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Abstract: The tiled convolutional neural network (TCNN) has been applied only to computer vision for learning invari-
ances. We adjust its architecture to NLP to improve the extraction of the most salient features for sentiment
analysis. Knowing that the major drawback of the TCNN in the NLP field is its inflexible filter structure, we
propose a novel architecture called hybrid tiled convolutional neural network (HTCNN) that applies a filter
only on the words that appear in similar contexts and on their neighbouring words (a necessary step for pre-
venting the loss of some n-grams). The experiments on the IMDB movie reviews dataset demonstrate the
effectiveness of the HTCNN that has a higher level of performance of more than 3% and 1% respectively than
both the convolutional neural network (CNN) and the TCNN. These results are confirmed by the SemEval-
2017 dataset where the recall of the HTCNN model exceeds by more than six percentage points the recall of
its simple variant, CNN.

1 INTRODUCTION

Sentiment analysis or opinion mining is a sort of text
classification that assigns a sentiment orientation to
documents based on the detected contextual polarity
(Liu, 2012). In the past, research work has focused
only on the overall sentiment of a document, trying to
determine if the entire text is positive, neutral or neg-
ative (Liu and Zhang, 2012). However, besides pre-
dicting the general sentiment, a better understanding
of the reviews could be undertaken using the more in-
depth aspect based sentiment analysis (ABSA) (Thet
et al., 2010; Liu and Zhang, 2012). Specifically,
ABSA’s goal is to predict the sentiment polarity of
the corpus’ target entities and aspects (e.g. the possi-
ble aspects of the entity “movie” could be “the plot”,
“the actors’ acting” or “the special effects”). While
it is easy to establish the text entities based on the a
priori information about text corpus, the aspect terms
are difficult to infer and usually the training process
requires to use a predefined set of term categories
(Wang and Liu, 2015; Zhang et al., 2012; Ma et al.,
2018).

In this paper, we propose a framework that ap-
plies the idea of ABSA only conceptually and tries
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to enhance the performance of one of the most popu-
lar baseline models for sentiment classification. More
specifically, we adjust a convolutional neural network
(CNN) to the ABSA requirements forcing it to cap-
ture more diverse features (both sentiment informa-
tion and aspects). The CNN models were proposed
for object recognition (LeCun et al., 1999) and ini-
tially were used within computer vision. Soon they
were adapted or integrated with other deep learning
architectures to be compatible with a broad array of
tasks, including NLP: classification (Lai et al., 2015),
recognition of entailment and contraction between
sentences (Mou et al., 2015) or question answering
(Feng et al., 2015).

Even if the CNN model already captures the most
salient features by employing global max-pooling op-
erations on multiple feature maps, the effectiveness
of extraction depends not only on the number of fea-
ture maps but also on the initialisation of their filter
weights. Usually, all the filter weights of a convolu-
tional layer are initialised with small values, follow-
ing a uniform distribution. The max-pooling opera-
tions can generate a smaller number of different fea-
tures than the given number of feature maps as a re-
sult of using the same input and of applying filters
with weights of the same distribution. Our approach
to control better features extraction and to force the
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network to look for features in different regions of a
text consists of applying the tiled CNN (TCNN), a
variant of the CNN architecture which considers mul-
tiple filters per feature map.

The TCNN is an improved CNN that was pro-
posed for image processing to capture a wide range
of picture invariances (Ngiam et al., 2010). Tradition-
ally, the CNN architecture already learns the transla-
tional invariance due to its convolving operation but
the TCNN goes forward and handles more complex
cases such as viewpoint/rotation and size invariances.
Since its development, the TCNN model has been
mainly used for computer vision in tasks like im-
age classification (Wang and Oates, 2015), object and
emotion recognition (Gao and Lee, 2016; Qiu et al.,
2018).

The reason behind the TCNN’s restricted applica-
bility is its nature of multiple invariances learner. In
this paper we adjust the model to meet the NLP re-
quirements and set each filter of the feature map to
cover only a set of n-grams (not all n-grams as in the
case of pure CNN models). Following a precise filter
structure per feature map, the extraction of the most
relevant features is more effective and depends less on
the initial values of the weights.

In addition to the TCNN, a new network called hy-
brid tiled CNN (HTCNN) is introduced to outweigh
the disadvantage of the TCNN model’s inflexible fil-
ter structure. Using the idea of more diverse feature
extraction with multiple filters, we create word clus-
ters and allow a filter of a feature map to convolve
only on the words that appear in the same context (as-
signed to the same cluster) and on their n–1 neigh-
bouring words (where n is the size of the n-gram or
the filter size).

In this paper, word clusters are computed using
the expectation-maximization (EM) algorithm using
Gaussian distribution. Since we do not include in-
formation about aspects, this approach allows us to
identify only the document-level sentiment polarities.
However, HTCNN’s structure with multiple filters per
feature map can be easily adjusted to ABSA senti-
ment classification task. An interesting idea could be
to replace general word clusters defined a priori with
sentence-level word clusters defined with respect to
each aspect based on attention scores. We let this ex-
tension for future work.

Our contributions are summarized as follows:
1. We adjust the TCNN (which so far has been used

only for image processing) to the NLP field.
2. We design a novel hybrid tiled CNN model with

multiple filters per feature map. The filter struc-
ture is flexible and each filter of the feature map
can convolve only on the similar words of a given

word cluster and on its n−1 neighbouring words,
where n is the window size.

3. Experimental results prove the effectiveness of the
introduced model over the simple architecture of
the CNN.

The remainder of the paper is organized as follows.
The next section discusses the related literature. The
third section depicts the TCNN in NLP and its hybrid
variant. The fourth section presents the details of the
experiments and the results and the last one concludes
the paper. The source code used to implement the
proposed models can be found at https://github.com/
mtrusca/HTCNN

2 RELATED WORK

In text classification and sentiment analysis, CNN and
RNN are the two main deep neural network architec-
tures that produce similar results. While the CNN
extracts the most relevant n-grams, the RNN finds
context dependencies within an entire sentence. Still,
for sentence classification, especially sentiment anal-
ysis it is tempting to use CNN models since polari-
ties are usually determined only by some keywords
(Yin et al., 2017). Regarding the sentence’s length,
both neural networks have similar performances, es-
pecially for the case of short text. While for long sen-
tences, the RNN could be considered more adequate
than the CNN, some studies prove the contrary (Adel
and Schütze, 2016; Wen et al., 2016), arguing that the
RNN is a biased model where the later words of a se-
quence are more important than the others.

Currently, the CNN is a popular method for text
classification (Kalchbrenner et al., 2014; Hassan and
Mahmood, 2018) and even models with little tuning
of the hyperparameters provide competitive results
(Kim, 2014; Zhang and Wallace, 2015). The vari-
ant of the CNN applied for sentiment analysis task
could vary from simple approaches (Liao et al., 2017)
to more complex ones. For example, in (Yang and
Eisenstein, 2017), the idea of linguistic homophily
is exploited and sentiment polarities are found by
combining a single-layer CNN model with informa-
tion about users’ social proximity. In (Shin et al.,
2016), the results of a CNN sentiment model are im-
proved by employing lexicon embeddings and atten-
tion mechanism.

Regarding the ABSA task, CNNs are not as popu-
lar as memory networks like LSTM and GRU even if
they have shown potentiality to address this problem
recently. The CNN model was introduced to tackle an
ABSA problem in (Huang and Carley, 2019) by us-
ing parameterized gates and parameterized filters to
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Figure 1: The TCNN has three feature maps and each one has two filters convolving over bigrams. A global max-pooling
operation is applied over the convolving results. The figure is adapted from (Kim, 2014).

include aspect information. Similar, in (Xue and Li,
2018), it was proved that a simple CNN model with
Gated Tanh-ReLU units is more accurate than the tra-
ditional approach with LSTM and attention mecha-
nism.

Since not all datasets provide information about
aspects, we try to increase the sensitivity of convolu-
tional neural networks to the aspects and their related
keywords by using a novel hybrid tiled CNN model.
Our approach is similar to the one proposed in (Zhang
et al., 2016) in terms of multiple inputs for simultane-
ous convolutional layers but instead of using different
word embeddings we create word clusters and define
sentence representation for each one.

3 MODELS

The standard one-dimensional CNN architecture em-
ployed in (Collobert et al., 2011) and since then
widely used in many papers, assumes that the feed-
forward neural network is a composition of convolu-
tional layers with the max-pooling operation and one
or more fully connected layers with non-linear acti-
vation functions. An input text of length m is rep-
resented as a matrix obtained by concatenating word
embedding vectors (Kim, 2014):

Xi:m = {w1,w2, ...,wm} (1)

This matrix is used as an input for a convolution
operation that applies a filter w on all possible win-
dows of n consecutive words at a given stride value. A
new feature map is computed by applying a non-linear
function f with a bias term b (b ∈ R) on the convolv-
ing results. Given the window of n words Xi:i+n−1, the
generic object Ci of the feature map is generated by:

Ci = f (w∗Xi:i+n−1 +b) (2)

To capture the most important feature Ci, we apply
the max-pooling operation.

Cmax = max{C1,C2, ...,Cm−n+1} (3)
Usually, a single feature is not enough for depict-

ing the entire sentence and therefore it is a common
practice to generate multiple feature maps for each
convolutional layer. All features, with the highest
value for each feature map, input the following con-
volutional or fully connected layers. In terms of sen-
timent analysis, we are interested to extract not only
sentiment information but also information about text
corpus’ entities and their aspects (attributes) (Liu,
2012). Based on this need, the use of multiple fea-
ture maps per convolutional layer turns out to be a
compulsory step.

3.1 TCNN

In this paper, we attempt to introduce the TCNN in
the field of textual classification. The idea behind the
TCNN is simple and assumes that each feature map
is computed using at least two filters (Ngiam et al.,
2010). The map of filters applied on the input is not
randomly chosen but it has to follow a structure that
imposes for each filter to have different nearby filters,
while the next and previous k-th filters have to be the
same. Term k is known as the tile size and it is a hy-
perparameter that indicates the number of filters cor-
responding to each feature map. The generic object
Ci of a feature map is defined as:

Ci = f (wk∗Xi:i+n−1 +b) (4)

If k is 1 then the tiled convolutional layer turns
into a simple convolutional layer and if k is greater
or equal to m− n+ 1 then we have a fully connected
layer. While one of CNN’s rules is parameter sharing,
the tiled CNN follows it only partially so that weights
are not entirely tied.
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Figure 2: HTCNN represented as a multiple simultaneous CNN with the number of clusters and the filter size equal to two
and the number of feature maps equal to three.

To better understand the way the tiled CNN works
with textual data we consider an example sentence
(“We choose to go to the moon”) in Figure 1. We
set the number of feature maps to three and the fil-
ter size and the tile size to two. The first filter con-
volves over the first two words (”we” and ”choose”),
then the second one covers the second and the third
words (”choose” and ”to”), then the first filter goes
over the third and the fourth words (”to” and ”go”)
and so on. This rule is applied for each feature map,
which means that six weight matrices have to be ini-
tialised. Then a global max-pooling operation covers
each of the three feature maps and the most repre-
sentative n-grams are obtained (no matter the initial
filter that identified them). The CNN’s representation
is similar to the one presented in Figure 1 but, unlike
its tiled variant, there is only a filter per feature map
(the tile size is equal to 1).

The TCNN implementation can be seen as a neu-
ral network with multiple simultaneous convolutional
layers. Each layer corresponds to a filter and uses a
stride value equal to the tile size. An important note
to this process is related to the shape of the input
that feeds each convolutional layer. Generally, filter
i (i≤ k) can slide from the i-th word to the word with
the index equal to:⌊ m

k+n−1

⌋
∗(k+n−1)+ϕi (5)

ϕi =

{
n+ i−2, if { m

k+n−1}≥
i
k

i− k, if { m
k+n−1}<

i
k

(6)

where bxc and {x} represent the integer and decimal
part of a number x, respectively. According to this
rule, we have to adjust the input of each convolu-
tional layer. This rule together with the constraint of
the stride value enforces the filters to convolve on dif-
ferent n-grams and to cover together the entire input.
Before moving further, we have to add two sets of
pooling layers. The layers of the first set correspond
to the k convolutional layers. The second set has just
one layer covering the previous concatenated results.
By this means, it is assured that the multiple simulta-
neous CNN behaves just like a TCNN model with a
single pooling operation.

The reasoning behind using the TCNN model for
text classification is the need to capture more diverse
features (like aspects and sentiment words) that could
take our results closer to the sentences’ labels. Even if
this task is theoretically accomplished by the simple
CNN, the risk of getting a smaller number of different
features than the number of feature maps is high. On
the other side, TCNN with its integrated multiple fil-
ters per feature map forces the model to look for fea-
tures in diverse regions of a sequence enhancing the
quality of extraction. By choosing different values of
k, we get a palette of models that are a trade-off be-
tween estimating a small number of parameters and
having more different features.
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Table 1: The configuration of models for IMDB and SemEval 2017 datasets.

IMDB SemEval 2017

Activation Function
Convolutional Layer ReLu ReLu

Fully Connected Layer Tanh ReLu
Output Layer Sigmoid Softmax

Filter Size (n) 2, 3, 4 2, 3, 4
Tile Size / No. of Clusters (k) 2, 3 3

3.2 HTCNN

The disadvantage of TCNN is the inflexible structure
of filters sliding on the input that requires to have k
repetitive filters with no possibility to change the or-
dering. Knowing that words with semantic similarity
are likely to appear in a similar context (Harris, 1954),
one reasonable filter map could be the one that applies
the same filter on all these words and other filters on
the remaining words. For example in a sentence like
“The lens of my digital camera have a powerful/weak
optical zoom” it could be useful to apply the same fil-
ter on the “powerful” and “weak” words and different
ones on the other words.

Knowing that word embeddings are built to cap-
ture not only words’ context but also their syntactic
and semantic similarity, words like “powerful” and
“weak” have similar word embeddings and could be
assigned to the same cluster. Using an appropriate
clustering model, we can group the word vectors in k
clusters. In the experiments, the clustering solution is
provided by the EM algorithm using Gaussian distri-
bution. The reason behind this choice is that Gaus-
sian mixture models support mixed membership and
are robust against errors and flexible regarding cluster
covariance (Meila and Heckerman, 2013). The EM
algorithm has two steps that are repeatedly applied
till the convergence is noticed. First, we compute the
probability of a word to belong to a cluster, knowing
that the words of clusters follow normal distributions
(the expectation step). Second, we update the clus-
ter means accordingly with the previously computed
probabilities (the maximization step).

For each cluster, we code the outside cluster words
of a sentence with “PAD” and leave unchanged its
associated words. Sequences generated based on in-
dices of dictionary words, get 0 for “PAD” word and a
value greater than 0 otherwise. In this way, we define
k inputs (one for each cluster) and use them to feed
k multiple simultaneous convolutional layers. The
stride value constraint is used no more because simul-
taneous layers already convolve on different words.

The problem of the last depicted neural network
is the loss of the n-grams concept caused by the re-
placement of the some words’ indexes with 0 (words
assigned to other clusters than the one associated with

the given convolutional layer). This idea is supported
by the assumption that words are dependent on their
neighbouring words. To overcome this problem, for
each convolutional layer we have to modify the input
by adding in the left and in the right side (if it is pos-
sible) of each word (whose index is different than 0)
its n−1 neighbouring words. The added words could
be in the same cluster or not. We call this model, the
hybrid tiled CNN (HTCNN).

Considering the above sentence and setting the fil-
ter size and the number of clusters to two (the same
as setting the tile size value for the TCNN), we as-
sign the words “choose” and “moon” to the first clus-
ter and the other words to the second one. Firstly we
assign to the each cluster the same sentence and re-
place the words of the other cluster with “PAD”. The
modified input sentences are: “PAD choose PAD PAD
PAD PAD moon” and “we PAD to go to the PAD”. If
we add the neighbors (a single word to the left and the
right for bigram cases) of each word, the input sen-
tences will change into “we choose to PAD PAD the
moon” and “we choose to go to the moon”. The sen-
tence of the first cluster gets the words “we” and “to”
as the neighbors of the “choose” word and the word
“the” as the neighbor of the “moon” word. The words
of the second cluster are: “we”, “to”, “go”, “to”, “the”
and the sentence gets the word “choose” as the neigh-
bor of the words “we” and “to” and the word “moon”
as the neighbor of the word “the”. This process is
described in Figure 2, for representative reasons we
use sentences instead of sequences. The colour of the
cluster words assigned to each convolutional layer is
red. The colour of the neighbouring words is blue.
The remaining words are coded with the word ”PAD”.
If the blue words are replaced with ”PAD” words then
we get a new model that does not consider the n-gram
concept and it is called simple HTCNN (SHTCNN).

4 EXPERIMENTAL RESULTS

We test the TCNN and the HTCNN models on the
IMDB movie reviews dataset (Maas et al., 2011). The
collection has 50000 documents, evenly separated be-
tween negative and positive reviews.
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Our models based on convolution operation are
compared to a one-layer one-dimensional CNN. The
configuration of the CNN baseline model and of the
proposed models is presented in Table 1. Regarding
word vectors initialisation, we use word embeddings
trained on the current dataset with word2vec models
(Mikolov et al., 2013). Each word is represented by
a 200 dimension vector computed by concatenating
a continuous bag-of-words (CBOW) 100 dimension
vector with a skip-gram (SG) vector of the same size.
Sentences are represented using zero-padding strat-
egy which means we are applying the wide convo-
lutions (Kalchbrenner et al., 2014).

Knowing that the IMBD dataset is balanced, the
evaluation of models is done in terms of test accu-
racy. We use the binary cross entropy loss function
and unfreeze the word embeddings during the train-
ing phase. Using 4-fold cross-validation, 10,000 re-
views are allocated to the testing set and the rest of
them are divided between training and validation sets.
The cross-validation process has four iterations and at
each time step other 10,000 reviews are allocated to
the validation set.

In addition to the TCNN and its hybrid variant,
we present the results SHTCNN model to see how
the lack of the neighbouring words affects the per-
formance of the HTCNN. The results of our compari-
son between the baseline network and our models are
listed in Table 2.

The baseline CNN has a volatile performance, un-
like all other models. While for a filter size equal
to two the model has one of the best test accuracies,
for bigger sizes (trigram and fourgram cases) the per-
formance decreases quickly and reaches the lowest
threshold. All proposed networks have a natural be-
haviour and their performance grows proportionally
with the filter size. Besides the n-gram dimension,
the tile size or the number of word clusters has also
impact on the results, generally leading to a gradual
improvement.

Results of the TCNN and of the SHTCNN are
complementary and while the first one performs bet-
ter when we set the tile size to three, the second one
has better results for two word clusters. However, we
note that the HTCNN achieves the best performance
without having the drawbacks of the other two mod-
els: the inflexible filter structure of the the TCNN and
the SHTCNN’s lack of n-grams.

Natural, more filters per feature map makes the
model more sensitive to different features but in the
same way, increases the number of estimated parame-
ters or the model complexity. Further on, the HTCNN
is tested for larger tile sizes, precisely for four and
five word clusters. The results are listed in Table 3.

Only the pair (k = 4, n = 2) has a slightly better result
than the previous model variants with the same filter
size (the pairs (k = 3, n = 2) and (k = 2, n = 2)). All
other results are worse than the ones of HTCNN with
the tile size equal to three and the difference is more
significant for the case of five word clusters. We con-
clude that the optimal tile size value corresponding to
the IMBD dataset that balances the model capacity to
extract different features with its complexity is equal
to three.

To confirm the performance of HTCNN over
single-layer CNN, we undertake a second test on the
SemEval-2017 English dataset for task 4: Sentiment
analysis in Twitter, subtask A: Message Polarity Clas-
sification (Rosenthal et al., 2017). The dataset has
62,617 tweets with the following statistics: 22,277
positive tweets, 28,528 neutral tweets and 11,812 neg-
ative tweets. The approach with the highest rank on
this subtask was proposed by Cliche (Cliche, 2017)
and ensembles a LSTM and a neural network with
multiple simultaneous convolutional layers. Since the
Cliche’s CNN structure is similar to the structure of
HTCNN, we use some of his default settings: the
length of the word embeddings, the activation func-
tions, the number of filters per convolutional layer, the
dropout layers (with the same dropout probabilities)
and the number of epochs. The number of simultane-
ous convolutional layers utilizes in the Cliche’s struc-
ture is equal to three which means that we have to run
our HTCNN model for the same number of filters. Ta-
ble 1 shows an overview of the models’ architecture
for the SemEval dataset.

Word embeddings are trained using CBOW and
SG models in a similar way as the one depicted above
for the IMDB dataset and remain frozen over the en-
tire training phase. 10% of the corpus tweets are al-
located to the testing set while the remaining tweets
are separated between validation and training sets us-
ing 9-fold cross-validation. Because the dataset is im-
balanced, the evaluation is done using macro-average
testing recall. To counteract the imbalance, the cross-
entropy loss function uses class weights adjusted in-
versely proportional to the class frequencies in the
training phase. Both the HTCNN and the CNN share
the above hyperparameters. Similar to the IMDB ex-
periments, we set the window size to two, three or
four. The results of our comparison on the SemEval
dataset are shown in Table 4 and confirm the perfor-
mance of HTCNN over simple CNN.
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Table 2: Comparison between CNN and TCNN, SHTCNN and HTCNN on the IMDB dataset. (Bold denotes the best
performance per model and italics the best performance overall).

CNN TCNN SHTCNN HTCNN
accuracy accuracy p-value* accuracy p-value* accuracy p-value*

k=2**; n=2 0.8783 0.8789 0.8560 0.8641 0.3739 0.8688 0.0410
k=2**; n=3 0.8445 0.8586 0.2677 0.8667 0.1203 0.8718 0.0720
k=2**; n=4 0.8528 0.8577 0.4685 0.8786 0.0158 0.8723 0.0387
k=3**; n=2 0.8783 0.8693 0.0610 0.8658 0.3820 0.8786 0.9360
k=3**; n=3 0.8445 0.8775 0.0191 0.8727 0.0439 0.8796 0.0166
k=3**; n=4 0.8528 0.8762 0.0113 0.8736 0.0360 0.8825 0.0025

*P-value is the probability of the null hypothesis associated with the paired Student’s t-test that measures the similarity
between the baseline model and each of the three networks.
**The number of clusters is equal to the tile size (k).

Table 3: Comparison between CNN and HTCNN on the
IMDB dataset for larger tile sizes. (Bold denotes the best
performance per model and italics the best performance
overall).

CNN HTCNN
accuracy accuracy p-value

k=4; n=2 0.8783 0.8788 0.8719
k=4; n=3 0.8445 0.8674 0.0699
k=4; n=4 0.8528 0.8815 0.0010
k=5; n=2 0.8783 0.8767 0.6096
k=5; n=3 0.8445 0.8758 0.0236
k=5; n=4 0.8528 0.8812 0.0025

Table 4: Comparison between CNN and HTCNN on the
SemEval-2017 dataset, task 4: Sentiment analysis in Twit-
ter, subtask A: Message Polarity Classification. (Bold de-
notes the best performance per model and italics the best
performance overall).

CNN HTCNN
recall recall p-value

k=3; n=2 0.7285 0.7715 0.1783
k=3; n=3 0.7881 0.8516 0.0400
k=3; n=4 0.8042 0.8472 0.0425

5 CONCLUSIONS

In this paper, we present the TCNN model in the
field of sentiment classification to improve the pro-
cess of feature extraction. Due to the constraint of
partial untying of filter weights that forces the net-
work to apply the same filter at each k step, we in-
troduced the HTCNN model. The new architecture
combines the benefits of word embeddings clustering
with the idea of tiling and if the tile size is chosen
properly, the model could achieve competitive perfor-
mance with the TCNN and better results than the ref-
erence CNN model. Setting the tile size or the num-
ber of word clusters could be difficult. Because the
HTCNN works like a simultaneous CNN structure,

too many parallel convolutional layers could lead to
both higher feature sensitivity and higher complex-
ity. CNN does not implicitly fit the fine-grained as-
pect based sentiment analysis, but using the right net-
work configuration we can adjust it to be more sensi-
tive to the corpus’ features and to increase the over-
all performance. Even if the results of our experi-
ments are modest compared with the state-of-art sen-
timent analysis models for IMDB and SemEval-2017
datasets, we prove that the HTCNN is a good substi-
tute for CNN in the NLP field and the replacement
of the CNN with the HTCNN in more laborious ar-
chitectures could lead to higher rates of performance
than CNN.

As our future work, it would be interesting to
see how word networks based on word embeddings
improve the clustering solution incorporated in the
HTCNN, perhaps in an approach similar to the one
proposed in (Feria et al., 2018). Moreover, a promis-
ing direction would be to have meaningful clusters
that denote specific functions (e.g. aspect) or other
roles (e.g. syntactic). This would give a boost to the
transparency of deep models in natural language pro-
cessing, since the CNN filters (and consequently, the
weights) would be directly interpretable.
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