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Abstract: This paper casts coordination of a team of robots within the framework of game theoretic learning algorithms.
A novel variant of fictitious play is proposed, by considering multi-model adaptive filters as a method to es-
timate other players’ strategies. The proposed algorithm can be used as a coordination mechanism between
players when they should take decisions under uncertainty. Each player chooses an action after taking into ac-
count the actions of the other players and also the uncertainty. In contrast, to other game-theoretic and heuristic
algorithms for distributed optimisation, it is not necessary to find the optimal parameters of the algorithm for
a specific problem a priori. Simulations are used to test the performance of the proposed methodology against
other game-theoretic learning algorithms.

1 INTRODUCTION

Teams of robots can be used in many domains such
as mine detection (Zhang et al., 2001), medication de-
livery in medical facilities (Evans and Krishnamurthy,
1998), formation control (Raffard et al., 2004; Smyr-
nakis et al., 2016) and exploration of unknown envi-
ronments (Madhavan et al., 2004). A common feature
shared by these applications is that robots should ei-
ther minimise a cost function or maximise a utility
function in a distributed fashion. Thus, the result-
ing problem can be formulated as an distributed op-
timization one. Distributed optimisation arises also
in several applications such as in smart grids (Ayken
and Imura, 2012), disaster management (Kitano et al.,
1999; Smyrnakis and Galla, 2015), robot team coordi-
nation (Semsar-Kazerooni and Khorasani, 2009), sen-
sor networks (Kho et al., 2009).

In each of the aforementioned applications, the
agents need to coordinate to achieve a common goal.
If the desired task requires distributed optimisation of
a utility or cost function, then the resulting problem
turns into a game where each agent optimizes a por-
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tion of the common objective function based on local
information. In such a scenario, game theory provides
formal tools to assess the quality of the solution ob-
tained. When the same game is repeated over time, al-
lowing players to learn their opponents’ strategies so-
lutions based on reinforcement learning (Fujita et al.,
2016; Verstaevel et al., 2017) and adaptive multi agent
systems (Frasheri et al., 2018) can be considered.

If the robots do not have access to the other robots’
states, or if the communication channel is noisy or in-
volves faulty sensors, we say that the game has im-
perfect information, and the robots have to make a
decision under uncertainty. Uncertainty can lead to
wrong decision. For example, wrong decisions could
be made when the positions of other robots are in-
ferred by noisy odometry or noisy camera input. An-
other example in which noisy observation can have
impact on the coordination process of a robot team is
the case of a fleet of Unmaned Aerial Vehicles (UAVs)
that need to take images of an area in order to identify
the growth of the crops. The images should be taken
from various angles. However, it is not always possi-
ble for a UAV to know the exact position and bearing
of the other UAVs, and therefore, to make correct de-
cisions about when to change photo-shooting angles.

Another important factor which can introduce un-
certainty is the state of the environment/ team of
robots. Therefore, in cases where the information

50
Smyrnakis, M., Qu, H., Bauso, D. and Veres, S.
Multi-model Adaptive Learning for Robots Under Uncertainty.
DOI: 10.5220/0008927700500061
In Proceedings of the 12th International Conference on Agents and Artificial Intelligence (ICAART 2020) - Volume 1, pages 50-61
ISBN: 978-989-758-395-7; ISSN: 2184-433X
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved



about either the environment’s or the team’s state is
not shared with everyone, this can lead to non-optimal
decisions. If this is the case, then the coordina-
tion problem can be formulated as a Bayesian game.
Bayesian games can be used to deal with distributed
optimisation problems under incomplete information.
A sequence of Bayesian games can also be used
to describe partially observable games and decen-
tralised partial observable Markov decision process
(dec-POMDPs)(Emery-Montemerlo et al., 2005).

In this paper, we propose a novel game-theoretic
learning algorithm, which takes into account the
aforementioned types of uncertainty. Therefore, it can
be used as a coordination mechanism among robots
playing either complete information games with noisy
observations or Bayesian games. In detail, it is a
synchronous algorithm, where Extended Kalman Fil-
ters Fictitious Play (EKFFP) (Smyrnakis and Veres,
2016) is combined with multi-model adaptive filters
(MMAFs) (Brown and Hwang, 1997). The novelty of
our algorithm is that the joint distribution of the un-
certainty and the observed actions of other players’
action are used to make decisions. Robots use mul-
tiple models to solve their optimisation task. Each
model is either a probabilistic representation of the
noisy observations model of the other players’ states
or of the state of the world. Each model of MMAF
represents a part of uncertainty and the final decision
making is based on a weighted average over all the
models.

Another advantage of our algorithm, is that in con-
trast to EKFFP and various heuristic distributed opti-
misation algorithms, there is no need to tune any pa-
rameters. Therefore, there is no need to decide in ad-
vance the value of the EKFFP parameters. Instead,
random valuations of these parameters can be used si-
multaneously. Each valuation predicts other robots’
strategy from a different angle, which is represented
by different models. Therefore, it is easier to adapt to
evolution of other robots’ strategy.

Distributed learning under noisy observation was
considered in (Kostelnik et al., 2002). Particle swarm
algorithms subjected to intrinsic noise was applied in
(Di Mario et al., 2016). In (Hennig, 2013), noisy ob-
servations in a different context from this work were
investigated, as no directly any knowledge about the
noisy observation was used, such as their probabil-
ity distribution. In (Chapman et al., 2012), the un-
certainty was dealt within a game theoretic frame-
work under a simplified assumption that players use
the same strategy through the iterations of the game.

Various approaches have been adopted to solve
Bayesian games including: Bayesian action graph
games (Jiang and Leyton-Brown, 2010), Multi-agent

influence diagrams (Koller and Milch, 2003) and
Newton method (Govindan and Wilson, 2003). The
difference between these approaches and the pro-
posed algorithm is that their goal is to find the opti-
mal strategy. However, the search for an optimal so-
lution in cooperative Bayesian games is an NP-hard
problem (Tsitsiklis and Athans, 1985), and thus, is not
tractable. On the other hand, in our algorithm players
take into account the other players’ actions and their
possible types when updating their desired action un-
til they reach to a commonly accepted solution, which
is usually an equilibrium point to the problem.

The rest of the paper is organised as follows. In
Section 2, a brief description of the game-theoretic
notions that will be used in the rest of the paper
are presented. In Section 3, the learning algorithm
EKFFP is presented. Section 4 describes our fictitious
play based algorithm, which integrates multi-model
adaptive filters and Fictitious play. Section 5 dis-
cusses some implementation details of our algorithm
and game-theoretic learning algorithms in general. In
Section 6, we evaluate our algorithm in several case
studies. In Section 7, we summarise our findings and
present our future work.

2 GAME-THEORETIC
DEFINITIONS

This section contains a brief description of some
game theoretic definitions that will be used in the rest
of the paper.

2.1 Normal Form Games

A game Γ in normal form is defined as a tuple

Γ = 〈I ,{Ai}i∈I ,{ri}i∈I 〉,

where

• I is the set of indices of all players;

• Ai is the set of all possible actions of player i and
the set product A = ×i∈I Ai is the set of all joint
actions;

• ri : A→R is the utility (reward) function of player
i, which computes the reward that the player gains
after a joint action is selected.

Joint action a, can be written as a = (ai,a−i), where
a−i is the joint action of all players but i. A strategy
of player i is a probability distribution over its action
space, and let ∆i denote the set of all the probabil-
ity distributions over Ai. Each player uses a strategy
σi ∈ ∆i to choose its action. Similarly to actions, a
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joint strategy σ ∈ ∆ is defined as an element of the set
product ∆ = ×i∈I ∆i, and σ−i is a joint strategy of all
players but i.

In this paper we consider iterative games. In these
games, a game is repeatedly played along a discrete
sequence of time instances called rounds or iterations
when each player chooses their actions based on their
strategies, the history of the observed joint actions in
the played iterations of the game and the rewardse al-
located to them.

A player uses a pure strategy when it determinis-
tically chooses actions, therefore it puts all its mass
function in a single action ai ∈ Ai such that σi(ai) =
1. When this is not the case, we call such a strat-
egy, mixed strategy. The expected reward of player
i, given its opponents’ strategies σ−i, is denoted by
ri(σi,σ−i). If σi is a pure strategy with σi(ai) = 1, the
expected reward can be written as ri(ai,σ−i).

The most common deterministic decision rule in
game theory is the so-called best response (BR) by
which players choose the actions which maximise
their expected rewards. Formally, the action that a
player i will choose, given its opponents strategies
σ−i, is

BRi(σ−i) = argmax
ai∈Ai

ri(ai,σ−i). (1)

A joint strategy σ̃ = (σ̃i, σ̃−i) that satisfies

ri(σ̃i, σ̃−i)≥ ri(σi,σ−i) ∀i ∈ I ,∀σi ∈ ∆
i

is a Nash equilibrium (Nash, 1950). Nash in (Nash,
1950) showed that every game has at least one equi-
librium, i.e., there is at least one strategy σ̃ where
players do not benefit from deviating from it unilat-
erally. A Nash equilibrium can be either mixed or
pure if the strategy σ̃ is a mixed or a pure strategy
respectively.

2.2 Bayesian Games

A Bayesian game, or game of incomplete informa-
tion, is defined as a tuple

G = 〈I ,{Θi}i∈I ,{Ai}i∈I ,{p(θi)}θi∈Θ,i∈I ,{ri}i∈I 〉,

where

• I is the set of player indices;

• Θi is the set of types belonging to player i and
Θ =×i∈I Θi;

• Ai is set of possible actions of player i;

• ri : A→ R is the utility function of player i.

Each type of a player represents a possible internal
state of the player. At any time, a player can only be
in one of its types. The type of a player constitutes

Table 1: Reward matrices of a two players Bayesian game.
Type A

task difficult easy
difficult 10,6 5,10

easy 8,5 6,8

Type B
task difficult easy

difficult 9,10 5,4
easy 8,6 7,5

its private information, in the sense that each player i
knows the type that it is in. In contrast, the other play-
ers only know the probability that player i can be in a
certain type at that moment. If θi ∈Θi is considered as
the state of the environment, i.e., the type of a player
is the state of the environment (world), then all play-
ers have the same types and thus Θi = Θ j, ∀i, j ∈ I .
The expected reward of a player in a Bayesian game
is then estimated as:

ri(σi,θi) = ∑
θ−i∈Θ−i

p(θ−i)ri(σi,θi,σ−i,θ−i). (2)

A Bayesian Nash equilibrium is defined as

σ
i ∈ argmax

ai∈A
p(θi|θ−i)ri(σi,θi,σ−i,θ−i)

Hence a Bayesian Nash equilibrium is a Nash equi-
librium of the expanded game in which each player
action space of pure strategies is the set of maps from
Θi to Ai.

As an example, consider a task allocation sce-
nario: two robots 1 and 2 need to collaborate to finish
two tasks: easy and difficult. The difficult task can
be performed efficiently only if both robots work to-
gether on it. Robot 1 can do both tasks at the same
efficiency, and hence it has only one type. Robot 2
has two types A and B. In type A, robot 2 can do
the easy task with greater efficiency than the difficult
task, while in type B, it performs both tasks with the
same efficiency. Furthermore, robot 2 always knows
its type, while robot 1 only knows that with probabil-
ity p robot 2 is in type A, and with probability 1− p
is in type B. In this game, the world has a unique
state and thus does not affect robots’ types. Table 1
illustrates an example of the utility function in this
Bayesian game.

Each matrix of Table 1 represents the rewards that
robots receive. The single type robot is the row player
of the game, and the other robot is the column player.
If robot 2 is in type A, then both robots receive the
rewards in the left matrix, while when it is type B,
they receive the reward in the right matrix. For exam-
ple, the entry 5,10 of the left matrix means that when
robot 1 performs the difficult task and robot 2 does
the easy task and is in type A. In this case, robot 1 re-
ceives 5 unit of reward and robot 2 receives 10 units.
We reinforce here that at any time of game playing,
robot 2 knows exactly which reward matrix is used,
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while robot 1 makes decisions based on the probabil-
ity distribution of types of robot 2: p and 1− p for the
left and right matrix respectively.

3 LEARNING ALGORITHMS

A distributed optimisation task can be cast as a game.
However, the formulation of the optimisation task as
a game does not directly provide a solution to the
game. A coordination mechanism between the robots
is needed especially in cases where autonomy is a de-
sirable property of the robot team. Game-theoretic
learning algorithms can be used by robots to choose
a joint action to solve the game. The canonical ex-
ample of game-theoretic learning algorithms is ficti-
tious play (FP). Fictitious play is an iterative learn-
ing algorithm. In each iteration t, each player esti-
mates other players’ strategies, and based on these
estimates, chooses an action using the best response
decision rule. At the initial iteration, i.e., t = 0, ev-
ery player i maintains some arbitrary, non-negative
weights κ

i→ j
t for each other player j as the estima-

tion of their strategy. In particular, κ
i→ j
t (a j) is the

weight for action a j ∈ A j of player j. At successive
iterations, players update their weight functions based
on other players’ chosen actions. The update of player
i’s weight function for player j is computed as follows
(Fudenberg and Levine, 1998):

κ
i→ j
t (a j) = κ

i→ j
t−1 (a

j)+

{
1 if a j = a j

t−1
0 otherwise

(3)

where a j
t−1 is the action that player j chooses at it-

eration t − 1. Based on these weights, player i then
estimates player j’s strategy using the following equa-
tion:

σ
j
t (a

j) =
κ

i→ j
t (a j)

∑a j∈A j κ
i→ j
t (a j)

. (4)

Fictitious play converges to the Nash equilibrium in
many classes of games, such as 2× 2 games with
generic payoffs (Miyasawa, 1961), zero sum games
(Robinson, 1951), games that can be solved using
iterative dominance (Nachbar, 1990), and potential
games (Monderer and Shapley, 1996). However, this
convergence can be very slow (Fudenberg and Levine,
1998) because of the implicit assumption that all play-
ers use the same strategy throughout the game. In
(Smyrnakis and Leslie, 2010) and (Smyrnakis and
Veres, 2016), variants of fictitious play were pro-
posed, which were based on particle filters and ex-
tended Kalman filters respectively. These algorithms
assume that players adapt their strategies through the
iterations of the game. In both variants, the fictitious

play process is described as a hidden Markov model
(HMM). Each player maintains some unconstrained
propensities1 , which are responsible for their strate-
gies. In each iteration of game playing, each player
aims to predict other players’ propensities, i.e., hid-
den layer of the HMM, by using the history of other
players’ actions, i.e., observations layer of the HMM.

More formally, let xi(ai) denote the propensity of
player i to play action ai, and ai

t the action of player i
at the t-th iteration of the fictitious play process. The
probability at which each player estimates about the
propensity of other players is:

p(x j(a j)|a j
0,a

j
1, . . . ,a

j
t ) ∀ j ∈ I \{i},∀a j ∈ A j. (5)

This probability was evaluated using particle filters in
(Smyrnakis and Leslie, 2010) and extended Kalman
filters in (Smyrnakis and Veres, 2016). In this paper,
we only consider the variant of fictitious play based
on extended Kalman filters. But the same methodol-
ogy can be easily applied to the variant with particle
filters. As each player estimates the propensity of ev-
ery other individual player separately, only inference
over a single “opponent” player, say player j, will be
presented in the rest of the paper.

3.1 Extended Kalman Filter Fictitious
Play (EKFFP)

This variant of fictitious play is based on the assump-
tion that players have no prior knowledge about other
players’ strategies, and thus, an autoregressive model
can be used to propagate the propensities (Smyrnakis
and Leslie, 2010). In addition, inspired from the sig-
moid functions that are used in neural networks to
connect the weights and the observations, a Boltz-
man formula is used to relate the propensities with
other players’ strategies (Bishop, 1995). The follow-
ing state space model is used to describe EKFFP:

x j
t (a

j) = x j
t−1(a

j)+ξ
j
t−1

Ia j
t =a j(a

j) = h(x j
t (a

j))+ζ
j
t (6)

where Ia j
t =a j(a j) is the measurement equation, which

relates the propensities to the actions of the players.
The noise of the propensity process, ξ

j
t−1 ∼ N(0,Ξ),

which comprises the internal states, has zero mean
and covariance matrix Ξ. The error, ζt ∼ N(0,Z), of

1The strategies are probability distributions. Thus, when
a dynamical model is used to propagate them, new esti-
mates are not necessary to lay in the probability distri-
butions space. For that reason, the intentions of players
to choose an action, namely propensities, which are not
bounded to probability distribution spaces, are used (Smyr-
nakis and Leslie, 2010).
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the observations has zero mean and covariance ma-
trix Z. This error occurs because a discrete 0-1 pro-
cess, such as the best response in Equation (1) is rep-
resented through the continuous Boltzmann formula
h(·) in which τ is a “temperature parameter”. The
components of the vector h, are evaluated as:

h(x j(a j)) =
exp(x j(a j)/τ)

∑ak∈A j exp(x j(ak)/τ)
. (7)

The behaviour of the EKFFP algorithm at the t-th iter-
ation of a game can be described as follows. At first,
player i uses the EKF process, which is based on the
state space in Equation (6), to predict other players’
propensities. Player i then using these estimates, eval-
uates player j’s strategy of choosing an action a j ∈A j,
σ

j
t (a j), as follows:

σ
j
t (a

j) =
exp(x̄ j

t (ak)/τ)

∑ak∈A j exp(x̄ j
t (ak)/τ)

, (8)

where x̄ j
t (ak) is player i’s prediction of the propen-

sities of player j in order to choose action ak ∈ A j

based on the state equations in Equation (6) and using
observations up to time t− 1. Player i then uses the
estimates in Equation (8) to choose an action using
best response in Equation (1). After all players have
chosen an action, they use the EKF update process to
correct their estimates about other players’ strategies
in the light of the recently observed actions. Then,
the next iteration of EKFFP starts with t = t +1. The
EKF estimations can be computed by any standard
textbook procedure, such as in (Sakka, 2013). Algo-
rithm 1 summarises the fictitious play algorithm when
EKF is to predict other robots’ strategies.

Algorithm 1: Extended Kalman filter fictitious play (Smyr-
nakis and Veres, 2016).

1: while t < max iterations do
2: for all j ∈ I \{i} do
3: Predict other players’ propensities for the

next iteration t +1 using the state equations
in Equation (6).

4: Use the beliefs about other players’ strategies
in Equation (8) and choose an action using BR
in Equation (1).

5: Observe other players’ actions
6: for all j ∈ I \{i} do
7: Update estimates of player j’s propensities

using extended Kalman Filtering to obtain
x̄ j

t (ak).
8: t = t +1

4 MULTI-MODEL ADAPTIVE
FILTER EKFFP

4.1 Multi-model Adaptive Filters

The EKFFP process requires the definition of the co-
variance matrices Ξ and Z for the random variables ξ

and ζ respectively. The performance of the learning
algorithm is affected by the values of these covariance
matrices. In (Smyrnakis and Veres, 2016) specific
values were proposed for those covariance matrices,
although these values are not optimal for all games.
In this work, we propose a new approach that uses
many models, each of which represents a pair of co-
variance matrices Ξ and Z. This approach then uses
a weighted sum of these models in order to obtain an
estimate of other players’ propensities, instead of es-
timating the propensities from a single pair of covari-
ance matrices. For Bayesian games, players can have
a propensity estimate for each state of the nature or
each type of other players.

The framework that allows many models to be
considered under the EKFFP process is multiple
model adaptive filters (Brown and Hwang, 1997;
Blair and Bar-Shalom, 1996; Caputi, 1995). Let L
be the set of all models that are used. Instead of es-
timating the propensity in Equation (5), each player
should estimate

p(x j(a j), l|a j
0,a

j
1, . . . ,a

j
t ), (9)

where l ∈ L is one of the possible models, each of
which either refers to a pair of covariance matrices for
potential games, or the state of the nature or another
player’s type Θi in Bayesian games.

To simplify notations, we use ã j
t to denote

(a j
0,a

j
1, . . . ,a

j
t ). The estimate of other players’

propensities in Equation (9) can be written as:

p(x j(a j), l|ã j
t ) = p(l|ã j

t )p(x j(a j)|l, ã j
t ), (10)

where p(x j(a j)|l, ã j
t ) for a given l is the standard EKF

estimate of other player’s propensity and p(l|ã j
t ) can

be seen as the weight factor of each model.

Using Bayes rule, the probability p(l|ã j
t ) can be

written as:

p(l|ã j
t ) =

p(ã j
t |l)p(l)

∑l∈L p(ã j
t |l)p(l)

, (11)

where p(l) is the prior distribution of the model l. The
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probability p(ã j
t |l) can be written as

rl p(ã j
t |l) = p(a j

t ,a
j
t−1, . . . ,a

j
0|l) (12)

= p(a j
t ,a

j
t−1, . . . ,a

j
1|a

j
0, l)p(a j

0|l)
...

= p(a j
t |ã

j
t−1, l)p(a j

t−1|ã
j
t−2, l) · · · p(a

j
0|l).

The propensities are described by the hidden Markov
model, so they are conditionally independent, and
thus, Equation (12) can be written as:

p(ã j
t |l) =

q=t

∏
q=0

p(a j
q|l). (13)

4.2 Multi-model Adaptive Filters
EKFFP (MMAF-EKFFP)

Let |L| denote the cardinality of set L, and x j
t,l(a

j) the
propensity of player j, playing action a j at the tth it-
eration under model l. In the multi-model adaptive
filters EKFFP process, each player uses |L| models
for the propensity of each other player. In particular,
each model is a state model:

x j
t,l(a

j) = x j
t−1,l(a

j)+ξ
j
t−1,l

Il
a j

t =a j(a
j) = h(x j

t,l(a
j))+ζ

j
t,l . (14)

For each of these models, player i uses the EKF pro-
cess to predict player j’s propensity, i.e., x̃ j

t,l(a
k), in

order to choose an action ak ∈ A j under model l. This
prediction is weighted using Equation (11). The esti-
mate of player j’s propensity to choose action ak ∈ A j

is then the sum of the weighted estimates of each
model:

x̄ j
t,ak = ∑

l∈L
p(l|ak)x̃ j

t,l(a
k), (15)

where p(l|ak) is evaluated using Equation (11) and
(13). Then Equation (8) can be applied to evaluate
player j’s strategy. Each model of the estimates of
player j’s propensity are updated using the standard
EKF process under the light of the new action player
j has chosen. Algorithm 2 and Figure 1 summarise
the MMAF-EKFFP algorithm.

5 IMPLEMENTATION DETAILS

In this section, we discuss some implementation de-
tails in robotics of the MMAF-EKFFP algorithm and
of game-theoretic learning algorithms in general.

Algorithm 2: MMAF-EKFFP.

1: while t < max iterations do
2: for all j ∈ I \{i} do
3: for all l ∈ L do
4: For each model l predict other players’

propensities for the next iteration t + 1,
using Equation (14).

5: Evaluate x̄ j
t (ak) using Equation (15)

6: Compute the beliefs about other players’
strategies using Equation (8), and choose an
action using BR in Equation (1)

7: Observe other players’ actions
8: for all j ∈ I \{i} do
9: for all l ∈ L do

10: Update each model’s estimate of other
players’ propensities using extended
Kalman filter to obtain x̄ j

t (ak)
11: t = t +1

Figure 1: The MMAF EKFP process.

5.1 Robots’ Decisions

As any iterative learning algorithm, our algorithm as-
sumes that a specific game can be iteratively be played
and a final decision is reached either when the algo-
rithm converges to an equilibrium or when the max-
imum number of iterations is reached. In robotics,
this can be seen as the following coordination mech-
anism. The robots in each iteration choose an action
which they intent to play and makes aware the other
robots for its intentions, i.e., by communicating this
intention to the other robots. Based on this informa-
tion, they update their estimates about other players
strategies and update the action they are intended to
choose. The action that the team of robots will exe-
cute will be the joint action of the final iteration of the
learning algorithm.
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Table 2: Reward matrices of the Bayesian game for the re-
maining action.

Type A
do not do

do 10,10 -5,0
not do -5,0 0,0

Type B
do not do

do 10,5 -5,0
not do 0,-10 0,0

5.2 Complexity

The computational complexity of the EKF algorithm
is upper bounded by the complexity of inverting a
matrix O(n3) (Bonato et al., 2009), where n is the
rank of the inverted matrix. Therefore the additional
computational complexity of EKFFP when it is com-
pared with classic FP is upper bounded by O((|I | −
1)|Ak|3), where Ak (k ∈ I ) is the largest set of actions
among all players. Similarly, for MMAF-EKFFP it is
O(|M |(|I | − 1)|Ak|3), where |M | denotes the num-
ber of models which are used. The difference of the
two algorithms is of a multiplicative magnitude of M .
This computational difference can be vanished if the
computations of each model m ∈M are executed in
parallel.

5.3 Example of a Sequence of Bayesian
Games

In (Emery-Montemerlo, 2005), it was shown that
dec-POMDPs can be cast as a sequence of Bayesian
games. In this section, we present a process of imple-
menting a sequence of Bayesian games to solve a co-
ordination task. Consider the task allocation problem
between two robots with rewards shown in Table 1 in
Section 2. Depending to the type of robot 2, there are
two pure Nash equilibria where robots can converge.
The first one is (easy,easy) when robot 2 is of type A
and (di f f icult,di f f icult) when robot 2 is of type B.
In order to accomplish their mission robots should fin-
ish both the easy and the difficult task. Independently
of the action the robots will choose for this game, they
will have accomplish only half of the necessary tasks.
Therefore the players will have to play a sequence of
games in order to finish both tasks, easy and difficult.
The first game is the one with rewards depicted in Ta-
ble 1. Another game should be defined in order to
complete the unselected task, after making a decision
based on the first game. An example of such a game is
defined in Table 2. There the robots should choose if
they will both try to finish the remaining task or only
one one should try or none of them should try. Note
here that the game depicted in Table 2 makes the two
robots coordinate and choose to do the remaining task
together. Nonetheless, depending on the nature of the
problem another reward matrix can be used in order
to allow robots having different behaviours.

6 SIMULATION RESULTS

6.1 Results in Potential Games

In this section the performance of the proposed algo-
rithm, MMAF-EKFFP, is compared against the one
of EKFFP in a resource allocation task. This is
the vehicle-target assignment game which was intro-
duced in (Arslan et al., 2007). In this potential game,
N robots and M targets are placed in an area. The goal
of each robot is to engage a target in order to destroy
it. The actions of each robot are simply the choice of
a target to engage. Each robot can choose only one
target to engage, but a target can be engaged by many
robots. The probability robot i has to destroy a tar-
get m is assumed to be independent of the probability
another robot j has to destroy the same target. The
probability that a target m will be destroyed is com-
puted as:

1− ∏
i:ai=m

(1− pim),

where pim is the probability at which the robot i can
destroy target m.

The reward that robots will share is the sum of the
rewards each target m will produce if a specific joint
action a is selected:

rglobal(a) = ∑
m∈M

rm(a), (16)

where rm(a), is defined as the product of target’s m
value Vm and the probability it can be destroyed by
the robots which engage it. More formally, we can
express the utility that is produced by target m as fol-
lows.

rm(a) =Vm(1− ∏
i∈I :ai=m

(1− pim)). (17)

Multiple cases of the vehicle target assignment game
were considered, with varying number of robots.
In particular 20 targets and N = {20,30,40,50,60}
robots were considered. The simulations were run in
a computer with dual Intel Xeon E5-2643 v2 proces-
sors (3.50GHz, 6 cores) and 384 GB memory. The
probability that each robot i can destroy a target m
was set to be proportional to their euclidean distance.
For each case, we run MMAF-EKFFP with six and
twelve models respectively. Each model represents a
pair of covariance matrices Ξ and Z. In all cases, the
values of Ξ and Z were uniformly sampled from the
interval (0,0.1]. Comparisons are also made with the
classic EKFFP with Ξ and Z defined as in (Smyrnakis
and Veres, 2016). We reinforce here that there does
not exist a universal combination of Ξ and Z which
maximises the performance of EKFFP for all games
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Figure 2: Average reward over 200 runs of the vehicle target
assignment game.

(Smyrnakis and Veres, 2016). The parameters which
are reported in (Smyrnakis and Veres, 2016) are sug-
gestive. Therefore, the question which arises is which
pair of parameters Ξ and Z maximise the performance
of EKFFP for the games of interest. MMAF-EKFFP
provides a solution to this problem, since many com-
binations of Ξ and Z can be used as part of different
models. Then the players will select actions based on
the weighted sum of these models. The results pre-
sented in this paper are averaged over 200 runs for
each case. In each run, target values Vm were uni-
formly chosen from (0,10]. The target and the robot
positions were uniformly chosen from [0,1]. This re-
sults in different scales of reward function. In order to
make comparison feasible, the following normalised
version of the global utility was used:

rtotal =
rglobal

∑m Vm
.

As it is depicted in Fig. 2, MMAF-EKFFP with mul-
tiple models performs better than the classic EKFFP,
which uses only a single model. In addition, MMAF-
EKFFP with 6 and 12 models perform similarly when
cases with up to 40 robots are considered. When more
players are considered, having more models improves
the results of the algorithm.

It is expected that MMAF-EKFFP has heavier
computational cost than EKFFP as the number of
models is increased. Nonetheless as it is shown in
Table 3, the running time of MMAF-EKFFP is in the
same level as EKFFP because it is implemented us-
ing parallel computing, taking advantage of the multi-
ple cores which many development platforms already
have in robotics. In this experiment, each model is
processed by an individual thread, which then runs in
an individual physical computation core.

6.2 Games with Noisy Rewards

This section contains the simulation results in a sce-
nario where the robots receive noisy observations of

the other robots’ actions. Noisy observations denote
observations which for some reason is incorrect.
Consider the case where two UAVs monitor a part
of a field in order to decide if fertilisation is needed.
The best results are obtained when one UAV flies
at the top of the area and the other flies at the sides
of the area. This scenario can be modelled as a two
player game, which is depicted in Table 4. If both
UAVs choose to go at the top of the area of interest,
they will collide and they will receive some negative
rewards. On the other hand, if they both choose to fly
at the side of the area, then they will gain no reward
because the quality of the images they gather will be
poor. Finally, some positive reward is generated only
if the two UAvs make different decisions. Note that
the natural choice of the two UAVs is to choose to
fly at the side of the area. They change their decision
only when they believe with probability greater than
0.8 that the other UAV will choose to go at the side
of the area of interest. In addition, each UAV can
observe correctly the intention of the other UAV with
probability p in every iteration of the coordination
process.

Remark. In this paper, we assume that each robot
knows the probability distribution of noisy observa-
tions, either by having some prior knowledge about
its sensors’ specification or using some methods to es-
timate that distribution as the one proposed in (Rosen
and Leonard, ) to estimate this distribution.

Figure 3 shows the results of MMAF-EKFFP and
EKFFP for the game with rewards depicted in Ta-
ble 4. As it is shown here the percentage of times
that MMAF-EKFFP converged to a Nash equilibrium
is always greater than 50%. This is significantly
better than the results reported in (Chapman et al.,
2012), where the results of Generalised Weakened fic-
titious play (GWFP) (Leslie and Collins, 2006) and
Filtered Fictitious Play (FFP) (Chapman et al., 2012).
The probability of converging to a Nash equilibrium
reached zero when the 50% or more of the obser-
vations were faulty for FFP. For the case of GWFP
the probability of converging to a Nash equilibrium
reached zero when the 30% or more of the observa-
tions were faulty. Note here that even EKFFP per-
forms better than FFP and GWFP since the proba-
bility of converging to a Nash equilibrium reached
zero when the 80% or more of the observations were
faulty.

The minimum probability of convergence to a
Nash equilibrium for the MMAF-EKFFP algorithm
is observed when the 50% of the observations were
faulty. This is because the observations had exactly
the same chance to be correct or faulty. When play-
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Table 3: Time in seconds that 20 iterations needed for various number of models EKF fictitious play.
20 robots 30 robots 40 robots 50 robots

EKFFP 0.0649 ± 0.0042 0.1133 ± 0.0130 0.1548 ± 0.0109 0.2321 ± 0.0227
MMAF-EKFFP (6 models sequential) 0.3243 ± 0.0263 0.5909 ± 0.2247 1.1428 ± 0.1618 1.6509 ± 0.3116

MMAF-EKFFP (12 models sequential) 0.7773 ± 0.0327 1.3294 ± 0.1102 2.2283 ± 0.2177 3.0378 ± 0.2063
MMAF-EKFFP (6 models parallel) 0.0568 ± 0.0013 0.0906 ± 0.0034 0.1326 ± 0.0059 0.1918 ± 0.0105

MMAF-EKFFP (12 models parallel) 0.0616 ± 0.0030 0.1091 ± 0.0065 0.1619 ± 0.0071 0.2326 ± 0.0192

Table 4: UAVs’ rewards for the game with noisy observa-
tions.

Top Sideways
Top -4,-4 0,1

Sideways 1,0 0,0

Figure 3: Probability to converge to Nash equilibrium as a
function of the percentage of the correctly observed oppo-
nents’ actions.

ers know that the probability of a faulty observation
is greater than a correct one, they use this information
and increase their chances to converge to an equilib-
rium point.

6.3 Results in Bayesian Games

The majority of the methods that are used to
solve Bayesian games, such as Agent Security
via Approximate Policies (ASAP) (Paruchuri et al.,
2007a), Mixed Integer Programming Nash (MIP
Nash) (Sandholm et al., 2005), brute force search
methods (Oliehoek et al., 2010) or Multiple Linear
Programs (Conitzer and Sandholm, 2006) tries to
find the Bayes Nash equilibrium with the highest re-
ward. In order to solve the Bayesian game in Table 1,
we can transform it into a strategic form game us-
ing Harsanyi’s transformation (Harsanyi and Selten,
1972), and search for the Nash equilibrium of this
new game. An example of Harsanyi’s transformation
is depicted in Table 5, where the Bayesian game of
Table 1 has been cast as a strategic form game, with
probabilities p and 1− p of the second player being
of type A or B. In this game, robot 1 is the row player
and robot 2 the column player.

Note here that as the second robot can be of any
of the two types in the strategic form game, its actions
consist of all the possible combinations of its actions
in the two games. Therefore, in the strategic form rep-
resentation of Table 1, the second robot has four pos-
sible actions EADB,EAEB,DADB,DAEB, where EADB
denotes selecting the easy task if it is of type A and
the difficult task if it is of type B etc.

The game with rewards in Table 5 have three
Bayes-Nash equilibria. Two pure Bayes-Nash
equilibria and one mixed. The joint actions
(di f f icult,DADB) and (easy,DAEB) are pure Bayes-
Nash equilibria. The mixed Bayes-Nash equilibrium
exists when p > 1

5 : robot 1 chooses the difficult task
with probability 5p−1

5−p and robot 2 chooses DADB with
probability 2

3 . Nonetheless, even finding the Bayes-
Nash equilibria does not answer to the question which
action the robots should choose if they are playing any
of the two games. For example if the type of robot 2 is
A, then the equilibrium of the actual game which will
be played is easy;easy, as it can be seen from Table 1.
On the other hand, if the type of the robot 2 is of type
B then the equilibrium of the actual game which will
be played is difficult,difficult.

On the other hand, the proposed algorithm allows
robots to learn what the other robots are doing, and
evaluate the probability of choosing a particular se-
quence of actions given that they are of a specific type.
Then based on this knowledge, they choose the action
that maximises their expected reward conditional to
the possible types of the other players.

Now we study the performance of MMAF-EKFFP
in two games with incomplete information. The first
game had at least one pure strategy Nash equilibrium,
and the second has only a mixed strategy Nash equi-
librium.

The first game is the one depicted in Tables 1 and
2. MMAF-EKFFP always converged to the pure Nash
equilibrium of the game, and therefore, the two robots
always chose to work on the same task (easy or diffi-
cult) jointly.

The second example which is considered comes
from a security problem (Paruchuri et al., 2007b). In
security games, a group of security robots try to se-
cure some areas of interest and an attacker robot tries
to invade these areas. In (Beard and McLain, 2003;
Ruan et al., 2005), the security robots cannot be phys-
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Table 5: Strategic form game’s rewards, of the Bayesian game of Table 1 as a function of p.

Robot 2
EADB EAEB DADB DAEB

Robot 1 difficult 9+ p,10−4p 5+5p, 4+2p 9−4p, 10 5, 4+6p
easy 8, 6− p 7+ p, 5 8+2p, 6−2p 7− p, 5+3p

ically present in all the areas of interest at the same
time. Instead, they can choose among various patrol
routes. Security robots choose the route and the ar-
eas they will patrol based on the importance of the
areas or the likelihood at which an attacker robot will
be appear etc. The security problem can be cast as
a two player game (Paruchuri et al., 2007b). If there
are are M areas of interest, then the action of the se-
curity robots will be the d-tuple (d ≤ m) of the ar-
eas which the robots will patrol. The order by which
the robots visit the areas is also taking into account.
For instance, in the case of three areas {1,2,3}, each
petrol order, e.g., 1← 2← 3 or 1← 3← 2, is a differ-
ent action. The attacker robot can choose any of the
M available areas to invade. Assume that the security
robots can choose from K patrolling routes. The re-
ward of the security robots ri(k) (k ∈ K ) and that of
attacking robot r j(m) (m ∈M ) are estimated respec-
tively as follows.

ri(k) =
{
−ui(ai) if a j 6∈ ai

paici +(1− pai)(−ui) if a j ∈ ai,
(18)

where ui(ai) is the value of area ai to the security
robots, pai is the probability that the security robots
can catch the attacker in the ai area, ci is the reward to
the security robots if the attacker is caught:

r j =

{
u j if a j 6∈ ai

−pa j c j +(1− pa j)(u j) if a j ∈ ai,
(19)

where ui(a j) is the value of area a j to the attacker
robot, pa j is the probability that the security robots
can catch the attacker when patrolling area a j, and c j
is the cost to the attacker robot if it is caught.

Consider the case where two areas are available
and the actions available to security robot are 1← 2
and 2← 1 respectively. In addition, assume that the
attacking robot can be of two types A and B. The
above reward function, when similar parameters to
(Paruchuri et al., 2007b) are used, can be modelled
as a Bayesian game as it is depicted in Table 6.

When the attacker is type A, the optimal policy
for the security robots, which leads to a Nash equilib-
rium, is to choose a mixed strategy and play action
1 ← 2 with probability 0.58 and 2 ← 1 with prob-
ability 0.42. The mixed strategy for the attacking
robot is to choose area 1 with probability 0.375 and
area 2 with probability 0.625. If attacker is of type
B, the security robots’ optimal policy is to choose a

Table 6: Reward matrices of the attacking and security robot
for two different types of attacking robot. The top table is
the game played when the attacking robot is of type A.

Areas 1,2 Areas 2,1
Area 1 -1,0.5 -0.125,-0.125
Area 2 -0.375,0.125 -1,0.5

Areas 1,2 Areas 2,1
Area 1 -1.2,0.4 -0.025,-0.025
Area 2 -0.275,0.125 - 1.2,0.4

mixed strategy by playing action 1← 2 with prob-
ability 0.35 and 2 ← 1 with probability 0.65. The
mixed strategy for the attacking robot is to choose
area 1 with probability 0.39 and area 2 with proba-
bility 0.61. The security robots assume that the at-
tacking robot is of type A with probability 0.9 and
of type B with probability 0.1. Figure 4 illustrates
the probability with which the attacking robot, chose
Area 1 when it was of type A. The performance
of MMAF-EKFFP was compared with EKFFP and
the asynchronous best response algorithm which pro-
posed in (Emery-Montemerlo et al., 2005) in order
to solve Bayesian games. As it can be seen from
Figure 4, MMAF-EKFP converged to the Nash equi-
librium of the game while the two other algorithms
failed to converged to a value close to the Nash equi-
librium. Similarly, Figure 5 depicts the probability
with which the security robot chose action 2← 1. As
it can be observed from Figure 4, MMAF-EKFP con-
verged to the Nash equilibrium, while the other algo-
rithms failed to converged to a value close to the Nash
equilibrium. Similar results were obtained for various
combinations of the probabilities with which the at-
tacking robot could be of type A or B. In particular,
the differences in the results between the case where
the attacking robot is of type A with probability 0.9
and the case when it is of type B with probability 0.1,
are less than 0.01 from the reported results in Figures
4 and 5.

7 CONCLUSIONS AND FUTURE
WORKS

A new game-theoretic learning algorithm based on
EKFFP and multi-model adaptive filters has been pro-
posed. This new algorithm can take into account var-
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Figure 4: Probability of the attacking robot to choose area 1
when it is of type A as a function of the number of iterations.

Figure 5: Probability of the security robot to choose action
2← 1 when the attacking robot is of type B as a function of
the number of iterations.

ious forms of uncertainty. In particular, uncertainty
due to noisy observations and different types of other
robots were considered. The performance of our algo-
rithm is demonstrated via two case studies in robotics
and two Bayesian games. The experimental results
showed that it can provide better solution than the
classic EKFFP algorithm and can be run as fast as the
latter if implemented using parallel computing. In the
future, we will apply this algorithm to more case stud-
ies to investigate the relationship between the average
rewards and the number of models, as in Fig. 2, the
average rewards gained by MMAF-EKFFP with 12
models is not significantly different from that from 6
models. We also intend to implement it in GPUs to
further improve its performance.

REFERENCES

Arslan, G., Marden, J. R., and Shamma, J. S. (2007).
Autonomous vehicle-target assignment: A game-
theoretical formulation. Journal of Dynamic Systems,
Measurement, and Control, 129(5):584–596.

Ayken, T. and Imura, J.-i. (2012). Asynchronous distributed
optimization of smart grid. In SICE Annual Confer-

ence (SICE), 2012 Proceedings of, pages 2098–2102.
IEEE.

Beard, R. W. and McLain, T. W. (2003). Multiple uav co-
operative search under collision avoidance and limited
range communication constraints. In Proceedings of
42nd IEEE Conference on Decision and Control., vol-
ume 1, pages 25–30. IEEE.

Bishop, C. M. (1995). Neural Networks for Pattern Recog-
nition. Oxford University Press.

Blair, W. and Bar-Shalom, T. (1996). Tracking maneuvering
targets with multiple sensors: Does more data always
mean better estimates? Aerospace and Electronic Sys-
tems, IEEE Transactions on, 32(1):450–456.

Bonato, V., Marques, E., and Constantinides, G. A. (2009).
A floating-point extended kalman filter implementa-
tion for autonomous mobile robots. Journal of Signal
Processing Systems, 56(1):41–50.

Brown, R. G. and Hwang, P. Y. (1997). Introduction to ran-
dom signals and applied kalman filtering: with mat-
lab exercises and solutions. Introduction to random
signals and applied Kalman filtering: with MATLAB
exercises and solutions, by Brown, Robert Grover.;
Hwang, Patrick YC New York: Wiley, c1997., 1.

Caputi, M. J. (1995). A necessary condition for effective
performance of the multiple model adaptive estima-
tor. IEEE transactions on aerospace and electronic
systems, 31(3):1132–1139.

Chapman, A. C., Williamson, S. A., and Jennings, N. R.
(2012). Filtered fictitious play for perturbed ob-
servation potential games and decentralised pomdps.
CoRR, abs/1202.3705.

Conitzer, V. and Sandholm, T. (2006). Choosing the best
strategy to commit to. In ACM Conference on Elec-
tronic Commerce.

Di Mario, E., Navarro, I., and Martinoli, A. (2016). Dis-
tributed learning of cooperative robotic behaviors us-
ing particle swarm optimization. In Experimental
Robotics, pages 591–604. Springer.

Emery-Montemerlo, R. (2005). Game-Theoretic Control
for Robot Teams. PhD thesis, The Robotics Institute.
Carnegie Mellon University.

Emery-Montemerlo, R., Gordon, G., Schneider, J., and
Thrun, S. (2005). Game theoretic control for robot
teams. In Robotics and Automation, 2005. ICRA 2005.
Proceedings of the 2005 IEEE International Confer-
ence on, pages 1163–1169. IEEE.

Evans, J. and Krishnamurthy, B. (1998). Helpmate R©, the
trackless robotic courier: A perspective on the devel-
opment of a commercial autonomous mobile robot.
In Autonomous Robotic Systems, volume 236, pages
182–210. Springer London.
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