short explanation of how deletions
can be implemented using a Merkle tree. To make the
term clear: deleting a key from a Merkle tree means
to modify an entry of a Merkle tree. The entry to be
deleted gets replaced with an entry that indicates that
the former public key is deleted.

6.2.1 Solution

In the Enhanced version of PB-PKI, we use the sign
”⊥” for deleted entries. With such a modification, we
have to recalculate logn parents of the Merkle tree.
Therefore, while adding keys takes at worst case logn
operations, deletion of keys always takes logn opera-
tions.

10Witnesses are the missing hashes needed by a verifier
to construct a Merkle root.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

420

Furthermore, the time required for key holders to
update their witness needs to be considered as well.
Every witness in this Merkle tree has to be updated.
The number of operations for witness update is in the
worst case in direct correlation to the number of op-
erations needed to update the AA. In the best case, a
key holder only has to do one operation to bring his
witness up to date. Therefore for both addition and
deletion, a key holder needs to do at most logn opera-
tions.

6.3 Space Efficiency

The second issue regarding entry deletion from
Merkle trees is space efficiency. If there are additions
to the AA only, the only information that is needed
to update any witness are the resulting Merkle roots
after every addition. However, in the case of deletion,
one needs to know the former witness of the deleted
element in order to update the other witnesses of a
Merkle tree. This means that the witness of every re-
voked and deleted key has to be stored and published.
The result of this is more storage is used.

6.3.1 Solution

The AA changes with every transaction, but only the
final accumulator after all transactions in a block are
taken into account gets shown. This means that for
key additions, it is mandatory to publish the witness of
each added key as well. The result is the publication
of every change of the AA.

As a result of the changes made in the preced-
ing paragraphs, a prover with an old witness has to
go back to the last block where his public key plus
witness was valid. Then he traverses all transactions
of all blocks leading to the most current block, and
he adjusts his witness according to the occurred key
events. Finally, he has a witness that provides proof
when using the latest accumulator.

6.4 User Authentication

The third challenge was the authentication of a pend-
ing key update. At key update, it should be ensured
that the user requesting the key update already owns a
key on the network while securing his identity. In the
proposed PB-PKI this is done through a signature of
the current key. However, this would enable a linking
of the keys. Therefore, the signature is encrypted. It is
encrypted with a subset of total public keys available
on the network. These members then have to decrypt
the signature and verify that it is indeed done with a
registered key.

This practice sounds nice in theory but is hard to
implement. The first set of challenges arises: how can
the subset of network members announce their verifi-
cation of the signature? Post it on the blockchain?
How can one trust that they are telling the truth?
Moreover, how can one guarantee that they actually
verify the signature and have not been offline for two
years?

This set of questions remains unanswered, but
even if there were answers to them, another ques-
tion arises: How to find out a subset of current public
keys? This would either require global storage of n
public keys (for n network members), like the AA,
but instead of a few Merkle roots we needed to record
all valid keys, millions of it in every block. This
would be fast but space-intensive (totally unusable).
Alternatively, we traverse the blockchain looking for
valid keys, which would be space-friendly but time-
intensive. Additionally, we cannot find out which
public keys that were posted onto the blockchain are
still valid and which are not, because no keys are
linked to each other.

6.4.1 Solution

We decided to find another way of solving the authen-
tication problem. We chose to use ring signatures.
Ring signatures are explained in Subsection 3.2. In
the Enhanced PB-PKI, a ring signature is crafted and
posted in the update transaction. The public keys are
randomly selected out of the public keys published at
registration event. The user’s public key that was cre-
ated during registration is added to the set of keys.
With these selected keys, he performs the ring signa-
ture and puts it onto the transaction. That way, anyone
can verify that this transaction must be from one of
the already registered holders of the used public keys.
However, nobody knows who it was from this group
of keys. Moreover, distinct ring signatures have no re-
lation to each other, and no information can be gained
by intersecting them. We used a ring size of 6 possi-
ble signers for the proof of concept because having a
larger ring size is space inefficient.

7 EVALUATION

For the proof of concept, we used an Asus Laptop
with 4GB RAM and an Intel Core processor i5 of the
5th generation. The installed operating system was
Ubuntu 16.04. The PoC was written in the program-
ming language Go, and the database we used to store
the blocks was LevelDB.

Revisiting Privacy-aware Blockchain Public Key Infrastructure

421

With this setup, we measured how long it takes to
execute the different operations:

• Register a Key: ∼80 milliseconds

• Update a Key: ∼120 milliseconds

• Revoke a Key: ∼10 milliseconds

• Verify a Key: ∼15 microseconds

• Update a Witness: ∼90 milliseconds
Verifying a key is the most critical activity because
users often have to verify whether a key is valid. In
Enhanced PB-PKI, verifying a key is the fastest oper-
ation, because it only involves hashing and concate-
nation without any write operation. The bottleneck of
posting transactions is the need to mine new blocks
and verify them. Setting the mining time or process
is beyond the scope of this paper. The Enhanced PB-
PKI is a full blockchain and it was deployed locally
on the laptop for the experiments.

8 DISCUSSION

In this section, we consider the possible cases of key
compromise and the options that the Enhanced PB-
PKI provides to the victim. Key compromise happens
when an adversary gets access to or steals the private
part of the online or the offline key. Getting access to a
key means an adversary knows a key while the victim
still has access to the key too. Stealing a key means an
adversary takes the key away from the victim so that
the adversary knows the key while the victim does
not.

8.1 Security Model

We consider a model where PB-PKI is accessible to
the public. In this model, we assume that an adversary
has access to the blockchain. The adversary is also
part of every operation involving registration, key up-
date and key revocation and able to tamper with any
of these operations.

The security goals of the system are as follows:

1. The adversary cannot link a key to the owner.

2. Only the owner of a public online key can prove
the ownership.

Depending on which private keys were stolen or ac-
cessed, we consider six different cases:

1. Online secret key accessed only: The adversary
can take part in the network by using the accessed
online key. The victim can revoke his online key
and update it. The update creates a new online key
he can safely use again.

2. Online and offline secret keys accessed: The ad-
versary can take part in the network by using the
accessed online key. The adversary can also per-
form key update, but this is not useful because
when the user revokes the online key and performs
key update, then the adversary can no longer im-
personate the victim. After key update, the ad-
versary does not have any knowledge of either the
new online or offline key.

3. Online secret key stolen only: The adversary can
take part in the network by using the stolen online
key. To recover from this case, it requires that the
victim stored the previous online key. With this
previous online key and the current offline key, he
can recalculate the stolen online key. Then he re-
vokes and updates the stolen key.

4. Online and offline secret keys stolen: The ad-
versary can take part in the network by using the
stolen online key. In this case, the victim can do
nothing against the adversary. However, the vic-
tim can update the previous online key, and stay
part of the network. The possibilities for the ad-
versary are limited to the use of the stolen online
key only. To mitigate this scenario, the introduc-
tion of an expiration date of public keys would
limit the key abuse of the adversary to a certain
time frame.

As long as keys are not stolen and key compromise is
detected early, an adversary can be kept under control.
To avoid key theft, keys should always be copied to a
safe location.

9 CONCLUSION

In this paper, we have shown that the initial proposal
of PB-PKI is fraught with challenges. Some of the
problems include authentication during key update,
how revoked keys can be deleted successfully and
the key update mechanism is not as secure as ear-
lier expected. Enhanced PB-PKI simplifies the update
process by requiring the user to generate fresh keys
without using the key updates mechanism by Louise
Axon et al. (Axon and Goldsmith, 2017). The new
key update mechanism removed the privacy problem
that was introduced by PB-PKI. The Enhanced PB-
PKI solved the problem of user authentication by in-
troducing ring signatures to PB-PKI. We also adapt
the use of AA in order to aid key deletion and ensure
that storage space is maximized after deletion of a re-
voked key. The Certcoin usage of offline keys for key
revocation was retained instead of using it for key up-
dates as in the initial PB-PKI construction. We devel-

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

422

oped the proof of concept using the Go programming
language and show that the solutions we proposed are
feasible.

In the future, we plan to implement optimiza-
tions to the ring signature scheme. New ring sig-
nature schemes such as forward-secure linkable ring
signatures (Boyen and Haines, 2018) will also be in-
vestigated as this supports forward security and the
blockchain user can prove ownership of a ring signa-
ture using this scheme.

ACKNOWLEDGMENTS

We acknowledge David Derler, Sebastian Ramacher,
Peter Lipp and Clemens Brunner for fruitful discus-
sions during the period of this work. We acknowledge
Sebastian Ramacher, Peter Lipp and Clemens Brun-
ner for their thorough reviews.

This research is part of the LIGHTest project
funded by the European Union’s Horizon 2020 re-
search and innovation programme under G.A. No
700321.

REFERENCES

Axon, L. and Goldsmith, M. (2017). Pb-pki: A privacy-
aware blockchain-based pki. In Proceedings of the
14th International Joint Conference on e-Business
and Telecommunications - Volume 6: SECRYPT,
(ICETE 2017), pages 311–318. INSTICC, SciTePress.

Boneh, D. (1998). Twenty years of attacks on the rsa cryp-
tosystem.

Boyen, X. and Haines, T. (2018). Forward-secure linkable
ring signatures from bilinear maps. Cryptography,
2(4):35.

Conner Fromknecht, Dragos Velicanu, S. Y. (2014). Cert-
coin: A namecoin based decentralized authentication
system.

Derler, D., Hanser, C., and Slamanig, D. (2015). Revisiting
cryptographic accumulators, additional properties and
relations to other primitives. In Topics in Cryptology -
CT-RSA 2015, The Cryptographer’s Track at the RSA
Conference 2015, San Francisco, CA, USA, April 20-
24, 2015. Proceedings, pages 127–144.

Garay, J. A., Kiayias, A., Leonardos, N., and Panagiotakos,
G. (2018). Bootstrapping the blockchain, with appli-
cations to consensus and fast PKI setup. In Public-
Key Cryptography - PKC 2018 - 21st IACR Interna-
tional Conference on Practice and Theory of Public-
Key Cryptography, Rio de Janeiro, Brazil, March 25-
29, 2018, Proceedings, Part II, pages 465–495.

Karaarslan, E. and Adiguzel, E. (2018). Blockchain based
DNS and PKI solutions. IEEE Communications Stan-
dards Magazine, 2(3):52–57.

Matsumoto, S. and Reischuk, R. M. (2016). IKP: turn-
ing a PKI around with blockchains. IACR Cryptology
ePrint Archive, 2016:1018.

Maymounkov, P. and Mazières, D. (2002). Kademlia: A
peer-to-peer information system based on the xor met-
ric. In Revised Papers from the First International
Workshop on Peer-to-Peer Systems, IPTPS ’01, pages
53–65, London, UK, UK. Springer-Verlag.

Nakamoto, S. (2009). Bitcoin: A peer-to-peer electronic
cash system.

Reyzin, L. and Yakoubov, S. (2015). Efficient asynchronous
accumulators for distributed pki. IACR Cryptology
ePrint Archive, 2015:718.

Rivest, R. L., Shamir, A., and Tauman, Y. (2001). How
to leak a secret. In Advances in Cryptology - ASI-
ACRYPT 2001, 7th International Conference on the
Theory and Application of Cryptology and Informa-
tion Security, Gold Coast, Australia, December 9-13,
2001, Proceedings, pages 552–565.

Singla, A. and Bertino, E. (2018). Blockchain-based PKI
solutions for iot. In 4th IEEE International Confer-
ence on Collaboration and Internet Computing, CIC
2018, Philadelphia, PA, USA, October 18-20, 2018,
pages 9–15.

Yakubov, A., Shbair, W. M., Wallbom, A., Sanda, D., and
State, R. (2018). A blockchain-based PKI manage-
ment framework. In 2018 IEEE/IFIP Network Op-
erations and Management Symposium, NOMS 2018,
Taipei, Taiwan, April 23-27, 2018, pages 1–6.

Zimmermann, P. (1994). Pgp user’s guide, volume i: Es-
sential topics.

Revisiting Privacy-aware Blockchain Public Key Infrastructure

423

