
An Efficient Algorithm for Kinematics Estimation with Application 
to Dynamic Gait Stability using a Contact-less Skeleton Tracking 

System 

Michael Uelschen1 a, Heinz-Josef Eikerling1, Sabrina Rbib3 and Helge Riepenhof2 
1Faculty of Engineering and Computer Science, University of Applied Sciences Osnabrück, 49076 Osnabrück, Germany 

2BG Klinikum Hamburg, Bergedorfer Str. 10, 21033 Hamburg, Germany 
3University of Lübeck, 23562 Lübeck, Germany 

 

Keywords: Gait Analysis, Kinematics Estimation, Marker-less Skeleton Tracking, Orthopaedic Technical Support. 

Abstract: This paper presents an optimized algorithm for estimating static and dynamic gait parameters. We use a 
marker- and contact-less motion capture system that identifies 20 joints of a person walking along a corridor. 
Based on the proposed gait cycle detection basic metrics as walking frequency, step/stride length, and support 
phases are estimated automatically. Applying a rigid body model, we are capable to calculate static and 
dynamic gait stability metrics. We conclude with initial results of a clinical study evaluating orthopaedic 
technical support.  

1 INTRODUCTION 

The precise monitoring of regaining walking ability 
after surgery treatment or the ability to compensate 
disabilities caused by injuries is of importance as this 
information can guide the rehabilitation process. In 
current clinical practice, dynamic stability is usually 
assessed using the Berg Balance Scale (Berg, Wood-
Dauphinee, Williams, & Maki, 1992) and gait speed 
is usually assessed using the 10-meter walking test.  

While these outcome measures have proven their 
applicability in daily clinical practice, they have some 
drawbacks for guiding the rehabilitation process or 
tailoring remedial provisions. First of all, the scores 
on the clinical scales do not show insight into the 
mechanisms that contribute to a potential 
improvement on the clinical scale. If for instance an 
increased dynamic balance is found on the Berg 
Balance Scale, it is not known whether this is the 
result of recovery of the affected leg or an increased 
use of the non-affected leg. The same applies for an 
increased gait speed as measured on the 10-meter 
walking test: it is unclear whether an increased gait 
speed is the result of an increased step length and/or 
an increased cadence (steps/min). Thus, a more 
detailed movement analysis based on measurable 
metrics would be of service. 
                                                                                                 
a  https://orcid.org/0000-0002-0841-6954 

Within research, dynamic stability has been 
increasingly quantified relating the position of the 
body’s center of mass (CoM) to the base of support 
(BoS). The base of support is composed of the two 
feet and the area between them. For elderly fallers it 
has been shown that they exhibit a different 
separation between the center of mass and base of 
support during walking, when compared to elderly 
non-fallers. This result suggests that the movement of 
the center of mass in relation to the base of support 
might enable the separation of fallers from non-
fallers, which would be of high clinical relevance.  

Tracking the movement of the center of mass in 
relation to the base of support, however, usually 
requires a fully instrumented gait analysis which is 
technically challenging, time-consuming and costly. 
Hence, the use of instrumented gait analysis in daily 
clinical practice is limited. Because of this, there is a 
demand for a system that is capable of measuring foot 
placement and center of mass plus is easy to use, fast 
to set up, and affordable. By quantifying foot 
placement, the system can also be used to detect 
whether an increased walking velocity is the result of 
an increased step length and/or an increased cadence.   

For characterizing a patient’s gait according to the 
above measures, the DynMetrics (Eikerling, 
Uelschen, & Lutterbeck, 2016) system was extended 
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to devise the above measures. The marker-less 
motion capturing system is capable of tracking foot 
placement and the body’s center of mass by a network 
of optical sensor nodes. 

2 METHOD 

2.1 Motion Capturing 

The key algorithm was integrated into the contact-less 
and marker-less gait recognition system DynMetrics 
(Uelschen & Eikerling, 2015). The system permits to 
capture and analyse the gait of a subject along a 
walking corridor without any time-consuming pre-
paration of the person caused e.g. by attaching mar-
kers. The system consists of a series of independent 
sensor nodes that record the movements of a person 
passing by. The constituent 3D data streams are fused 
into a single continuous skeleton stream which is 
based on a global coordinate system.  

2.2 Algorithm Overview 

The block diagram shown in Figure 1 outlines the 
proposed algorithm. The skeleton tracking system 
outputs a skeleton stream of a moving subject. The 
joints of each skeleton are used two-fold: (i) as input 
to the gait cycle detection, and (ii) as basis for the 
calculation of a rigid body model.  

The control of postural stability or balance is an 
essential function in human movements. It is defined 
(Shumway-Cook & Woollacott, 2017) as a person’s 
ability to keep the line of gravity passing through the 
center of mass within the base of support area beneath 
that person. In general movement tasks can be 
classified into static (sitting or standing) and dynamic 
(walking) stability. 

In order to obtain these metrics, the center of mass 
is estimated beforehand. Finally, using the ankle 
positions the dynamic stability of gait is calculated. 

The complete process is highly automated and 
does not require any interaction by the operator of the 
system (e.g. physical therapist). Therefore, we 
achieve a high degree of reproducibility. 

2.3 Contribution 

The contributions of this paper are: (i) a rigid body 
model that allows to derive CoM and that 
approximates the gold standard, (ii) the estimation of 
the gait frequency based on gait cycle detection using 
linear regression, (iii) the computation of stability 
metrics such as XCoM, and BoS based on the 

inverted pendulum model, and (iv) initial results on a 
clinical study evaluating orthopaedic footwear and 
orthotics.  

 

Figure 1: Pipeline algorithm. 

3 GAIT CYCLE DETECTION 

In this section we discuss the application of a peak-
finding algorithm in order to identify the gait cycles. 
The estimated gait frequency (or alternatively 
cadence) is an input parameter for the subsequent 
stability assessment. The procedure uses the skeletal 
data gained by tracking a patient's movements. First, 
we explain the mathematical foundations. 

3.1 Mathematical Preliminaries 

The position in space ݎ  is given as, where ݐ  is the 
temporal parameter,  

ሻݐԦሺݎ ൌ ሺݔሺݐሻ, ,ሻݐሺݕ ሻሻ (1)ݐሺݖ

We denote ݔ as anterior-posterior (main moving 
direction), ݕ as horizontal, and ݖ as longitudinal axis. 
For the metrics of gait stability, often only the 
behavior in the horizontal plane is considered. That 
implies ݖሺݐሻ ൌ 0. 

The skeleton tracking system provides the 
position of the skeleton as a stream of frames at 
discrete points in time, which are given by ݐ where ݅ 
denotes the ordering of the frames in the sequence. 

The skeleton tracking system estimates the 
position of twenty joints in each frame: head, 
shoulder center, spine, hip center, and in addition for 
both body sides: shoulder, elbow, wrist, finger, hip, 
knee, ankle, and toe. This raw data is the only input 
to the algorithm that estimates the kinematics and 
further gait metrics. 

3.2 Gait Cycle 

The recognition of individual steps is required to 
estimate the dynamic gait metrics. We follow the 
nomenclature given by (Perry & Burnfield, 2010). 

The normal gait pattern is periodic, where a 
period corresponds to a single stride. According to 

An Efficient Algorithm for Kinematics Estimation with Application to Dynamic Gait Stability using a Contact-less Skeleton Tracking
System

95



Figure 2, adapted from (Götz-Neumann, 2015), each 
cycle can be divided into distinct phases.  

The stance phase consists of five sub-phases 
followed by the swing phase. It is composed of three 
swing sub-phases before the gait cycle is completed. 
The identification of the gait phases provides 
important information for the clinical evaluation of a 
patient's gait pattern.  

 

Figure 2: Gait Cycle Breakdown. 

Below we describe an optimized procedure which 
automatically divides the movement into individual 
gait cycles. 

Each phase of a cycle is started or ended by a 
defined event. Our algorithm identifies the following 
gait events: minimum, maximum and zero distances 
of the positions of the left and right ankle; maximum 
flexion of the ipsilateral and contralateral knee; and 
the vertical position of the lower limb (shank) 

In order to find minimum or maximum values of a 
function ݒሺݐሻ we need to identify the peaks in usually 
noisy signal data. Under the assumption that ݒሺݐሻ has 
a periodic shape the automatic multiscale-based peak 
detection (AMPD) algorithm (Scholkmann, Boss, & 
Wolf, 2012) provides a stable approach. A major 
advantage of the algorithm is the absence of any 
problem-specific parameter, so that a specific tuning of 
the algorithm to the problem is not necessary. The 
stability and reliability are proved by several 
biomedical and non-biomedical applications. 

In order to determine the individual gait phases, the 
movement of the person is first divided into individual 
steps. The distance between the left and right ankle is 
used as the step length. A step is finished when the 
distance becomes maximum or minimum. 

Figure 3 shows the AMPD algorithm detecting 
minimum and maximum distances of the left and right 
ankle. Due to the calculation method the algorithm 
may fail to find the initial or final peak.   

Based on the detected gait cycles we can derive 
basic temporal-spatial parameters (TSP) as step/stride 
width and length, walking speed, and cadence given in 
steps per minute. The latter parameter can then be used 
to determine the gait frequency. These parameters are 
used for evaluation in the study described subsequently. 

 

Figure 3: Peak detection using AMPD algorithm. 

The transition from loading response to mid 
stance is triggered when the knee angle of the 
contralateral leg reaches its maximum value. The 
AMPD algorithm detects the peak values (see Figure 
4) reliably even if the curve shows a more complex 
behaviour. The algorithm avoids to detect local 
extreme values. 

 

Figure 4: Detection of the flexion angle of the right knee. 

4 GAIT STABILITY 

The following section discusses how to derive the 
center of mass and gives a sinusoidal approximation 
based on the periodic walking pattern. This section 
ends with advanced metrics in order to evaluate the 
dynamic stability. 

4.1 Rigid Body Model 

In order to evaluate the stability of walking the center 
of mass is a relevant parameter. To determine this 
parameter, a body model is necessary, since the center 

BIODEVICES 2020 - 13th International Conference on Biomedical Electronics and Devices

96



of mass is very difficult to obtain directly. We use a 
segmented body model following the approach from 
(Hanavan, 1964). Based on the skeleton the body 
segments are defined. Figure 5 shows on the left a 14-
segment body model, e.g. the forearm segment is 
bound by the wrist and elbow joint. Each segment has 
an individual center of mass and a percentage weight.  

 

Figure 5: Segmented body model. 

Finally, the overall center of mass is given by the 
weighted mean of all single segments (Winter, 2009). 
Table 1 summarizes the anthropometric data used for 
the estimation of segments’ center of mass. 

Table 1: Anthropometric data. 

Segment Relative Mass w/(1-w) 

Head 7.0  

Trunk 43.0 0.60/0.40 

Upper Arm 3.6 0.43/0.57 

Forearm 2.2 0.43/0.57 

Hand 0.7 0.30/0.70 

Thigh 11.4 0.43/0.57 

Lower Leg 5.3 0.43/0.57 

Foot 1.8 0.43/0.57 

 
The center of mass of each segment is defined by 

its relative location with respect to the proximal (ݓ) 
and distal (1 െ  end point of the segment (see right (ݓ
part of Figure 5). For example, the forearm segment 
contributes 2.2% to the total mass. The segment is 
spanned by the elbow (proximal) and wrist (distal) 
joint of the skeleton. Its center of mass position is 
given by 

ሻݐԦCoM,forearmሺݎ ൌ 0.43 ∙ ሻݐԦelbowሺݎ  0.57
∙  ሻݐԦwristሺݎ

(2)

4.2 Gold Standard Comparison 

The sketched rigid body model is compared to a 
commercial marker-based motion capture system 

(Vicon) that represents the gold standard. The 
walking pattern of a person is recorded in parallel 
using the DynMetrics and the Vicon system. The 
center of mass of both systems is compared and 
subsequently the deviation is analyzed. Vicon 
(VICON, 2017) uses a similar segmented body model 
as described, but the center of mass estimation is 
based on different anthropometric data.  Due to the 
different local coordinate systems and the deviation 
of the internal clocks the comparison of both time 
series shows a shift in temporal and spatial direction 
(see Figure 6). Also, the field of view and the frames 
per second are varying. 

 

Figure 6: CoM estimation compared to gold standard. 

In order to avoid such effects both data sets are 
aligned using an iterative closest-point algorithm. 
Figure 7 shows the aligned time series. The result 
indicates that DynMetrics estimates the body model 
similar to the gold standard. 

 

Figure 7: The aligned time series have similar shape. 
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4.3 CoM Sinusoidal Approximation 

A relevant stability criterion is the medio-lateral 
displacement of CoM.  Due to the periodic walking 
pattern we approximate CoM as a simple harmonic 
motion within the horizontal plane, which is given as  

ሻݐCoMሺݕ ൌ ݕ ∙ sinሺ߱ݐ  ߮ሻ (3)

The amplitude (displacement) is denoted by ݕ , 
the angular frequency ߱ ൌ  and the phase angle ,݂ߨ2
߮ . During several functional tests of our skeleton 
tracking system we observed that some subjects 
slightly turned to the left or to the right while walking. 
In order to get better approximation results we add 
this drift perpendicular to the motion in anterior-
posterior direction. This results in the following 
model 

ሻݐCoMሺݕ ൌ ݕ ∙ sinሺ߱ݐ  ߮ሻ  ܽ
݉ݐ ݉ଵݐଶ 

(4)

In order to estimate the unknown parameter, we 
use multiple linear regression method. Applying the 
angle addition theorem 

sinሺݔ  ሻݕ ൌ 	 sin ݔ cos ݕ  cos ݔ sin (5) ݕ

we can rewrite equation (3) as 

sinሺ߱ݐ  ߮ሻ ൌ 	 sinሺ߱ݐሻ cos߮
 cosሺ߱ݐሻ sin߮ 

(6)

From this we derive the motion equation  

ሻݐCoMሺݕ ൌ ܣ  ଵܣ sinሺ߱ݐሻ
 ଶܣ cosሺ߱ݐሻ  ݐଷܣ
  ଶݐସܣ

(7)

using 

ܣ ൌ ܽ, ଵܣ ൌ ݕ cos߮, 

ଶܣ	 ൌ ݕ sin߮ , ଷܣ ൌ ݉, ସܣ ൌ ݉ଵ 
(8)

Based on ݊  skeleton frames and applying the 
sketched body model ሺݐ, ݅ CoM,ሻ withݕ ൌ 0,… , ݊ െ
1 we get the following linear system of equations that 
can be solved using the least squares method. The 
vector representation is given by the following 
equation: 

ԦCoMݕ ൌ ܤ ∙ Ԧ (9)ܣ

with 

ԦCoMݕ ൌ ൮

CoM,ݕ
CoM,ଵݕ
⋮

CoM,ିଵݕ

൲ (10)

 

ܤ ൌ ൮

1 sinሺ߱ݐሻ cosሺ߱ݐሻ ݐ ଶݐ

1 sinሺ߱ݐଵሻ cosሺ߱ݐଵሻ ଵݐ ଵଶݐ

⋮ ⋮ ⋮ ⋮ ⋮
1 sinሺ߱ݐିଵሻ cosሺ߱ݐିଵሻ ିଵݐ ିଵଶݐ

൲ 

       (11)

ܣ ൌ

ۉ

ۈ
ۇ

ܣ
ଵܣ
ଶܣ
ଷܣ
یସܣ

ۋ
ۊ

 (12)

In order to find the solution equation (9) can be 
rewritten to 

Ԧܣ ൌ ሺܤ்ܤሻିଵ ∙ ԦCoM (13)ݕ்ܤ

The motion in anterior-posterior direction of 
ሻݐCoMሺݔ  is approximately linear. Since the subject 
usually begins walking from double limb support 
with velocity ݒ ൌ 0, we apply the linear regression 
method to a polynomial of fourth degree. This gives 
better approximation results as a simple linear motion 
model. Figure 8 plots the behavior of center of mass 
in two variants. The first curve is based on the 
described body model. The second curve 
approximates the periodic oscillations in medio-
lateral direction. 

 

Figure 8: Center of mass exhibits sinusoidal behaviour. 

4.4 Dynamic Stability 

CoM is an established stability metric in static 
situations. For the evaluation of the dynamic stability 
of gait we follow the approach by (Hof, Gazendam, 
& Sinke, 2005) that additionally considers the 
velocity of CoM ݒCoMthat leads to extrapolated CoM 
which is denoted as XCoM.  

On the basis of the inverted pendulum model, 
XCoM adds an additional displacement to the center 
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of mass position depending on the velocity of the 
person divided by ߱ୀඥ݃/݈, ݃ being the acceleration 
of gravity and ݈ leg length. The parameter ߱ is the 
eigenfrequency of a non-inverted pendulum with 
length ݈.   

The calculation of the dynamic gait stability 
therefore results in 

ሻݐXCoMሺݔ ൌ ሻݐCoMሺݔ 
ሻݐሶCoMሺݔ

߱
 (14)

ሻݐXCoMሺݕ ൌ ሻݐCoMሺݕ 
ሻݐሶCoMሺݕ
߱

 (15)

using velocity ݒCoM ൌ ቀݔሶ CoMሺݐሻ, ሶݕ	 CoMሺݐሻቁ. 

We approximate ߱ using the gait frequency that 
results from the cycle detection. The literature shows 
different definitions of BoS, as for example in (Wu, 
Brown, & Gordon, 2017) the lateral position of the 
5th metatarsal bone is used.  

Our approach is similar to  (Hak, van Dieën, van 
der Wurff, & Houdijk, 2014) using the position of the 
lateral malleolus. For the calculation of the base of 
support (BoS) ݏԦሺݐሻ  and afterwards the margin of 
stability (MoS) ሬ݉ሬԦሺݐሻ we use the ankle position of the 
left ݎԦleftሺݐሻ	and right foot ݎԦrightሺݐሻ 

ሻݐԦሺݏ ൌ ቐ
ሻݐԦleftሺݎ left	support

ሻݐԦrightሺݎ right	support	

ሺݎԦleftሺݐሻ  ሻሻ/2ݐԦrightሺݎ double	support

 

 (16)
Finally, the margin of support is the difference 

between the extrapolated CoM and BoS 

ሬ݉ሬԦሺݐሻ ൌ ሻݐԦXCoMሺݎ െ ሻ (17)ݐԦሺݏ

 

Figure 9: Dynamic gait stability. 

The example in Figure 9 shows the dynamic 
stability metrics XCoM and BoS. 

In addition, the support phases are sketched below. 
The BoS curve oscillates in medio-lateral direction 
depending on the support phase.  

5 ORTHOPAEDICS CASES 

 
Figure 10: Walking corridor with four sensors on tripods. 

5.1 Introduction 

From an orthopaedics point of view, walking is a 
complex process. The gait cycle - as pointed out in 
section 3.2 - can be divided into different phases. This 
division permits to distinguish in detail physiological 
gait patterns from pathological forms and describe the 
observable deviations in a differentiated way. In 
addition, certain deficits in patients’ feet or lower 
limbs can be at least partly compensated by 
supporting orthopedic aids. In particular, the 
provision of insoles or shows tailored to the patient 
are common practical methods. The gait pattern of a 
healthy subject shows some specific parameters and 
all walking phases effect the main elements of 
walking, walking speed, cadence and stride length. 
Normally the gait patterns are periodic and fluent.  

We have therefore extracted these elements from 
the DynMetrics data using, both with and without 
orthopedic additives (see (Götz-Neumann, 2015) for 
reference values): (i) walking speed, (ii) cadence and 
(iii) stride length. When people gain confidence while 
walking, they usually increase walking speed, 
cadence, and also stride length. 

5.2 Method 

Within a study we analysed the gait of 53 impaired 
subjects by means of the DynMetrics system. They 
walked (see Figure 10) a distance of 8 m four times, 
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twice with orthopaedic technical support such as 
custom-made insoles or adapted orthopaedic footwear 
and twice without any aids. In addition to the analysis 
of the gait, the subjects were asked assess the level of 
achiness while walking by means of the Visual Analog 
Scale (VAS) as shown in Figure 11. 

The inclusion criterion of our investigation was 
that an orthopaedic dressing assumed to be medically 
indicated and that the orthopaedic compensation had 
already been assessed as fitting by the attending 
physician. Amputees were excluded from the study. In 
the study design, it was also determined that the test 
persons completed the four repetitions with and 
without orthopaedic preparation in random order. 

 
Figure 11: Visual Analog Scale (VAS). 

5.3 Results 

In subsequent discussion, the obtained results of two 
test persons will be used as examples to point out the 
change with respect to gait caused by using custom 
made orthopaedic footwear. Subject 1 is 44 years old, 
male. His dressing on the footwear includes a leg 
length compensation of 1 cm and a shaft stiffener. 

Subject 2 is 56 years old, male and his dressing 
includes a heel elevation, shaft stiffening and rolling 
aid, as well as diabetic soft tissue bedding. 

Table 2: speed, cadence, stride length and VAS number of 
subjects with and without orthopaedic additives. 

	 Speed	
[m/min]	

Cadence	
[1/min]	

Stride	
Length	[m]	

VAS	
Number	

Subject	1	     

With	

additives	

40.74 83.5 0.98 4 

Without	 34.16 84.2 0.81 5 

Difference	 6.58 -0.7 0.17 -1 

	     

Subject	2	     

With	

additives	

80.54 106.0 1.52 2 

Without	 72.80 112.4 1.30 3 

Difference	 7.74 -6.4 0.22 -1 

Table 2 shows the arithmetic mean of the detailed 
measures. Both cases are similar with respect to the 
differences. There is increasing walking speed in both 
cases while using orthopaedic additives. Subject 1 
covers the distance by 6.58 meters per minute and 
subject 2 by 7.74 meters per minute. The stride length 

shows a similar pattern, both cases have an increased 
stride length. With increasing walking speed and stride 
length in both cases also the cadence decreases.  

5.4 Discussion 

As can be easily seen, painful walking influences the 
walking speed. With increasing pain, the walking 
speed decreases. The walking speed is mainly 
influenced by the stride length and cadence. The 
present study shows that the stride length increases 
with decreasing pain and the cadence decreases. This 
corresponds to the behavior of people with a physio-
logical, painless gait pattern. It is therefore not to be 
assumed that the cadence is primarily increased by 
orthopedic adjustments, but rather by the stride length, 
which leads to a decrease in cadence at the same speed. 
There is clearly a reverse correlation between cadence 
and stride length. This means that as the cadence 
increases while the stride length decreases and vice 
versa in healthy and lower extremity disabled 
population.  

 

Figure 12: CoM depending on using orthopaedic additives. 

Figure 12 shows the sway of subject 1. Due to 
larger stride length when using orthopaedic footwear, 
the oscillations are less dense. The medio-lateral 
displacement without using orthopaedic footwear is 
increased by 5 mm. From an orthopaedic point of view, 
trunk control indicated by the CoM oscillations 
essentially depends on the applicability of the deep 
trunk muscles (Van Criekinge, et al., 2017). The 
present investigations represented exclusively 
volunteers who had completed or are in the final phase 
of the rehabilitation process. At this point of therapy, a 
significant improvement in trunk stability should 
already have been achieved in any case, so that no 
significant changes are to be expected in the area of 
trunk control using orthopaedic aids.  
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6 CONCLUSIONS 

In this paper we have presented a pipelined algorithm 
that derives temporal-spatial and dynamic gait 
parameters from skeletal data streams. Due to the 
marker- and contact-less approach and the resulting 
low effort the DynMetrics system which incorporates 
the devised algorithms is able to be used in daily 
clinical practice.  

In order to give evidence for this we have used 
system to track gait improvements for patients in need 
of orthopaedic aids, i.e. according footwear and/or 
insoles. Specifically tailoring such aids to the 
individual patient is crucial to improve locomotion 
and avoid pain. It could be shown that by featuring 
the system the effect of using orthopedic additives 
can be captured by objective, quantitative metrics 
thus supporting the attending physician to direct the 
prescription of compensating measures. In our basic 
study we were able to nail down the differences in 
essential gait parameters for patients with and without 
those additives.  

DynMetrics turned out to be suitable to capture 
the according data in reasonable time without major 
preparation effort. As expected, the additives can 
have a positive influence on the walking speed, stride 
length and cadence.  Moreover, pain as measured by 
VAS can be lessened by the use of these additives. In 
addition to the use cases (orthopaedic and 
neurological rehabilitation), the presented algorithm 
can also be applied to other scenarios. Recently 
(Henderson, Gordon, & Vijayakumar, 2017) show 
that step width, medio-lateral displacement and BoS 
are invariant to walking conditions and may provide 
a robust metric in order to evaluate and compare 
wearable robots or exoskeletons. 
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