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Abstract: Accurate disease risk prediction is essential in healthcare to provide personalized disease prevention and 
treatment strategies not only to the patients, but also to the general population. In addition to demographic 
and environmental factors, advancements in genomic research have revealed that genetics play an important 
role in determining the susceptibility of diseases. However, for most complex diseases, individual genetic 
variants are only weakly to moderately associated with the diseases. Thus, they are not clinically informative 
in determining disease risks. Nevertheless, recent findings suggest that the combined effects from multiple 
disease-associated variants, or polygenic risk score (PRS), can stratify disease risk similar to that of rare 
monogenic mutations. The development of polygenic risk score provides a promising tool to evaluate the 
genetic contribution of disease risk; however, the quality of the risk prediction depends on many contributing 
factors including the precision of the target phenotypes. In this study, we evaluated the impact of phenotyping 
errors on the accuracies of PRS risk prediction. We utilized electronic Medical Records and Genomics 
Network (eMERGE) data to simulate various types of disease phenotypes. For each phenotype, we quantified 
the impact of phenotyping errors generated from the differential and non-differential mechanism by 
comparing the prediction accuracies of PRS on the independent testing data. In addition, our results showed 
that the rate of accuracy degradation depended on both the phenotype and the mechanism of phenotyping 
error. 

1 INTRODUCTION 

Understanding the risk factors underlying diseases 
has long been pursued in healthcare in order to screen 
and prevent disease onset for high-risk individuals. 
Proper quantification of the risk factors could help 
stratify patients based on their risk profiles, which in 
turn can be beneficial for developing personalized 
disease prevention and treatment strategies 
(Torkamani, Wineinger, & Topol, 2018). With the 
development of high-throughput sequencing 
technologies, it is now a reality to systematically 
evaluate the genotypes’ contribution to disease risks. 
Genetic twin studies have shown that many human 
phenotypes and diseases are highly heritable; 
however, early genome-wide association studies have 
identified many single nucleotide polymorphisms 
(SNPs) that are only weakly to moderately associated 
with the diseases. In addition, for the associated 
SNPs, they only explain a small amount of the disease 
risks (Lo, Chernoff, Zheng, & Lo, 2015; Manolio et 
al., 2009; Visscher et al., 2017). Recent studies have 

demonstrated that many phenotypes are polygenic in 
nature, meaning a phenotype is associated with more 
than one gene (Purcell et al., 2009; Yang et al., 2010). 
Thus, the polygenic risk score (PRS) method was 
developed to capture the small effects from many 
genetic factors in order to combine their effects into a 
single predictive variable (Euesden, Lewis, & 
O’Reilly, 2015; Purcell et al., 2009). The PRS has 
been evaluated for its role in determining disease risk 
in many complex diseases including coronary artery 
disease, atrial fibrillation, type 2 diabetes, 
inflammatory bowel disease, breast cancer (Khera et 
al., 2018), obesity (Khera et al., 2019), schizophrenia 
(Schizophrenia Working Group of the Psychiatric 
Genomics Consortium, 2014), and antipsychotic drug 
treatment (J.-P. Zhang et al., 2019). For some of the 
diseases, the predictive power of PRS has reached 
clinical significance similar to that of monogenic 
mutations (Khera et al., 2018).  

For the past decade, electronic health record 
(EHR) linked genetic data has proven to be a valuable 
data source for identifying genetic associations for 
diseases. EHR with linked genetic data has the 
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advantages of having a large sample of the patient 
population as well as a rich source of matching 
clinical phenotypes to conduct genomics research. In 
addition, several EHR data have already been used to 
conduct PRS research, including the UK Biobank 
(Khera et al., 2018) and eMERGE (Li, Chen, & 
Moore, 2019). While the genetic data is an integral 
part of PRS prediction, the phenotype used to 
construct PRS is equally as important. A crucial step 
in constructing a PRS is to determine the marginal 
association of each SNP with the phenotype. Thus, 
the quality of the associations determines the utility 
of the constructed PRS. However, there are 
unavoidable biases and measurement errors 
associated with the EHR derived phenotypes. 
Existing studies have evaluated the impact of 
phenotyping errors on statistical inference and 
showed that the errors could increase false negatives 
(Duan et al., 2016) as well as inflate the number of 
false positives (Chen, Wang, Chubak, & Hubbard, 
2019) of the associations. Nevertheless, so far, there 
has been no investigation on the impact phenotyping 
error on the predictive ability of PRS. 

In this study, we used real EHR data from 
eMERGE to simulate three types of phenotype under 
two phenotyping error mechanisms, differential 
(error differs across covariates’ levels) and non-
differential (error is consistent across covariates’ 
levels). We systematically quantified the PRS 
predictive ability in different phenotypes under 
different severities of phenotyping error and error 
mechanisms. Our results showed that as more errors 
were added to the phenotypes, non-differential 
phenotyping errors lowered the PRS prediction 
accuracies similarly among different phenotypes. In 
contrast, differential phenotyping errors affected the 
PRS prediction differently depending on the 
underlying phenotype model. We believe that our 
results could better inform researchers and clinicians 
of the robustness of PRS when assessing disease risk. 

2 METHOD 

To evaluate the impact of phenotyping error on PRS 
prediction, we used simulated datasets where we 
knew the ground truth to quantify the change in 
prediction accuracy. The evaluation was carried out 
in five stages. 1) Use real patients’ genetic data from 
eMERGE EHR as input to construct PRS. 2) Simulate 
known phenotypes under various underlying true 
models. The phenotypes were constructed to have 
true associations with demographic, environmental, 
clinical, and genetic factors (PRS). 3) Inject errors 

into the known phenotypes under two different error 
generating mechanisms: differential and non-
differential 4) Adjust the strength of the phenotyping 
error 5) Quantitatively evaluate the predictive ability 
of PRS on the testing data under each simulation 
scenario. 

2.1 eMERGE EHR Genetic Data 

In order to simulate realistic PRS, we utilized the 
patients’ genetic data from the electronic medical 
records and genomics network (eMERGE, dbGaP 
accession: phs000888.v1.p1) (McCarty et al., 2011). 
Recent studies suggested that PRS does not perform 
well across multiple ethnic groups; thus we restricted 
our study samples to only one ethnicity (Martin et al., 
2017, 2019). To maximize the sample size, we 
extracted white patients from nine different hospitals 
under eMERGE: Children's Hospital of 
Pennsylvania, Cincinnati Children's Hospital Medical 
Center/Boston's Children's Hospital, Geisinger 
Health System, Group Health/University of 
Washington, Essentia Institute of Rural Health, 
Marshfield Clinic, Pennsylvania State University 
(Marshfield), Mayo Clinic, Icahn School of Medicine 
at Mount Sinai School, Northwestern University, and 
Vanderbilt University. The SNP genotyping was 
performed using the Illumina 660W-Quad BeadChip 
at the Center for Genotyping and Analysis at the 
Broad Institute, Cambridge, MA. Genome imputation 
was performed by eMERGE according to the 
standard pipeline (Verma et al., 2014). Overall, 
31,183 patients’ 38,040,165 autosomal SNP 
genotypes were extracted.  

2.2 Phenotype Simulation 

We simulated three types of phenotype under 
different underlying true models (Figure 1, solid 
arrows on top). First, a phenotype was simulated to 
be associated with the demographic variables, a set of 
causal SNPs, and an environmental factor. All 
variables were independently associated with the 
phenotype; thus, it was named the independent model. 
Second, a phenotype was simulated to be associated 
with the demographic variables, a set of casual SNPs 
and a related diagnosis. In this case, the related 
diagnosis was also associated with a subset of the 
causal SNPs, though the associations were different 
from that of the phenotype. For example, a subset of 
causal SNPs may have pleiotropic effects between 
hypertension and heart failure, but the pleiotropic 
associations with the two diseases are distinct. In 
addition, diagnosis in hypertension is also one of the 
factors in determining heart failure status. Because 
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the related diagnosis (hypertension) shared a subset 
of causal SNPs with the phenotype (heart failure) and 
the associations were distinct, the model was called 
the weakly correlated model. Finally, a phenotype 
was similarly simulated to be associated with 
demographic variables, a set of causal SNPs, and a 
related diagnosis as in the weakly correlated model. 
However, the set of pleiotropic SNPs had the same 
effects on the related diagnosis as on the phenotype. 
An example would be that a subset causal SNPs are 
similarly associated with cardiac arrest (related 
diagnosis) as well as heart failure (phenotype).  
 

 

Figure 1: Phenotypes generating mechanism. The 
phenotypes were generated using patients’ age, gender, 
SNP genotypes, and an environmental factor or a related 
diagnosis status. The top solid arrows represent the true 
phenotype generating mechanism. In the independent 
model, all factors were independently associated with the 
phenotype. In the weakly correlated model, the related 
diagnosis and the phenotype shared a subset of causal 
SNPs, but the associations ߛ and	 ߚ were independent. In 
the strongly correlated model, the subset of shared casual 
SNPs had the same associations, as in	ߚ is a subset of ߚ. 
The bottom dotted arrows indicate the phenotype error 
generating mechanism. The biased phenotypes were 
generated based on the values of the true phenotype and the 
environmental factor or the related diagnosis.  

Furthermore, cardiac arrest is also associated with 
heart failure diagnosis. In this study, this model was 

named strongly correlated model. The SNPs in all 
models were randomly selected from the common 
SNPs (minor allele frequency > 5%) in the eMERGE 
EHR genetic data. The mathematical models for the 
phenotype simulation are presented in the following 
sections. 

2.2.1 Independent Model 

In this model, the phenotype Y was generated through 
the logistic model.  

 

Phenotype: 
 

	LogitሺPሺY ൌ 1ሻሻ~ െ 3 െ 0.3 ∗ Age  0.1 ∗ Gender 
∑ β݅ ∗ ܵܰܲ݅

݅ െ 2 ∗   ݎݐ݂ܿܽ_ݒ݊ܧ

 

The coefficients for the intercept, age, gender, and 
environmental factors (Env_factor) were selected so 
that the disease prevalence was around 30%.  The 
same coefficients were also used for the weakly 
correlated and the strongly correlated model so that 
the models were comparable. The distributions of the 
random variables in all equations were listed in Table 
1.  

2.2.2 Weakly Correlated Model 

In the weakly correlated model, a related diagnosis 
was first generated using q SNPs, where q was a 
subset of p SNPs that were used to generate the 
phenotype. In addition, the coefficients ߛ  for 
generating the related diagnosis were independent of 
β that were used to generate the phenotype. 

Table 1: Parameter values for phenotype simulation. 

Variable Value 

Total randomly selected SNPs 500 

Phenotype associated SNPs  p = 100 

Diagnosis associated SNPs  q = 50 

Age Normal (40, 10) 

Gender Bernoulli (p = 0.5) 

Environmental factor (Env_factor) Bernoulli (p = 0.5) 

Phenotype ~ SNP associations   ߚ ~ Normal (0, 0.3) 

Related diagnosis ~ SNP associations  ߛ ~ Normal (0, 0.3) 
 

Related diagnosis: 

LogitሺPሺRelated	diagnosis ൌ 1ሻሻ~ߛ ∗ ܵܰ ܲ





; 	q ⊆  	

Phenotype: 

LogitሺPሺY ൌ 1ሻሻ~ െ 3 െ 0.3 ∗ Age  0.1 ∗ Gender 
∑ β ∗ ܵܰ ܲ

 െ 2 ∗   ݏ݅ݏ݊݃ܽ݅݀	݀݁ݐ݈ܴܽ݁
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2.2.3 Strongly Correlated Model 

The strongly correlated model was the same as the 
weakly correlated model except that the related 
diagnosis and the phenotype shared a subset of q 
SNPs as well as their coefficients. 

 

Related diagnosis: 
 

LogitሺPሺRelated	diagnosis ൌ 1ሻሻ~∑ β ∗ ܵܰ ܲ	; 	q ⊆



;	 ߚ	 ⊆   	ߚ
 

Phenotype: 
 

LogitሺY ൌ 1ሻ~ െ 3 െ 0.3 ∗ Age  0.1 ∗ Gender  ∑ β ∗



ܵܰ ܲ െ 2 ∗   	ݏ݅ݏ݊݃ܽ݅݀	݀݁ݐ݈ܴܽ݁

2.3 Biased Phenotype Due to Errors 

As shown in Figure 1, the biased phenotypes were 
generated based on the value of the true phenotypes 
as well as the environmental factor or the related 
diagnosis (Figure 1, dotted arrows at the bottom). The 
intuition was that, first, the biased phenotype would 
be expected to be a deviation from the true phenotype. 
Second, many of the phenotyping algorithms utilized 
by EHR systems used environmental and diagnosis 
variables to determine the phenotype or disease 
status, thus, the precision of the phenotype was also 
associated with these factors (Kirby et al., 2016; 
Robinson, Wei, Roden, & Denny, 2018; Wei & 
Denny, 2015). Mathematically, the phenotyping 
errors were determined by the sensitivity and 
specificity: 

ݕݐ݅ݒ݅ݐ݅ݏ݊݁ܵ ൌ 	
݁ݒ݅ݐ݅ݏ	݁ݑݎܶ

݁ݒ݅ݐ݅ݏ	݁ݑݎܶ  ݁ݒ݅ݐܽ݃݁݊	݁ݏ݈ܽܨ
 

 

ݕݐ݂݅ܿ݅݅ܿ݁ܵ ൌ 	
݁ݒ݅ݐܽ݃݁݊	݁ݑݎܶ

݁ݒ݅ݐܽ݃݁݊	݁ݑݎܶ  ݁ݒ݅ݐ݅ݏ	݁ݏ݈ܽܨ
 

Sensitivity and specificity measures how close the 
biased phenotype is to the true phenotype. As an 
example, in the independent model, the biased 
phenotype was generated using the following 2x2 
tables. The 2x2 table shows that the biasness of the 
phenotype depends on both the phenotype as well as 
an environmental factor. Thus, there were two pairs 
of sensitivity and specificity values for the two 
variables. 

 
  Y=1  Y=0 

ENV_FACTOR = 1  SensitivityExposure  SpecificityExposure 

ENV_FACTOR = 0  Sensitivitynon_Exposure  Specificitynon_Exposure 

 

Mathmatically, the SensitivityExposure controlled 
the sensitivity of the biased Y when the true 

phenotype Y = 1 and Env_factor = 1. The new 
phenotype value under this combination was 
generated using the Bernoulli distribution with the 
probability equaled to SensitivityExposure. In contrast, 
the SpecificityExposure determined the probably of the 
biased Y = 0, when true Y = 0 and the Env_factor = 
0. The value was generated by Bernoulli (1- 
SpecificityExposure). Thus, the degree of phenotyping 
errors was controlled by the values of the sensitivity 
of specificity. As a special case, a phenotype was the 
gold standard when sensitivity = specificity = 100%. 

For biased phenotypes, the phenotyping error was 
non-differential when the sensitivities (e.g. a) and 
specificities (e.g. b) were the same across the two 
Env_factor levels; otherwise, the error was 
differential (e.g. a, b, c, and d). For instance, a 
phenotype that is more error-prone for patients with 
lower levels of environmental exposure would be 
differentially biased.  

 

NON‐DIFFERENTIAL PHENOTYPING ERROR 

         Y=1   Y=0 

ENV_FACTOR = 1  a%  b% 

ENV_FACTOR = 0  a%  b% 

 

DIFFERENTIAL PHENOTYPING ERROR 

         Y=1   Y=0 

ENV_FACTOR = 1  a%  c% 

ENV_FACTOR = 0  b%  d% 

2.4 Biased Phenotype Generation 

For all phenotypes (independent, weakly correlated, 
and strongly correlated), a range of phenotyping 
errors were introduced using different levels of 
sensitivity and specificity. In addition, differential 
and non-differential error generating mechanisms 
were applied at each sensitivity and specificity level. 
To simplify the presentation of the results, the same 
value of sensitivity and specificity for the non-
differential phenotyping error was used (Table 2). For 
differential phenotyping error, one sensitivity and one 
specificity were kept at 99%, while the others varied 
(Table3). Overall, 60 biased phenotypes were 
generated.  

2.5 Evaluation of PRS Prediction 

The effect of the phenotyping errors on PRS 
prediction was evaluated in the following steps.  

1. Split the data into training and testing 

2. Sample sizes of the data split 
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3. Obtain coefficients for the SNPs using the 
training data 

4. Construct PRSs in both training and testing data 
5. Build a predictive model using the PRS in the 

training data 

6. Apply the model to the test data 

7. Compare the predicted phenotype value to the 
true phenotype value 

The data was split into the training and testing 
datasets, with the testing dataset being held out for 
evaluation. Using the training data, all SNPs’ 
marginal association, β୧,୲୰ୟ୧୬ , with the biased 
phenotypes were obtained. The marginal associations 
from the training data were then used to construct 
PRSs in both the training and testing data. Next, a 
predictive model was built using the PRS in the 
training data; the model was subsequently applied to 
the testing PRS to obtain the predicted phenotype. 
The predicted phenotype was compared with the true 
phenotype in the testing data to obtain the testing 
area-under-the-curve (AUC) value. The entire 
process, from phenotype simulation to PRS 
prediction, was repeated 100 times using different 
random seeds to obtain 100 replications of the results. 

3 RESULT 

In all simulations, gold standard results were included 
to serve as the baselines for comparison. The gold 

standards demonstrated the maximum obtainable 
prediction accuracies from PRSs that were generated 
using the true phenotype. Figure 1 showed a change 
in PRS prediction accuracy as more non-differential 
errors were added into the phenotype. The accuracies 
gradually decreased from gold standard to 50% 
sensitivity and specificity. At 50% sensitivity and 
specificity, the biased phenotype was generated the 
same way as coin-flipping. Thus, the prediction 
accuracies of PRS at this error level was also around 
50%. Notably, the gold standard accuracies were also 
different even when the simulation parameter values 
were the same for all three phenotypes. 

4 DISCUSSION 

Disease risk prediction utilizing genetic information 
via PRS has shown great promise in many complex 
human diseases. With the increasing availability of 
linked genetic data in EHR systems, PRS prediction 
can be widely applied to many phenotypes and 
diseases to identify high-risk patients for better 
disease prevention and treatment care. Nevertheless, 
patients’ true disease statuses are often unknown. 
Thus, the observed disease status is only a proxy for 
the true disease status, and the observed status will be 
biased due to phenotyping errors. In this study, we 
quantified the degradation of PRS prediction using 
three different types of phenotype under the 
differential and non-differential phenotyping errors. 

Table 2: Sensitivity and specificity for the non-differential phenotyping error. 

Error model name Error mechanism  

Gold standard No error 

X = (95, 90, 85, 80, 75, 70, 
65, 60, 55, 50) 

	 Y=1 Y=0	
Env_factor	or	Diagnosis	=1	 Sensitivity = X% Specificity = X% 

Env_factor	or	Diagnosis	=0	 Sensitivity = X%  Specificity=  X% 
 

Table 3: Sensitivity and specificity for the non-differential phenotyping error. 

Error model name Error mechanism  

Gold standard No error 

X = (95, 90, 85, 80, 75, 70, 
65, 60, 55, 50) 

	 Y=1	 Y=0	
Env_factor	or	Diagnosis	=1	 Sensitivity = X%  Specificity = 99% 
Env_factor	or	Diagnosis	=0	 Sensitivity = 99% Specificity=  X% 
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Figure 2: Performance of PRS prediction under non-differential phenotyping error. Each boxplot represents 100 replications 
of the same experiment using different datasets. The x-axis indicates the sensitivity and specificity level set by variable X in 
table 2. The y-axis shows the prediction AUC on the testing data. 

 

Figure 3: Performance of PRS prediction under differential phenotyping error. Each boxplot represents 100 replications of 
the same experiment using different datasets. The x-axis indicates the sensitivity and specificity level set by variable X in 
table 3. The y-axis shows the prediction AUC on the testing data. 

We utilized the eMERGE EHR genetic data so 
that the SNPs had the minor allele frequency 
distribution and correlation structure that are 
observed in the real patients’ data. Using the SNPs 
data along with other demographic and clinical 
variables, we simulated three different phenotypes 
with increasing levels of complexity (Figure 1). For 
the phenotype generated under the independent 
model, all variables independently related to the 
phenotype. Here, we assumed that an individual’s 
genetic factors do not affect one’s environmental 
exposure. Under the weakly correlated model, we 
used a related diagnosis status to determine the 
phenotype status, and the two were associated with a 

common subset of SNPs through pleiotropic effects. 
In this case, we assumed that the associated effects 
were different between the related diagnosis and the 
phenotype. This is likely when the phenotypes are 
regulated through different biological mechanisms, 
such as between heart diseases and mental disorders 
(Andreassen et al., 2013; Li, Duan, et al., 2019; X. 
Zhang et al., 2019). Finally, in the strongly correlated 
model, the diagnosis and the phenotype were assumed 
to be more similar due to the shared underlying SNPs 
as well as their coefficients. This reflects a possible 
scenario when a subtype of disease is used to 
diagnose the main disease.  
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As expected, as more phenotyping errors were 
added to the three phenotypes, the prediction 
accuracy of PRS decreased. However, the rates of the 
decrease depended on the type of phenotyping errors. 
First, the gold standards’ accuracy in Figure 2 and 
Figure 3 were similar because they both represented 
PRS predictive power without any phenotyping 
errors. Interestingly, the PRS achieved the best 
performance in the phenotype generated from the 
weakly correlated model, followed by the 
independent and strongly correlated model. This can 
be explained by the different amount of genetic 
contribution to the phenotype. In the weakly 
correlated model, SNPs contributed to the phenotype 
through two mechanisms: 1. direct associations with 
the phenotype. 2. Indirect associations through the 
related diagnosis. Because the indirect associations 
were independent of the direct associations, the SNPs 
contributed “twice” to the phenotype. In contrast, in 
the independent model, the SNPs were only 
associated with the phenotype through their direct 
associations. And in the strongly correlated model, 
the SNPs’ associations were diminished because part 
of the associations was mediated by the related 
diagnosis. Second, non-differential phenotyping 
errors similarly affected all phenotypes. The relative 
order of PRS prediction accuracies did not change as 
more non-differential phenotyping errors were added.  
Finally, differential phenotyping errors, which are 
more likely to be observed in real data, exhibited 
different accuracy trajectories for the phenotypes. 
The independent model was affected the least, likely 
because the SNPs and the environmental factor were 
independent. Thus, differential phenotyping errors 
induced by the environmental factor did not have a 
major impact on the PRS prediction accuracy. 
However, in the weakly correlated and strongly 
correlated model, both the phenotype and the related 
diagnosis were associated with the SNPs. Thus, 
differential errors based on these variables had a 
severe impact on the PRS, with the strongest impact 
in the strongly correlated model. In summary, non-
differential phenotyping errors affected PRS 
prediction equally among the phenotypes. 
Differential phenotyping errors had an increased 
impact on PRS prediction if the target phenotype and 
the variables used to determine the phenotype have a 
shared genetic component. 

While it is useful to understand the impact of 
phenotyping errors on PRS prediction, it is also 
important to identify approaches that can minimize 
the error. One effective approach to reducing error is 
through manual chart review of patients’ 
comprehensive clinical histories by doctors or 

domain experts. However, manual review is both 
time-consuming and expensive. A potential 
alternative approach is to chart review a subset of 
patients to determine the amount of phenotyping error 
as well as the error mechanism. Then, the results 
presented in this study could serve as a guideline to 
determine whether the errors are within the 
acceptable range. If not, the phenotype quality needs 
to be improved. For future studies, the impact of 
phenotyping errors on the continuous outcome can be 
explored. Furthermore, phenotype differences across 
individuals or populations depend on both genetic and 
environmental factors(Rosenberg, Edge, Pritchard, & 
Feldman, 2019). To evaluate the relative importance 
of these factors, it is essential to verify the accuracies 
of the measurements. Thus, more complex error 
patterns that depend on multiple environmental or 
clinical variables are likely to be more realistic and 
should be investigated. Finally, AUC is the current 
standard measurement for PRS performance. 
However, some studies suggested that AUC may not 
be the best metric for evaluating classification 
accuracy. Thus, other accuracy metrics, such as net 
reclassification improvement or integrated 
discrimination improvement can be used (Pencina, 
D’Agostino, D’Agostino, & Vasan, 2008). 
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