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Abstract: An automated and generally applicable method for segmentation is still in focus of medical image processing 
research. Since a few years artificial inteligence methods show promising results, especially with widely 
available scalable Deep Learning libraries. In this work, a five layer hybrid U-net is developed for slice-by-
slice segmentation of liver data sets. Training data is taken from the Medical Segmentation Decathlon 
database, providing 131 fully segmented volumes. A slice-oriented segmentation model is implemented 
utilizing deep learning algorithms with adaptions for variable parenchyma shape along the stacking direction 
and similarities between adjacent slices. Both are transformed for coronal and sagittal views. The 
implementation is on a GPU rack with TensorFlow and Keras. For a quantitative measure of segmentation 
accuracy, standardized volume and surface metrics are used. Results DSC=97.59, JI=95.29 and NSD=99.37 
show proper segmentation comparable to 3D U-Nets and other state of the art. The development of a 2D-slice 
oriented segmentation is justified by short training time and less complexity and therefore massively reduced 
memory consumption. This work manifests the high potential of AI methods for general use in medical 
segmentation as fully- or semi-automated tool supervised by the expert user. 

1 INTRODUCTION 

Automated and precise segmentation of anatomical 
structures for computer-assisted diagnostics is still 
field of ongoing research. Only for particular domains, 
off-the-shelf applications are available (Christensen 
and Wake, 2018) but generally computer-aided 
diagnostic is achieved in a user-centric process 
utilizing frameworks providing tools for semi-
automated processing (Strakos et al. 2015). The 
manual processing of the datasets thereby necessitates 
a lot of experience in both, the technical and the 
medical domain and is exposed to subjective 
processing, even if following a rather standardized 
segmentation process (Zwettler et al. 2013).  

1.1 Medical Background 

The precise segmentation of specific anatomical 
structures  from  3D  data forms the basis for quantita- 

tive analysis in computer-assisted diagnostics. The 
quantitation aspect is relevant for assessing disease 
progression or general scoring (Aggarwal et al. 2011). 
Based on segmented anatomical structures, the 
visualization and inspection in 3D, as well as 
utilization in AR and VR environments becomes 
feasible. Segmentations are further relevant for surgery 
planning, building up anatomical atlas models, 
evaluating image acquisition protocols or as input data 
for nowadays widely available 3D print (Squelch 
2018).  

1.2 Sate of the Art 

Since the appearance of the first CT scanners, in the 
early 1970s, intensive research in the field of medical 
image processing targeting at fully automated 
segmentation approaches has been initiated and is still 
going on.  

66
Zwettler, G., Backfrieder, W. and Holmes III, D.
Pre- and Post-processing Strategies for Generic Slice-wise Segmentation of Tomographic 3D Datasets Utilizing U-Net Deep Learning Models Trained for Specific Diagnostic Domains.
DOI: 10.5220/0008932100660078
In Proceedings of the 15th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications (VISIGRAPP 2020) - Volume 5: VISAPP, pages
66-78
ISBN: 978-989-758-402-2; ISSN: 2184-4321
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



A priori knowledge about the target shape, lead to 
deformable models (McInerney and Terzopoulos 
1996). With statistical shape (Cootes et al. 1992), 
adaptive models are calculated from a large set of 
reference datasets with corresponding reference 
positions, thus representing the statistical shape 
variability of the target anatomical structure in a 
sophisticated way. Statistical Shape models allow for a 
very compact representation of the target’s structure 
due to PCA but the precise and generic determination 
of corresponding landmarks is still unsolved and 
necessitates specific approaches in particular 
diagnostic domains. Incorporating the input dataset 
intensity profiles besides shape, Active Appearance 
Models (Cootes et al. 1998) can be trained for 
automated segmentation in specific anatomical 
domains but attracted interest and significance in a 
non-diagnostic domain, namely human face 
comparison and recognition. 

In recent years, improvements in GPU speed, 
massive efforts in AI research of large companies and 
availability of machine learning frameworks such as 
Tensorflow to the research community were the trigger 
for significant improvements in Deep Learning and to 
allow for technical implementation of some concepts, 
since then only theoretically documented. The most 
significant developments are thereby Feed Forward 
networks with several hidden layers that are applicable 
in many computer vision and also speech recognition 
tasks. Nevertheless, Feed Forward networks are also 
applied for medical multi-modal image fusion (Zhang 
and Wang 2011). The concept of self-organizing 
neural networks first introduced by Kohonen 
(Kohonen 1995) for clustering in complex domains 
was successfully applied to classification of renal 
diseases too (Van Biesen 1998). With recurrent neural 
networks and long/short-term-memories (LSTM) 
(Hochreiter and Schmidhuber 1997) semantic 
processing of input data sequences as relevant for OCR 
and voice analysis, c.f. DeepVoice, became feasible 
(Arik et al. 2017). One of the most significant 
developments in Deep Learning in recent years are 
convolutional neural networks, training kernels and 
weights of multi-resolution filter pyramids and thus 
clearly outperforming classic convolutional-layer 
based approaches such as Haar Cascades (Viola and 
Jones 2001). Some of the most relevant CNN 
architectures are LeNet, AlexNet, GoogLeNet or 
ResNet showing more than 1200 layer. New fields of 
application opened generative adversial networks 
(GAN) (Goodfellow et al. 2014). It is applied for 
mimicking of natural data in domains as generating 
paintings, hand written letters or medical data (Yi et al. 
2019). The latter are used for automated liver 

segmentation (Yang et al., 2017) or generation of test 
data to prevent from over-fitting (Frid-Adar 2018). 

1.3 Related Work 

The U-Net architecture was initially developed for 2D 
cell border classification (Ronneberg et al. 2014) but 
soon transformed to processing 3D data too (Cicek et 
al. 2016), applicable for brain tumor segmentation 
(Amorim et al. 2017), liver segmentation (Meine et al. 
2018) and various other medical diagnostic domains.  

Recent notable advances in 3D U-Net architectures 
are 3D dilated convolution kernels to significantly 
speed-up the processing and allow for real-time 
application (Chen et al. 2019) as well as generic 
models for semantic segmentation on different 
imaging modalities and anatomical structures (Huang 
et al. 2019). 

1.4 Generic Deep Learning Models 

In this work, several approaches for utilizing 
conventional U-Net architectures for slice-wise 
processing of tomographic 3D datasets are presented. 
Due to the utilized pre-processing strategy with ROI 
selection and adjusting the intensity profile, the 
approach evaluated on liver CT datasets is applicable 
to different domains like lung, kidney or other 
modalities such as brain MRI too.  

Besides a sufficient amount of at least 100 volumes 
along with precise reference segmentations, for the 
generic segmentation approach no additional domain-
specific knowledge is incorporated.  

Due to the slice-wise processing, important aspects 
of the 3D dataset such as position within the patient get 
lost. In this work several strategies are adressed and 
evaluated to utilize positional information for the slice-
wise processing. 

2 MATERIAL 

For this research work, the liver datasets from the 
Medical Segmentation Decathlon database (Simpson 
et al., 2019) are utilized for training, validation and test. 
The use of the database is restricted to the 131 liver 
datasets that are provided together with reference 
segmentations as ground truth. All 3D volumes are 
available in NIFTI1 image format (DFWG, 2005), a 
modification of the Analyze 7.5 format (BIR, 1986). 
The medical image analysis software Analyze (Robb et 
al. 1989) is utilized to convert the datasets from NIFTI1 
to Analyze 7.5 and to perform the data preparation and 
pre-processing subsequently described in section 2.2. 
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2.1 Analytic Inspection of the 
Task03_Liver Datasets  

The 3D volumes are available as axial slices of matrix 
size 512×512 with an average number of slices 
µsliceCnt=447.62±275.25 [74;987]. The iso-spacing in 
x/y-direction is given with µspacingXY=0.793±.118 
[.1557;1.000] and the inhomogeneous slice thickness 
is described with µspacingXY=1.506±1.177 [.699;5.000]. 

The intensities of the CT slices range between 
µintMIN=-1103.26±204.93 [-2048;-1000] to 
µintMAX=3334.70±3566.96 [1023;27748]. The vendor-
related suspicious low and high values are not further 
addressed as they are out of the relevant intensity 
context for the liver segmentation domain. 

The reference segmentations provided for the liver 
datasets represent a three-class non-overlapping 
discrimination of the volume, namely background (0), 
liver (1) and liver tumour (2) as shown in Fig.1 for slice 
417 of dataset #0. 

 

Figure 1: Med Decathlon slice 417 of liver dataset #0 with 
parenchyma (blue) and the tumour (red) respectively. 

2.2 Data Preparation and 
Pre-processing 

In this work a binary segmentation of the liver 
parenchyma is the objective target. Thus, the ground 
truth for liver and tumour areas are merged leading to 
an encapsulated liver shape.  

To balance the significant mismatch in slice 
thicknesses, the z spacing is adjusted to the x/y inter-
slice spacing utilizing cubic interpolation for the 
intensity dataset and shape interpolation (Rajagopalan 
et al. 2003) for the binary reference masks. In case of 
the slice thickness being below the in plane resolution, 
the data remains unchanged to conserve the axial slices 
at extent 512×512. 

Due to the up-sampling, the number of slices is 
increased to µsliceCnt=639.55±248.77 [74;998]. 
Analysing the extent of the liver within the particular 
datasets, the size of the enclosing ROI extent is given 
with µwidthLiver=285.02±42.54,  
µheightLiver=246.50±31.83 and µwidthLiver=208.84± 57.87. 
To process the input data almost at original resolution 

and nevertheless limiting the size of the model to be 
trained, all axial slices are scaled to an extent of 
352×288 pixels, thereby conserving the aspect ratio 
and placing the image content at the centre. A total 
number of 27,358 slices is available, segregated into 
train, validation and test datasets. 

Besides normalization with respect to the extent, 
the intensity profile is adjusted utilizing a scalar 
transfer function similar to common windowing. Based 
on the average intensity µliver and σliver, the transfer 
function is applied according to Eqn. (1) for scale ݏ	 ൌ
ଵଵହ

ଷ∙σ݈݅ݎ݁ݒ
 to restrict all values to a range of [12;243]. 

Tሺܽሻ ൌ ൜
ሺ127ܺܣܯ െ |ܽ െ μ௩| ∙ ,ݏ 0ሻ ܽ  μ௩
ሺ127ܰܫܯ  |ܽ െ μ௩| ∙ ,ݏ 255ሻ ܽ  μ௩

   (1)

The scale ratio thereby does not transform values to 
full range of [0;255] to allow for some adaptability 
with respect to data augmentation. For training, µliver 
and σliver are derived from statistical analysis with 
given binary reference segmentation mask, while for 
testing the range is derived from manual windowing.  

As shown in Fig. 2, all axial slices are scaled to the 
target extent of 352×288 pixels with the intensity 
profile of the target structure normalized around midst 
position 127 of utilized data type unsigned char in 
terms of data normalization, see Fig. 2 for slice 100 of 
pre-processed dataset #0. 

(a) (b) 

Figure 2: The original slice 424 of dataset #0 (a) is cropped 
according to reference segmentation mask with the average 
pixel intensity of the liver parenchyma. 

The given reference segmentations are of 
acceptable accuracy and thus stay untouched with one 
exceptional case, namely dataset #102 where around 
slice 323 there is an invalid small blob classified 
offshore the parenchyma that is removed. 

3 METHODOLOGY 

For liver segmentation based on tomographic 3D 
volume data, several approaches for slice-wise 
processing are evaluated and finally combined in a 
hybrid model. For the segmentation task a U-net 
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architecture comprising 5 levels of hierarchy is 
adjusted to input image size of 352×288 pixels for axial 
slices, see Fig. 3. To prevent implicit shrinking by each 
convolution operation, padding is applied, thus 
ensuring intermediate image size reduced by a factor 
of two at each hierarchy level, namely 176×144, 
88×72, 44×36 and 22×18 respectively. The network 
complexity is manifested by 31,031,685 trainable 
parameters with kernel size 3×3 and considering the 
bias parameters for each of the in total 23 layers.  

3.1 Data Augmentation 

With the liver  dataset from the Medical Segmentation 
Decathlon database only 131 tomographic CT volumes 
are available. Nevertheless, as the volume is processed 
in a slice-wise manner, the CT volumes result in at least 
27,358 axial slices available for training, validation and 
test. Due to the high resolution, differences between 
neighbouring slices are low and thus redundancy is 
present in the dataset. Thus, data augmentation is 
needed to enrich the number of input slices to prevent 
from over-fitting at higher epoch counts and to reduce 
the gap between training and testing accuracy.  

Data augmentation is implemented in an original 
way to keep full control of the nature of the artificial 
images generated compared to out of the box 

Keras/Tensorflow functionality. The following 
parameters are used to manipulate the slices chosen for 
the current batch and thus to enrich the amount of data 
available for training:  

 transX and transY: translation in x-direction and y-
direction of the current slice  

 rot: rotation around the image center 
 intMul: linear scale of the image intensities leading 

to brighter or darker pixel values within the borders 
of the windowing range 

 intAdd: additive manipulation of the intensities 
within the window, leading to a uniform shift for 
full scalar range  

For all of these parameters, a valid range is configured 
a priori. The parameter set to apply for a particular 
image is then given as randomly selected values 
(uniform distribution) within the valid range of the 
augmentation parameters. 

Pixel values of the augmented image are thereby 
calculated as shown in Eqn. (2).  

,ݔሺܣ݃݉݅ ሻݕ ൌ ݅݉݃ሺݔᇱ, ᇱሻݕ
∙ ሺ1  ሺ݀݊ݎ െ 0.5ሻ ∙ ሻ݈ݑܯݐ݊݅
 ሺ݀݊ݎ െ 0.5ሻ ∙ intAdd 

(2)

 

 

Figure 3: Network layout of the U-Net architecture utilized in this paper adapted from (Ronneberg et al. 2015). The intermediate 
results on each of the five hierarchy layer are visualized for slice 72 of dataset #0. At full resolution of 352×288 two layers with 
64 convolution kernels are applied while after reducing the size to 176×144 two layers with 128 convolution kernels each are 
applied. To reconstruct the original size, four concat operators and up-sampling are applied. 
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ᇱ൨ݕ ൌ ൦
ݔ െ

݄ݐ݀݅ݓ
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ݕ െ
ݐ݄݄݃݅݁
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ቃ

 
ሺ݀݊ܽݎ െ 0.5ሻ ∙ ܺݏ݊ܽݎݐ
ሺ݀݊ܽݎ െ 0.5ሻ ∙ ܻݏ݊ܽݎݐ

൨ 

(3)

with ݀݊ݎ in ሾ0.0; 1.0ሿ  and ߠ ൌ ሺ݀݊ݎ െ 0.5ሻ ∙  .ݐݎ
A drawback of common data augmentation is the 

loss of image information when rotating and 
translating the image content while introducing 
background regions with lack of information confusing 
the model training process. To adress this problem and 
to dampen the effects, a safety margin of 
paddingOffset =10 is used to provide a 
surrounding frame with original image data to use for 
the augmented images, see Fig. 4. 

 
(a) (b) 

Figure 4: Although the axial slices utilized are of size 
352×288, due to the paddingOffset the virtual image size is 
372×308 thus introducing a safety margin for transformations 
(a). With  transX=15.5, transY=-23.8 and 
rot=8.1 the relevant image content is still within the 
processed as visible for the sinister rib cage (b). 

3.2 Deep Learning based Classification 

3.2.1 Classification of Axial Slices 

In a straight-forward approach the tomographic input 
datasets are sliced in axial direction to provide one-
channel input tensors of size 352×288 for the 
modelAxial.h5 axial U-Net (ax) weights to be trained. 
Due to the a priori defined ROI of the parenchyma area, 
the axial parenchyma shape grows and shrinks in 
caudal-to-cranial direction with moving position 
according to a significant trend. Nevertheless, this 
positional information within the slices is not utilized 
in this approach. 

According to the chosen pre-processing, the aspect 
ratio of the axial slices is conserved with the width, 
height scaled to the target tensor size utilizing cubic 
interpolation. In z-direction there is no interpolation 
required. All axial slices are varied with respect to data 
augmentation parameters ሾ16, 16, 10, .1, 30ሿ  for 
transX, transY, rot, intMul and intAdd respectively. 

For model training, a learning rate of ݈ݎ ൌ 5 ∙ 10ି 
is configured for the Adam Optimizer (Kingma and Ba 

2014) with ܾ݁1ܽݐ ൌ 0.9 2ܽݐܾ݁ , ൌ 0.999  and 
݈݊݅ݏ݁ ൌ 10ି଼  using cross-entropy as loss. The 
training runs for 200 epochs at most using 
݁ݖ݄݅ܵܿݐܾܽ ൌ 32  and ݁ܿ݊݁݅ݐܽ ൌ 12  preventing 
from pre-mature stopping (validation loss).  

3.2.2 Discrete Axial Model for Specific  
Z-ranges within the ROI 

With the model modelAxial.h5 neither 3D information 
nor the characteristic axial liver shape according to the 
position within the ROI are incorporated. Especially in 
the caudal and cranial section of the ROI the 
parenchyma size is low and varying intensity profiles 
observed. Thus, the position within the ROI, denoted 
as sliceRatio with values scaled to ሾ0; 1ሿ  should be 
incorporated too.  

For the chosen U-net architecture, it is hard to 
provide the relevant sliceRatio parameter as additional 
input to the network. It is possible to attach a FCN layer 
with medium depth at the end of U-Net probability 
mask classification to use the sliceRatio parameter for 
automatic derivation of the locally best threshold value 
for final binarization of the segmentation. 
Nevertheless, there the positional impact would be 
marginal.  

As both the shape and position of the parenchyma 
areas vary heavily within an entire 3D volume, splitting 
the slice range into smaller sections increases the local 
homogeneity at the cost of reduced amount of training 
data, see Fig. 5.  

To smooth transitions, the reduced amount of 
training data for each of the sections as well as the 
sharp border areas between them, the segments are 
defined to overlap by 0.05 with [0;0.25[, [0.15;0.45[, 
[0.35;0.65[, [0.55;0.85[ and [0.75;1.00] for the 
sections 1-5 respectively.  

To further utilize the predictability of neighbouring 
segments close to the border sections, the final result is 
combined in a linear interpolation way as shown in 
Eqn. (4) with only the at most two sections 
neighbouring  the particular sliceRatio ݎݏ are 
incorporated for number of classes ݊ܿ ൌ 5 and model 
predictions ݀݁ݎ. 

݅݉݃௦, ൌ ∑ ,݀݁ݎ ∙ ,ݐ݄݃݅݁ݓ
ହ
ୀଵ   with 

   (4)
,ݐ݄݃݅݁ݓ ൌ

อ൭
1
݊ܿ

ଶ
െ ቆ݉݅݊ ቀ

1
݊ܿ , ቚݎݏ െ

1
2 ∙ ݊ܿ  ݅ ∙

1
݊ܿቚቁቇ

ଶ

൱อ

1
݊ܿ

ଶ  
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Figure 5: The axial slice stack is devided into overlapping 
sections 1-5. As shown on the right chart, the position-related 
trend in size for the first n=5 datasets is highly correlated and 
thus motivates splitting into model sections. 

3.2.3 Slice Propagation Incorporating 
Neighbouring Results 

Due to the high inter-slice-resolution of the employed 
CT data, neighbouring slices show a high correlation 
with respect to position, size and orientation of the 
segmentations. Incorporating this given fact, the actual 
slice segmentations are expected to get stabilized. A 
similar semantic plausibility check is used with LSTM 
deep learning for natural language processing or for 
robust video object retrieval. Certainly, LSTM 
concepts would be applicable too but enriching the 
neighbouring slices with the right amount of 
uncertainty at all memory layers is a challenging task.  

Consequently, another 2D U-Net approach is 
chosen and enriched with the neighbouring slices. 
Besides the input ݈݁ܿ݅ݏ	 to be segmented, also 
autonomous segmentation results of the previous and 
next slice as ݃݁ݏሺ݈ܽ݅ݔܣ݈݁݀݉,݈݁ܿ݅ݏሻିଵ  and 
ሻାଵ݈ܽ݅ݔܣ݈݁݀݉,݈݁ܿ݅ݏሺ݃݁ݏ are added to the input 
tensor that is reshaped to ሺ1, 288, 352, 3ሻ  extent 
similar as applicable for RGB images, c.f. Fig. 6.  

A crucial aspect is how to define the neighbouring 
slices for training. With the ground truth provided, the 
influence of the particular intensity profile slice is 
marginalized, thus only the proximate slices are 
utilized.  

The data augmentation for this 3-slice concept is of 
high importance. The transformation of the mid slice is 
performed with the same parameter set 
ሾ16, 16, 10, .1, 30ሿ as used in section 3.1. To conserve 
the inter-slice-correlation it would neither be a good 
idea to randomly transform the proximate slices nor to 
move them along with the mid slice to sustain a small 
but crucial level of variability. Thus, for the previous 
and next slice, a ¼ of the mid slice data augmentation 
range is utilized and applied relative to the mid slice 
transformation.  

With the presented 3-slice model of 
ሺ݊݊݅ݐܿ݅݀݁ݎ െ 1ሻ ሺ݊ሻ݃݅ݎ  ,  and ݊݅ݐܿ݅݀݁ݎሺ݊ 
1ሻ denoted as ܽݔ, the results of a first run can be 

improved by bottom-up and top-down processing. 
Furthermore, the slice-wise propagation opens rich 
possibility for manual adjustment of the results.  

 

Figure 6: The training tensor for the mid slice is enriched by 
neighbouring single-slice predictions. 

3.2.4 Incorporating Axial and Sagittal Views 
for Overall Classification Building up a 
Hybrid Position-based Model 

The drawback of slice-wise data processing are the 
outer sections, where the target structure continuously 
vanishes in mass. For the axial slices, this is the case in 
the top and bottom rows. To overcome this limitation, 
it makes sense to incorporate sagittal and coronal slices 
too. Although the sagittal and coronal slices show 
weaknesses in the left/right and front/back areas 
respectively, with respect to the overall information a 
significant gain is expected. Axial slices are 
transformed to sagittal (256x376) and coronal 
(256x308) with z-dimension scaled to 256 for each of 
the 3D datasets. Two U-net models,  sagittal (axs) and 
coronal (axc), are trained and applied as described in 
section 3.2.1 with results back-transformed to axial 
view. In Fig. 7 the preparation of segmentation results 
for axial, sagittal and coronal can be seen in the 
classify-section.  

The 3-slice model axpop, incorporating 
neighbouring slices and thus a marginally perspective 
aspect is expected to be capable of further improving 
slice-by-slice results, c.f. improve section of Fig. 7. 
With axpop applied to reconstructions from sagittal and 
coronal, axial segmentation information is thereby 
already incorporated lowering the benefit for 
combination of the three orthogonal views. Thus, 
sagittal and coronal predictions are improved with 
specific 3-slice models denoted as axspopSAG 	
and axspopCOR  respectively, see Fig. 7.  

Now, as for each slice a good segmentation result 
from axial, sagittal and coronal view is achieved, they 
get combined for the final result.  

The most straight forward approach thereby is 
averaging of the three particular slices, denoted as 	
 ᇱ,ᇱ,௦ᇱ. As for the border areas two of three views areܩܸܣ
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expected to contribute good results, averaging or 
majority voting seem to be a functional approach. 

Alternatively, a 3-layer U-Net model can be trained 
as decision tree, denoted as ݈݉݁݀ᇱ,ᇱ,௦ᇱ. 

A third approach (ܲݏ ܹᇱ,ᇱ,௦ᇱ ) for combining the 
orthogonal slices focuses on the position-based 
evaluation of the prediction accuracy of the axial, 
sagittal and coronal models calculated from pixel-wise 
error as a normalized volume of size 100×100×100. 
Smoothing (Gaussian kernel, r=1, 8 runs) is applied to 
get a dense weight-map for position-dependent 
accuracy of axial, coronal and sagittal slices. 

4 IMPLEMENTATION 

For the manually performed pre-processing steps such 
as converting the image type,  resampling  to  isotopic 

voxels  as  well  as  for  visualization  of  the results  the 
image   processing   frameworks   and   tools  Analyze, 
MeVisLab and ImageJ are utilized.  
The model training and testing is implemented in 
Python version 3.7.3 with separate parameterizable 
scripts for the various process   steps   using 
Tensorflow 2.0 beta together with Keras.  

The Python image processing is largely built upon 
OpenCV or numpy for fast matrix operations.  

To provide the model with training data, a 
DataGenerator class is derived from Sequence 
base class.  

With a data generator, the batches can be loaded 
from the file system on demand and one gets full 
control on the data augmentation and on the batch-
randomization.  

 
 

 

Figure 7: Axial slices are first transformed into sagittal and coronal views too, all to get classified by an individual U-Net. After 
this classification section, results can further be improved by using a generic 3-slice U-Net (axpop) after reconstruction to axial 
view or specific ones (sagpop , corpop) prior to axial reconstruction. The improved results finally get combined by one of the three 
proposed strategies, averaging, U-net trained for merging or a position-based weighting algorithm. 
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5 RESULTS 

5.1 Evaluation Metrics 

For evaluation, in this work the same metrics as 
proposed by the medical decathlon challenge are used 
(MedDecathlon 2018). These are the Sørensen-Dice 
coefficient (DSC)(Dice, 1945) for evaluation of the 
spatial overlap and the normalized surface distance 
(NSD) (Laplante, 2019) evaluating the spatial 
proximity of test and reference shape to compare. 
Additionally, the Jaccard index (Jaccard, 1912) as a 
stricter metric for area match compared to the Dice 
coefficient is evaluated too to allow for comparability 
with further research papers. The metrics are calculated 
according to Eqs. (5)-(7) for foreground reference 
segmentation R and foreground test region S of image 
I with ܴ ⊆ ܵ	,ܫ ⊆ ,ݔand pixels ሺ ܫ ሻݕ ∈ 	ܴ ∪ ܵ. 

,ሺܴܥܵܦ ܵሻ ൌ
2 ⋅ |ܴ ∩ ܵ|
|ܴ|  |ܵ|

   (5)

,ሺܴܦܵܰ ሻܫ ൌ 1 െ
∑ ൳ோೣ,ஷூೣ,൷∙ሺோሻೣ,ೣ,

∑ ሺோሻೣ,ೣ,
௫,௬ሺܴሻܦ		 ,	 ൌ

 ሺܴሻሻ݂ݎݑݏா௨ሺݐݏ݅݀
  (6)

,ሺܴܫܬ ܵሻ ൌ
|ܴ ∩ ܵ|

|ܴ|  |ܵ| െ |ܴ ∩ ܵ|
   (7)

Metric ܰܵܦሺܴ, ሻܫ ∈ ሾ0; 1ሿ thereby calculates for error 
pixels the distance to the correct border of the reference 
shape and normalizes with pixels in ܴ ∪ ܵ. 

For the overall accuracy of a dataset, i.e. 3D 
volume, the metrics DSC, NSD and JI are caclulated 
by summing up the FP, FN and correct results of all the 
slices. To adress the statistics per slice, for the same 
metrics a median slice accuracy is evaluated per dataset 
denoted as DSCmed, NSDmed and JImed respectively. 
Testing on several 3D volumes, the partciular results of 
the six mentioned metrics are statistically analyzed too 
for getting an overall evidence.  

5.2 Hardware Infrastructure  

All of the process steps discussed in this paper, namely 
data preparation, pre-processing, model training and 
validation/test are performed on a Colfax SX9600 GPU 
Rack with 2×Intel Xeon Gold 6148 2.4GHZ processors 
and 768GB of DDR4 memory with 2667MHZ clock 
frequency split into 24 partitions of 32GB each. The 
system runs CentosOS 7.6 operating system and 
provides for fast tensor calculation 8 GPU cores, 
namely 4× NVIDIA Volta Titan V 12G and 4× NVIDIA 
Tesla V100 32G.  
 

5.3 Results on Pre-processing and Data 
Augmentation 

The safety margin of 10 pixels used to enlarge the input 
axial slices from 352×288 to 372×308 successfully 
helped to prevent from black-areas due to rotation and 
translation outside the image borders for the effective 
image range. The intensity profile manipulation for the 
data augmentation process does not result in a value 
overflow, see Fig. 8.   

To preserve the binary reference segmentation 
masks, as interpolation strategy the modes Area and 
Nearest Neighbour are to be utilized only.  

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 8: Axial slice 276 (a) and reference segmentation (c) 
get transformed by transX=-6.64, transY=3.51, 
rot=3.00, intMul=1.02 and intAdd=-5.74 (b), 
(d). 

5.4 Slice-wise Classification Utilizing a 
Single Model 

The following axial, sagittal and coronal models are 
trained with 22,000 (axial), 40,000 (sagittal) and 
32,000 (coronal) augmented datasets while validation 
is performed with the remaining datasets, namely 
4,858 (axial), 8,232 (sagittal) and 7,848 (coronal). The 
imbalance in train and test data results from different 
dataset dimensionality in the main viewing directions 
and is implicitly balanced utilizing data augmentation. 

For results of the evaluation metrics on the axial, 
sagittal and coronal model, c.f. Table 1. Furthermore, 
the models  axs and axc are evaluated after 
reconstruction and resampling from sagittal/axial to 
axial slices.  

Although the axial, cornal and sagittal model show 
similar accuracy, their particular strength is located in 
various sections as shown in Fig. 9. The axial model is 
weak in the caudal sections but outperforming in the 
cranial sections. 
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Table 1: Results for the particular slice-wise models 
evaluated on the test datasets. 

model DSC DSCmed JI JImed NSD NSDmed 
 99.0 98.2 93.4 92.6 96.6 96.2 ݔܽ
 ௦ 96.8 96.9 93.8 93.9 96.2 99.3ݔܽ
  96.5 96.5 93.2 93.3 97.9 98.6ݔܽ

 

Figure 9: JI metric evaluated for axial, sagittal and coronal 
model per 1% intervals with respect to relative z-position 
within the volume.  

The training process for the final axial model is  
shown in Fig.10 (a) while in Fig.10 (b) an premature 
stagnation with identical settings is visible. With each 
epoch on full training data lasting for 35:10 minutes the 
overall training of a large model took 15-20 hours. In 
contrast, model evaluation takes place in millisecond 
range and is only affected by file loading and pre-
processing demand. 

(a)                                  (b) 

Figure 10: While in (a) the axial model approaches good 
results within 36 epochs, depending on the initial random 
batch and random the training gets early stuck in about 50% 
of the cases (b).  

 
(a) 

 
(b) 

Figure 11: Correctly segmented liver area for dataset #101 in 
(a) and FP, FN visualization at surface and vena porta areas 
in (b).  

The achievable segmentation accuracy is 
visualized for dataset #111 in Fig. 11 with the matching 
volume in (a) and the FP and FN areas in blue and red 
respectively. Axial segmentation results are rather 

weak in the caudal and cranial areas, see Fig. 12. This 
deficiency is easily levelled by incorporating sagittal 
and coronal too, see Fig. 13. 

 
(a) (b) 

Figure 12: Axial view of segmentation mismatch of slice 88 
and 135 of dataset #111 for model ax (a-b). In caudal 
direction the starting slices of new morphological islands 
sometimes stay unclassified.  

 

Figure 13: Axial view of segmentation mismatch of slice 88 
of dataset #111 with ground truth (green), axial (blue), 
sagittal (red) and coronal (orange) incorporating the midst 
parenchyma part (red FN region in Fig. 12 (a)) in caudal 
direction in contrast to the axial result.  

5.5 Classification with Discrete Axial 
Models for Specific Z-ranges 

Results on the section-based models are listed in Tab. 
2. As the training data of 22.000 slices gets split up into 
5 sections, the quality of these specific models are 
marginally below the full axial model ax. Only if the 
axial model is trained with a reduced amount of data 
too for reason of compensation (axial small, axsmall), the 
section models are significantly outperforming. The 
mode with linearly combining the classification results 
of the neighbouring sections for a particular slice (e.g. 
ax1,nb) outperform the use of only the nearest section 
(e.g. ax1). 
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Table 2: Section based evaluation of various models, 
namely full axial model ax trained with 22,000 datasets, 
axsmall only trained with 4,400 datasets such as the section 
models ax1- ax5. Model axnb incorporates neighbouring 
sections for linear interpolation.  

S model DSC DSCmed JI JImed NSD NSDmed 

1 

ax 89.8 93.0 81.5 86.9 88.1 96.4 

axsmall 67.0 62.5 50.3 45.5 41.9 45.2 

ax1 87.4 88.4 77.6 79.3 82.2 89.5 

ax1,nb 88.0 89.3 78.5 80.6 83.6 90.9 

2 

ax 96.2 97.0 92.6 94.2 97.7 99.3 

axsmall 86.5 88.2 76.2 78.9 85.5 88.7 

ax2 96.0 97.0 92.2 94.1 97.3 99.3 

ax2,nb 96.2 97.2 92.6 94.5 97.6 99.4 

3 

ax 96.2 96.7 92.6 93.5 98.2 99.1 

axsmall 87.3 88.1 77.5 78.7 87.3 89.9 

ax3 96.9 97.2 93.9 94.6 98.8 99.4 

ax3,nb 96.9 97.1 93.9 94.4 98.8 99.4 

4 

ax 96.8 97.2 93.8 94.5 98.7 99.2 

axsmall 88.1 90.1 78.8 81.9 85.8 90.7 

ax4 96.6 97.0 93.5 94.1 98.4 99.2 

ax4,nb 96.9 97.2 94.0 94.6 98.7 99.4 

5 

ax 96.0 96.5 92.3 93.2 98.6 98.9 

axsmall 86.7 88.6 76.5 79.6 85.4 89.9 

ax5 94.1 94.7 88.9 90.0 88.6 92.6 

ax5,nb 94.6 95.1 89.7 90.7 90.2 94.5 

all 

ax 96.2 96.6 92.6 93.4 98.2 99.0 

axsmall 86.8 86.9 76.6 76.8 85.2 87.6 

ax1-5 95.9 96.4 92.1 93.0 96.7 98.7 

axnb 96.1 96.6 92.5 93.4 97.1 99.0 

5.6 Slice to Slice Result Propagation  

Results on the 3-slice U-Net implementing predictions 
of the previous and the next slice are found in Table 3.   

Table 3: Test runs on 3-slice model expecting prediction for 
(n-1), original axial slice and prediction for (n+1).  

model DSC DSCmed JI JImed NSD NSDmed 
 99.0 98.2 93.4 92.6 96.6 96.2 ݔܽ

  95.2 95.6 90.8 91.5 95.1 98.6ݔܽ
  97.0 97.3 94.1 94.7 98.7 99.4ݔܽ
 ௧ 98.6 98.5 97.2 97.0 99.9 99.9ݔܽ
 ௦ 96.8 96.9 93.8 93.9 96.2 99.3ݔܽ

 ௦ 97.2 97.3 94.5 94.7 98.0 99.2ݔܽ
  97.1 97.1 94.4 94.4 97.2 99.1݃ܽݏ
  96.5 96.5 93.2 93.3 97.9 98.6ݔܽ

  96.9 97.1 94.0 94.4 98.3 99.1ݔܽ
  96.9 97.0 93.9 94.1 98.2 99.0ݎܿ

The model is thereby trained to get the intensity 
profile for slice n and a first rough prediction for the 

slices n-1 and n+1. In Table 3 there are test runs for 
three predictions as axppp, the expected input axpop 
together with neighbouring predictions and ground 
truth for previous (axtop). Furthermore, the 
reconstructed sagittal and coronal slices are tested, too, 
utilizing the same model. For the coronal and sagittal 
view, the axial 3-slice model (axspop, axcpop) leads to 
similar improvements after reconstruction to axial 
view as applying specific trained 3-slice models for 
coronal and sagittal before the reconstruction (sagspop, 
corcpop), cf. Fig. 7. 

5.7 Hybrid Position Model of Axial, 
Coronal and Sagittal Segmentation 

Combining the particular results from axial, coronal 
and sagittal the overall quality of results gets improved 
for the a priori position model and a U-Net trained for 
combination.  

Table 4: Quality of results for the segmentations ax, axc and 
axs is improved by combining with average (AVG), position 
model (PosW) or U-net model trained for combination 
(model). As input, the pre-classified slices without (a, s, c) 
and with 3-slice improvement (a’, s’, c’) are applied. 

model DSC 
DSC
med 

JI JImed NSD 
NSD 
med 

ݔܽ 96.2 96.6 92.6 93.4 98.2 99.0 
௦ݔܽ 96.8 96.9 93.8 93.9 96.2 99.3 
ݔܽ 96.5 96.5 93.2 93.3 97.9 98.6 

 ,,௦ 97.2 97.3 94.6 94.7 99.1 99.4ܩܸܣ
ݏܲ ܹ,,௦ 97.2 97.3 94.6 94.7 99.1 99.4 
 ,,௦ 97.5 97.6 95.2 95.2 99.3 99.5݈݁݀݉
 ᇱ,ᇱ,௦ᇱ 97.4 97.5 94.9 95.1 99.2 99.5ܩܸܣ
ݏܲ ܹᇱ,ᇱ,௦ᇱ 97.4 97.5 94.9 95.1 99.2 99.5 
ᇱ,ᇱ,௦ᇱ݈݁݀݉ 97.6 97.7 95.3 95.5 99.4 99.6 

Results on the entire liver dataset can be found in Table 
4. Comparing the simple averaging (AVG) and the 
complex position-based a priori model (PosW), the 
results are almost equal.  

 
(a) (b) 

Figure 14: Axial view of segmentation mismatch of slice 88 
and 135 of dataset #111 for model modela’,c’,s’ (a-b). The 3-
slice model and combination of orthogonal views corrects the 
error (modela’,c’,s’) of ax model, c.f. Fig. 12. 
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It is shown that U-net models are applicable for result 
migration too and highest accuracy is achieved for 
utilizing both, the 3-slice-improvement and the 
combination of the orthogonal views, c.f. Fig. 14 (a-b) 
for slices 88 and 135  of dataset #111. 

5.8 Comparison to Other Approaches 

The highest achieved accuracy in this paper is to be 
quantified with DSC=97.59, JI=95.29 and 
NSD=99.37 for PosWa’,c’,s’. 

A similar slice-based approach utilizing LevelSets 
for result propagation and a Statistical Shape Model for 
initial parametrization achieved an average 
JI=93.6±3.3 and a volume match of 96.82±1.72% 
(Zwettler et al. 2009). At the medical decathlon 2018, 
the top team achieved DSC=0.95 and NSD=0.98 
evaluated for L1 region utilizing a nnU-Net (Isensee et 
al. 2019). 

6 DISCUSSION 

With precise pre-processing and post-processing, the 
domain of 3D segmentation in medicine can be 
addressed with 2D slice-by-slice models, too 
approaching similar level of quality. Classification 
with 2D models has some significant advantages with 
respect to calculation power required for model 
training and memory consumption. Furthermore, for 
user-centric approaches in the medical domain, the 
interaction with 2D slices is more common with a 
broader range of interaction paradigms.  

Surprisingly the sectional models did not pay of as 
expected. It was shown that this fact results from the 
reduced amount of testing data. Thus, if a sufficient 
amount of slices is available, splitting into sectors is a 
reasonable strategy, training only on a subset of the 
axial shapes and positions besides the intensity profile. 
With the data augmentation strategy presented in this 
paper, the lack in training data could not be 
compensated. Instead, real medical image data or 
results of GANs should be utilized.  

With the 3-slice model, the perfect basis for user-
centric and interactive post-processing is provided. In 
this paper it was shown that the improved results can 
be propagated from slice to slice. Nevertheless, the 
axialpop model perfectly worked out for improving the 
initially segmented slices at similar accuracy compared 
to the particular models (sagspop, corcpop). Marginal 
incorporation of a mini 3D-subvolume of 3 slices 
significantly improved results. In future incorporating 
5 or 7 slices will be investigated, possibly a higher step 
increment will allow further improvement.  

The combination of the axial and reconstructed 
coronal and sagittal results is a crucial point. As for all 
positions two of the main views lead to robust results, 
it is not a huge surprise that a simple averageing model 
can compete with the presented complex a priori 
position model. The concept, that axial is weak at 
caudal and cranial directions with sagittal and coronal 
weak at front/back and left/right respectively was 
proven by deeper analysis. 

Nevertheless, these aspects were not corrrectltly 
adressed with the position-based model. The caudal 
and cranial sections are not only axial slices at the very 
begin or end as they might arise inside the volume too. 
Thus, it would be a better strategy to analyze the local 
gradients, e.g. utilizing eigenvalue analysis. If the x, y 
or z-gradients are high in local neighborhood, one can 
conclude the adapted weights for axial, coronal and 
sagittal then.  

With the chosen ROI size of 288×352×256 it was 
shown that tensors for deep learning not necessarily 
need to be isotropic as stated in other papers.   

7 CONCLUSIONS 

Utilizing powerful Deep Learning as a small image 
processing module, most of its black box nature 
vanishes. If these modules are integrated into 
conventional image processing chains in an adequate 
way, significant improvements on the date pre- and 
post-processing become feasible. 

Furthermore, it is shown that in spite of iteratively 
improving deep learning architectures and processing 
power it still might be a reasonable decision to 
decompose a 3D segmentation problem into slice-by-
slice processing.   

Future work will focus on user-centric interaction 
paradigms. Up to now powerful deep learning models 
are available for a broad community but rather as a 
black box. Thus, one has to accept the most often good 
results as they are provided by the model.  

Nevertheless, in computer-based medical analytics 
the human diagnostician always should have powerful 
tools for overruling the machine made decisions. With 
slice-wise processing of the input volume, many 
human-computer interaction paradigms become 
realizable.  

Another aspect to address in ongoing research is the 
genericity of this concept. Besides the parenchyma-
optimized ROI dimensionality all other aspects of the 
model are very generic. With definition of a priori ROI 
and windowing, one axial sagittal, coronal model 
should be able to not only handle parenchyma data, but 
also datasets with kidney, lung, gall bladder and many 
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more in focus too if getting re-trained on a sufficient 
amount of reference data. 
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