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Abstract: This paper is a working progress towards an automation of the Spider lawn mower (SLM) which is a four syn-
chronized steering wheel mobile robot. During the functioning, the SML must follow cutting grass edge with
no overlapping of a strip of cut grass and also satisfy slippage constrains. To this end, a small prototype called
Andromina which is a four-independent steering wheel mobile robot has been chosen to verify the control
approach. This paper proposes to implement a mathematical model that takes into account the kinematics and
dynamics of the mobile robot and also a nonlinear control strategy like the state feedback linearization. The
most important advantage of the proposed model-control strategy is that it takes into account the nonlinearities
of the system and a control law becomes a linear one. The path following tracking error has been verified by
the statistical approach called analysis t-test and also results of real data simulations have shown the effective-
ness of the proposed control strategy applied to a four-independent steering nonholonomic wheeled mobile
robot.

1 INTRODUCTION

Mobility and controllability of lawn mower ma-
chines (LMM) is still an immature open research field
(Wasif, 2011). A brief review of the state of the art of
LMM is carried out in (Wasif, 2011) where it states
that (Smith et al., 2005) proposes a design of a mobile
robot which lacks to discuss propositions of mowing
operation. Moreover, static localization and dynamic
obstacle avoidance are overlooked. And, the system
is controlled manually lacking artificial intelligence.
(Bing-Min and Chun-Liang, 2008) suggests an opti-
mal route planning of a mobile robot where it does not
converge autonomously to the path. Moreover, obsta-
cle avoidance algorithm would work for static obsta-
cles not for dynamic ones. The fundamental idea of
LMM as a mobile robot is discussed in (Taj and Timo-
thy, 2008) lacking simulation and implementation re-
sults. The work done in (Wasif, 2011) suggests a mo-
tor schema architecture to control a LMM and also
the system suffers from slippage conditions. From
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our point of view, the systems mentioned previously
lack a complete mathematical formulation of a LMM
that can potentially allow the system to be controlled
by some classical control strategies. They also lack
slippage uncertainties than can be added to the math-
ematical model of the system. The objective of this
proposal is to cope with some of the drawbacks pre-
sented in the previous works by adding a mathemati-
cal model and a control functionality to the system.

To this end, some control strategies for mobile
robots are found in the literature. For instance,
(Mathieu et al., 2017) uses a backstepping method
to address a four-wheel steering mobile robot fol-
lowing a path which an observer is used to esti-
mate the lateral sliding. (Krzysztof and Dariusz,
2004) also uses a backstepping approach to solve the
control issue and the stability is proof by the Lya-
punov technique. (Paulo and Urbano, 2005) shows
an input-output feedback-linearization method in dis-
crete mode for the path following of wheeled mobile
robots (WMRs) subject to nonholonomic constraints.
(Harwood, 2016) controls a automower 330x using
feedback linearization and with the feedback gain es-
timated using an LQ-controller.

The control strategy proposed in this article is
feedback linearization which is one of the most com-
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mon approaches to control nonlinear systems. The
advantage of this technique is the transformation ion
of the nonlinear system into a linear one by means of a
proper transformation of variables. The intention is to
apply the control strategy to the SLM and due to the
Spider system is not available at the moment of this
work, the system Andromina has been taken into ac-
count to apply the model-control strategy. The Spider
(Spider, 2015) as well as the Andromina (Andromina,
2016b) mobile robots are shown in Figures 1 and 2
respectively.

2 METHODS

Robot operating system (ROS) (Quigley et al., 2009)
is suggested to be used to handle the automation of the
SLM. The navigation stack (NS) that comes with ROS
installation is a set of configurable nodes that need to
be set up properly to the dynamics of the mobile robot
in turn. In other words, the move base node is the
core of the navigation stack which offers interfaces
between sensors and algorithms for: localization, lo-
cal and global path planners, local and global maps.
For instance, the global map is formed by the gmap-
ping node, which is based on simultaneous localiza-
tion and mapping (SLAM). Then, during the work-
ing of the robot, the NS interacts with sensor read-
ings, localization, path planing and map algorithms to
avoid obstacles on the path in order to reach a speci-
fied goal (Fox et al., 1999). Further on, the dynamic
window approach planner (DWAP) and the Dijkstra’s
algorithm nodes are used by the NS to guarantee ob-
stacle avoidance (Fox et al., 1997). Thus, given a
global path to follow the NS uses the costmap node
that takes in the sensor data to build and inflate a local
2D occupancy grid map. This package also provides
support to the DWAP that generates the velocity com-
mands that drive the robot from an initial to a final
coordinate. In this approach, a nonlinear control node
has been created and inserted into the NS.

3 MATHEMATICAL MODEL AND
CONTROL

A four-independent steering wheeled mobile robot
model and nomenclature has been inspired from
(Chávez Plascencia and Dremstrup, 2011) and pre-
sented in Figure 3.

3.1 Kinematic Model

(Guy et al., 1996) imposes two restrictions to the kine-
matic model; a) Rolling without slipping and b) no
sidelong motion. Equations 1 and 2 are the restric-
tions to the wheels with respect to Pc and, they can
also be arranged in a more compact form as shown in
Equations 3 and 4.

[cos(βi) sin(βi) lisin(βi−αi)]R(θ)ξ̇− rψ̇i = 0
(1)

[sin(βi) − cos(βi) − lcos(αi−βi)]R(θ)ξ̇ = 0
(2)

J1(βi)R(θ)ξ̇− J2ψ̇i = 0 (3)

C1(βi)R(θ)ξ̇ = 0 (4)

where; i = 1,2,3,4, R(θ) is the 2D rota-
tion matrix from frame {E} to frame {W}, ξ =
[xc,yc,θ]

T represents the robot pose at the point Pc,
βi = [β1,β2,β3,β4]

T is the steering wheel angle vector
and ψi = [ψ1,ψ2,ψ3,ψ4]

T is the rotation wheel angle
vector. (N.Sarkar and R.V.Kumar, 1992) defines q as
n generalized coordinates that fall into m restrictions
which can be organized as C(q, q̇), where k represents
holonomic restrictions and m− k represents nonholo-
nomic restrictions as presented in Equation 5.

A(q)q̇ = 0 (5)

With

A(q) =
[

J1(β)R(θ) 0 −J2
C1(β)R(θ) 0 0

]
(6)

q̇ =
[
ẋc ẏc θ̇ β̇i ψ̇i

]
(7)

where; A(q) is a (m×n) full rank matrix.
Some remarks about C(q, q̇) can be stated as fol-

lows:
• If a restriction equation is in the form C(q̇) and

it can be integrated, such restriction is a holo-
nomic one.

• If a restriction equation is in the form C(q̇) and
it can not be integrated, such restriction is a
nonholonomic one.

According to (Coelho and Nunes, 2003), the
Equation C1(q)S(q) = 0 can be obtained from Equa-
tion 5, where S(q) is a linear independent vector field
and N(C) is the null space of C1(q). And, it is also
possible to define a velocity η(t) such that for all t,
then Equation 8 can be stated.
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Figure 1: The Spider lawn mower robot.

q̇ = S(q)η(t) (8)

Equation 8 gives a kinematic model.
In order to relate Equation 8 with the four-

independent steering wheeled kinematic model, the
no lateral movement constraint 4 is taken. It can be
seen that R(θ)ξ̇ lies in the null space of N (C1(β)).
Then, defining N (C1(β)) = Σ(β) yields the follow-
ing relation N (C1(β))η(t) = Σ(t)η(t) = R(θ)ξ̇. Af-
terwards, isolating ξ̇ from the previous equation and
then substituting it into Equation 3 and defining the
steering velocity vector β̇ = ζ = [ζ1, ζ2, ζ3, ζ4], the
kinematic model is obtained as shown in Equation 9
which is of the form q̇ = S(q)u(t).

ξ̇ =
[
RT (θ)Σ(θ)

]
η(t) (9)

According to (Guy et al., 1996), in order to guar-
antee maneuverability δM of the SLM the degree of
mobility δm and the degree of steeribility δs, Equa-
tions 10 and 11 must satisfy the following conditions:
1≤ δm ≤ 3 and 0≤ δs ≤ 2.

δm = dimN [C1(β)] = 3− rank[C1(β)] (10)
δs = rank[C1(β)] (11)

3.2 Dynamic Model

The relation between the torques τ derived by the em-
barked motors and the change in velocities u̇ in the
SLM can be described by the dynamic model. The
equations of motion that relates τ and u̇ can be de-
rived by means of the Lagrangian formalism as stated
in Equation 12, (Bloch, 2000; Symon, 1971; Gold-
stain, 1980).

d
dt

(
∂L(q, q̇)

∂q̇

)
− ∂L(q, q̇)

∂q
= MI(q)q̈+V (q, q̇)

= AT (q)λ+B(q)τ (12)

Figure 2: Andromina.
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Figure 3: The four-independent steering wheeled mobile
robot geometry. E is a fixed frame on the robot with axis
e1 and e2, W is world frame. θ is the angle of rotation, CM
is the center of mass.

The definition of the nomenclature in Equation 12 is
taken from (Chávez Plascencia and Dremstrup, 2011)
and stated as follows:

L(q, q̇) is called the Lagrangian.
MI ∈ Rn×n is the matrix that represents the inertia

of the system.
V (q, q̇) ∈ Rn×n is the matrix of Coriolis.
A(q) is the matrix that represents the Jacobean.
B(q) ∈ Rn×(n−m) is an input transformation ma-

trix.
τ ∈ R(n−m) is a torque vector that represents the

input.
λ ∈ Rm is the Lagrangian multipliers.
q represents the generalized coordinates.
(Chávez Plascencia and Dremstrup, 2011) takes

the potential energy of the system as constant and it
is neglected from the Lagrangian multiplier. This fact
leads the Lagrangian L as function of the kinetic en-
ergy T , i.e. L = f (T ).
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To solve Equation 12, the same methodology as
stated in (Chávez Plascencia and Dremstrup, 2011) is
applied. This is done in three steps. First, an individ-
ual kinetic energy of each wheel is solved. Second,
the kinetic energy of the chassis is also solved. And,
finally, all the energies are added to get a single en-
ergy.

The kinetic energy Tw of a single steering wheel
attached to the trolley can be obtained by inte-
gration of an infinitesimal mass dm[Kg] of a point
Pw(xPw ,yPw ,zPw) which is placed on the surface of the
wheel. The radius r from the center of the wheel to
the point Pw forms an angle ψ. Then, the velocity of
the point Pw on the wheel is solved and then multi-
plied by the angular density ρα[Kg/rad]. The former
process is shown in Equations 13 and 14.

Pw =




xc + lcos(α+θ)+ rcos(ψ)cos(θ+β)
yc + lsin(α+θ)+ rcosψsin(θ+β)

rsin(ψ)




(13)

Tw =
1
2

∫ 2π

0
(ẋ2

Pw + ẏ2
Pw + ż2

Pw)ραdψ (14)

The kinetic energy of each individual wheel can
be obtained by inserting Equation 13 into Equation
14. The result is shown in Equation 15.

Tw =
1
2

mwẋ2
c +

1
2

mwẏ2
c +mwlθ̇(ẏccos(α+θ)

−ẋcsin(α+θ))+
1
2

mwl2
θ̇

2 +
1
2

Iwψ̇
2 +

1
4

Iwβ̇
2

+
1
2

Iwθ̇β̇+
1
4

Iwθ̇
2 (15)

Iw = mwr2 being the wheel’s inertia and mw =
2πρα the mass’ wheel.

(Chávez Plascencia and Dremstrup, 2011) states
that the kinetic energy of a moving chassis can be ob-
tained by adding translational and rotational energies,
as it is presented in Equation 16.

TF =
1
2

MT (ẋ2
c + ẏ2

c)+
1
2

IT θ̇
2 (16)

ẋc = ẋ−dθ̇sin(θ+ρ) (17)

ẏc = ẏ+dθ̇cos(θ+ρ) (18)

Where; MT [Kg] is the chassis’s mass, (ẋ2
c +

ẏ2
c)[m/sec] is the linear velocity of the trolley about its

CM, IT [Kg ·m2] is the inertia’s moment of the chassis,

θ̇[Rad/s] is the angular velocity and d[m] is the dis-
tance from the CM to the center of the robot.

Then, inserting 17 and 18 into 16, the Equation
19 is obtained. This equation represents the kinetic
energy of the chassis of the robot.

TF =
1
2

MT ẋ2
c +

1
2

MT ẏ2
c +

1
2

MT d2
θ̇

2 +
1
2

IT θ̇
2

−MT dẋ2
c θ̇sin(θ+ρ)+MT dẏ2

c θ̇cos(θ+ρ)
(19)

By adding the individual wheel kinetic energy
with the chassis kinetic energy a total kinetic energy
is obtained as it can be seen in Equation 20.

T = TF +
4

∑
i=1

Twi (20)

By expanding Equation 20 and then arranging it
into a matrix form gives Equation 21 which is the total
kinetic energy of the SLM with respect to its CM.

T =
1
2

ξ̇
T R(θ)T MR(θ)ξ̇+

1
4

β̇
T IWMβ̇

+
1
2

ψ
T IWMψ̇+

1
2

θ̇IWV β̇ (21)

Where :

IWM =




Iw 0 0 0
0 Iw 0 0
0 0 Iw 0
0 0 0 Iw




IWV =
[

Iw Iw Iw Iw
]

M =




M1 0 M2
0 M1 M3
0 0 M4




M1 = MT +4mw

M2 =−2
[
dMT sin(ρ)+mw

4

∑
i=1

lisin(αi)
]

M3 = 2
[
dMT cos(ρ)+mw

4

∑
i=1

licos(αi)
]

M4 = d2MT + IT +mw

4

∑
i=1

l2
i +2Iw

(22)
The dynamic model of the SLM with emphasis

in steering wheels can be derived according to the
procedure stated in (Guy et al., 1996). To this end,
the matrices AT (q) and B(q) = [03×8;I8×8] are re-
placed in the right expression of Equation 12. The
Lagrange equations of motion of the SLM with La-
grangian multipliers λ1 and λ2 are given by Equations
23 to 25.
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d
dt

(
∂T

∂ξ̇

)
− ∂T

∂ξ
=[T ]ξ = RT (θ)JT

1 (β)λ1

+RT (θ)CT
1 (β)λ2 (23)

d
dt

(
∂T
∂β̇

)
− ∂T

∂β
=[T ]β =τβ (24)

d
dt

(
∂T
∂ψ̇

)
− ∂T

∂ψ
=[T ]ψ =−JT

2 λ1 + τψ (25)

The next step is to eliminate the Lagrange co-
efficients from Equations 23 and 25. To do so,
the Equations 23 and 25 are premultiplied from the
left with Σ(β)R(θ) and ΣT (β)JT

1 (β)J
−T
2 respectively,

and then summed up and taking into account that
ΣT (β)CT

1 (β) = 01×4. This leads to two equations,
from which the Lagrange coefficients have been dis-
appeared. Furthermore, the total kinetic energy Equa-
tion 21 is inserted in the left side of Equations 23,
24 and 25 respectively. Once [T ]ξ ,[T ]β and [T ]ψ are
solved, they are inserted in the first two equations
with no Lagrangian coefficients. This step leads up
to two new equations that contain the velocity ξ̇, ψ̇,
β̇ and acceleration ξ̈, ψ̈, β̈ terms. Then, with the aid
of the kinematic equations and their derivatives and
substituting them back and arranged them in a matrix
format yields the Equation 26 which is the dynamic
model of the system.

H(β)u̇+ f (β,u) = F(β)τ (26)

Where:

τ =

[
τψ

τβ

]

F(β) =

[
ΣT (β)ET (β) 04×4

04×4 I4×4

]

P =




M1 0 P1
0 M1 P2
P3 P4 M4




P1 =
1
2
(M2cos(θ)−M3sin(θ))

P2 =
1
2
(M3cos(θ)+M2sin(θ))

P3 =
1
2
(M2cos(θ)−M3sin(θ))

P4 =
1
2
(M3cos(θ)+M2sin(θ))

E(β) = J−1
2 J1(β)

f (β,u) =

[
f1(β,u)
f2(β,u)

]

(27)

f1(β,u) = Σ
T (β)

[
R(θ)ṖRT (θ)+R(θ)PṘT (θ)

−1
2

R(θ)K1η
T

Σ
T (β)N

+ET (β)IWMĖ(β)
]
Σ(β)η

+Σ
T (β)

[
R(θ)PRT (θ)

+ET (β)IWME(β)
]
Σ̇(β)η

f2(β,u) =
1
2

θ̈IwK2

H(β) =

[
H1(β) H2(β)
01×4

1
2 IWM

]

H1(β) = Σ
T (β)

[
R(θ)PRT (θ)

+ET (β)IWME(β)
]
Σ(β)

H2(β) =
1
2

Σ
T (β)R(θ)K1IWV

The kinematics and dynamics of the SLM can be
written in state space representation as stated in Equa-
tions 28 and 29.

H(β)u̇ = − f (β,u)+F(β)τ (28)
q̇ = S(q)u (29)

3.3 Control by Feedback Linearization

State feedback linearization has been chosen to tackle
the dynamics of the system. (Coelho and Nunes,
2003; Chávez Plascencia and Dremstrup, 2011) state
that if in a nonlinear system one or more restrictions
are nonholonomic the system is not fully state lin-
earizable, however it can be input-output linearizable.

One of the characteristics in input-output feedback
linearization is to find a change of variables such that
z = T (x) and x = T−1(z) is diffeomorphism, bringing
the nonlinear system into a normal form. This form
decomposes the nonlinear system into external and in-
ternal parts respectively, making the system partially
linearizable. The output of the system in turn can see
the external variables but not the internal ones. The
external part can be linearized and be transformed into
a linear canonical form. It would be worth to analyz-
ing the stability of the internal part by means of the
zero dynamics of the system (Khalil, 2002; Marquez,
2003). When dealing with the external part, the num-
ber of output equations can be chosen by means of the
relative degree of the system.

Working Progress towards Lawn Mower Automation

103



To this end, the state representation stated in
Equations 28 and 29 is arranged in the following ma-
trix form.

[
q̇
u̇

]
=

[
S(q)u
−H−1 f

]
+

[
0

H−1 f

]
τ (30)

In the previous matrix expression, u is defined as
[η, β̇1, β̇2]. Notwithstanding, the angular velocities
[β̇1, β̇2] are not taken into account because q̇ depends
only on η then u = η.

The state representation stated in Equation 30 can
be linearized by choosing a nonlinear feedback Equa-
tion τ = F†[Hν+ f ] and it can also be arranged in a
general nonlinear form as shown in Equations 31, 32
and 33.

ẋ = f (x)+g(x)η
y = h(x) (31)

[
q̇
η̇

]
=

[
S(q)η

0

]
+

[
0
1

]
ν (32)

y = h(q)

ẋ =

[
q̇
η̇

]
, f (x) =

[
S(q)η

0

]
, g(x) =

[
0
1

]
(33)

In order to achieve input-output linearization, an
analysis of the output equation y = h(q) must be
taken. In other words, the position vector q =
[xc,yc,θ] is of interest, then three output equations are
formulated as stated in the Equation 34.

h(q) =




h1(q)
h2(q)
h3(q)


= y =




y1
y2
y3


 =




xc
yc
θ


 (34)

The output Equation 34 must be derived till it finds
the input η̇ (Khalil, 2002). Equation 35 shows that the
output y has been derived twice till it finds the input
η̇, thus having a relative degree ρr = 2.

ẏ
ÿ =

Jh(q)S(q)η
Φ̇(q)η+Φη̇

(35)

Where:

J =




∂q
∂xc
∂q
∂yc
∂q
∂θ


 , Φ(q) = Jh(q)S(q) (36)

J is the Jacobean. Since q̇ = ξ̇ = RT (θ)Σ(β)η
Equation 35 can also be arranged as follows:

ẏ = RT (θ)Σ(β)η (37)
ÿ = ṘT (θ)Σ(β)η+RT (θ)Σ̇(β)η+RT (θ)Σ(β)η̇

A state variable transformation vector which is a
diffeomorphism as defined in (Andersen et al., 2002)
is stated as follows.

z = T (q) =
[
z1:6
]T

=
[
y1:3, ẏ1:3

]T
=

[
y
ẏ

]

=




h(q)
−−−
L f h(q)


=




h(q)
−−−

RT (θ)Σ(β)η


 (38)

The system under the new state variable transfor-
mation vector T (q) is characterized by the following
dynamics:

ż =
[
ż1:6
]T

=

[
ẏ
ÿ

]
=

[
ξ̇

d
dt

(
RT (θ)Σ(θ)η

)
]

= Acz+Bcβ(z)[ν−α(z)] (39)

Where:

Ac =

[
03×3 I3×3
03×3 03×3

]
, Bc =

[
03×3
I3×3

]
(40)

β(z) and α(z) are found by calculating
d
dt

(
RT (θ)Σ(θ)η

)
as it is shown as follows:

β(z)[ν−α(z)] =
d
dt

(
RT

Σ(θ)η
)

Where :
β(z) = RT (θ)

[
Σ(β) Sgη

]

α(z) = −β
−1(z)ṘT (θ)Σ(θ)η

ν̂ =
[

η̇ ζ1 ζ2
]

Sg =




(s11 + s12) (s13 + s14)
(s21 + s22) (s23 + s24)

(s31) (s32)




With :
s11 = −l1cos(β2)sin(β1−α1)

s12 = l2sin(β1)cos(β2−α2)

s13 = −l1cos(β2)cos(β1−α1)

s14 = l2cos(β1)sin(β2−α2)

s21 = −l1sin(β2)cos(β1−α1)

s22 = −l2cos(β1)cos(β2−α2)

s23 = l1cos(β2)cos(β1−α1)

s24 = l2sin(β1)sin(β2−α2)

s31 = cos(β1−β2)

s32 = −cos(β1−β2)

In the previous Equations ν = [η̇ ζ̇1 ζ̇2]
T and ν̂ =

[η̇ ζ1 ζ2]
T , e.g. ν 6= ν̂. This mean that the input to the
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Figure 4: Shows the linear system together with the refer-
ence input.

model ν given by equation 32 is not the same as the
input ν̂ given by the design control law. This problem
can be solved by differentiating the last two terms of
ν̂.

Moreover, the control law of the form ν̂ = α(z)+
β−1(z)ϑ transforms the system represented in Equa-
tion 39 into a linear one as it is shown in Equation
41.

ż = Acz+Bcϑ (41)

This linearized system is a controllable one. And,
this can be easily verified by just looking at the ma-
trices Ac and Bc which are in controllable canonical
form. The vector ϑ which contains the accelerations
from the linear controller has to be designed in order
for the robot to follow a reference input r. Accord-
ing to the linear control theory (Franklin and Powell,
1994) the control input ϑ that allows the system to
follow the reference input r is stated in Equation 42.

ϑ = −Kz+(Nu +KNz) (42)
Where :

Nu = −B−1
c AcC−1

c

Nx = C−1
c

r = [xc,yc,θ, ẋc, ẏc, θ̇]
T

Figure 4 shows the linearized system together with
the reference control input r.

4 CONTROL SIMULATION
RESULTS

The andromina ROAD-OFF V.2.0 robot (Andromina,
2016a) has been used as a test platform. It
has been equipped with the following hardware;
Lenovo ThinkPad L540 + Intel(R) Core(TM) i7-
4712MQ CPU @ 2.30GHz, Arduino Mega 2560

(Arduino, 2016), Four Micro DC motors with en-
coders (SKU, 2016), Four Servos, Hokuyo URG-
04LX-UG01 laser scanner (Hokuyo, 2009), Adafruit
Motor/Stepper/Servo Shield for Arduino v2 Kit -
v2.3 (Adafruit, 2016a), Adafruit 16-Channel 12-bit
PWM/Servo Shield (Adafruit, 2016b). Figures 5 and
6 show the Andromina and the implemented hard-
ware.

Figure 5: Shows the equipped andromina robot.

Figure 6: The Lenovo laptop communicates over a USB ca-
bles to the laser and Arduino. This in turn communicates
with the Adafruit motor and servo shields which communi-
cates with the four DC motors and four servos respectively.

The simulation has been carried out in two steps,
firstly it is simulated under Octave and secondly under
ROS.

4.1 Octave Simulation

A realistic path from a laboratory using a real map un-
der ROS-RVIZ have been taken and stored in memory
and then loaded with an Octave function for its anal-
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(a)

(c)

(b)

(d)
Figure 7: (a) Angle β1. (b) Angle β2. (c) Angle θ. (d) Control trajectory and the reference input.

ysis. The results of the nonlinear control simulation
can be depicted in Figure 7(a-c). The angles β1 and
β2 are shown in Figure 7(a)(b). It can be seen that
these angles oscillate around 0 degrees, this means
that they do not move far from the robot chassis, in
other words, one can say that the nonlinear model
generates the proper steering angles for the wheels to
follow the trajectory path. Figure 7(c) depicts the an-
gle θ which is the angle of the robot chassis frame
with respect to the world frame. Finally, the ROS-
RVIZ planned trajectory is shown in Figure 7(d) as a
dark gray color whereas the nonlinear control that fol-
lows the planned trajectory is shown as a bright gray
color. It can easily be noticed how the control moves
the chassis [xc,yc] according to the planned path and
as mentioned earlier.

The previous parameters β1, β2, θ and the nonlin-
ear control path tracking [xc,yc] which are depicted
in Figure 7(a-c) have been taken as the inputs of an
Octave function called ”animation2(xc,yc,θ,β1,β2)”.
The outcome of the simulated result is shown in Fig-
ure 8. In this figure, the position of the robot [xc,yc]
is represented as an asterisk during the tracking path,
the chassis is represented as black square which cen-
ter is the position of the robot [xc,yc], the wheels are
represented as black rectangles which center is placed
at each vertex of the chassis. It can be noticed that the
orientation of the wheels, angles β1, β2, β3 and β4

correspond to the orientation of the tracking path and
the perpendicular wheel lines shall meet a single ICR.
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Figure 8: Shows the chassis and position of the center of
gravity during the control trajectory. And, also shows the
position of the wheels according to the trajectory.

4.2 ROS Simulation

The results of the created ROS node that simulates
the nonlinear system can be depicted in Figures 9
and 10. At the start of the simulation, the ROS node
waits for the initial position which is achieved by left
mouse clicking on the ”2D Pose Estimate” RVIZ but-
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ton. Then, by left clicking on the ”2D Nav Goal”
RVIZ button a destination goal is chosen and the sta-
ble path is loaded and the control starts tracking the
reference path as it is depicted in Figure 10. It can
also be seen in this Figure that the laser position got
shifted.

Figure 9: The Figure shows the initial position and orienta-
tion of the robot.

Figure 10: The darkest line is the stable loaded path and the
less dark line is the tracking control. The shifted line is the
tracking laser position.

4.3 Independent t-test

By looking at the Figure 7(d) one can see that two tra-
jectories are almost identical, however it is necessary
to show if there is any statistical evidences to affirm
or reject this statement. To this end, differences in the
two trajectories were assessed by t-test statistics. For
that, two hypothesis were established: null hypothesis
H0 : µ1 = µ2 and alternative hypothesis H1 : µ1 6= µ2.
The aim of the t-test is to accept or reject the null hy-
pothesis. For that, two t-values are needed namely the
calculated t-value and the critical t-value. If the cal-
culated t-value is greater than the critical t-value then
the null hypothesis is rejected. In order to calculate
the t-value, the mean µ, variance σ2 and sample size n
of each trajectory must be obtained. The t-value can
be computed by the Equation 43, whereas the criti-

cal t-value can be got from the t-table 1 which shows
that the calculated t-value is less than critical t-value.
Then, the null hypothesis can be accepted.

t =
µ1−µ2√

σ2
1

n1
+

σ2
2

n2

(43)

Table 1: The table shows the mean, variance of the planned
trajectory as well as the control. It also shows the t-value
and the t-critical.

trajectory (n=60) Control (n=60)
Mean Variance Mean Variance
0.087 0.007 0.083 0.009

t-value 0.23585
t-critical 1.980

5 CONCLUSION

Nonlinear control is the strategy used to solve the
nonlinearities of the system. Moreover, the system
turned out to be a input output linearizable and with
a proper change of variables the system was trans-
formed into a linear one. Then, linear control strategy
was used for the path following. The Octave-ROS
simulated results have shown that the robot follows
the path and the steering angles are according to the
path trajectory. Furthermore, the two trajectories were
validated by the statistical t-test. In order to continue
with the progress of the automation of the Spider lawn
mower, the intention is to adapt the four independent
steering wheel Andromina model-control to the four
synchronized steering wheel Spider mobile robot. It
is necessary to research further under which condi-
tions the control is unstable or the control is robust. It
is also intended to compare the current control strat-
egy with other optimal control techniques, e.g. fuzzy
control, backstepping among others.

ACKNOWLEDGMENT

This work was supported by the project
IT4Innovations excellence in science, Czech
Ministry of Education, Youth and Sports LQ1602 and
by the project IGA FIT-S-20-6427.

REFERENCES

Adafruit (2016a). Adafruit Motor Shield. Available at https:
//www.adafruit.com/product/1438.

Working Progress towards Lawn Mower Automation

107



Adafruit (2016b). Adafruit Servo Shield. Available at https:
//www.adafruit.com/product/1411.

Andersen, P., Pedersen, S. T., and Dimon, J. (2002). Ro-
bust feedback linearization-based control design for a
wheeled mobile robot. Proc. of the 6th Interna- tional
Symposium on Advanced Vehicle Control.

Andromina (2016a). Andromia OFF-ROAD. Available at
http://androminarobot.blogspot.mx/p/montaje.html.

Andromina (2016b). Andromina v.1.2. Available at http:
//androminarobot.blogspot.cz/search/ label/Arduino.

Arduino (2016). Arduino Mega 2560. Available at https:
//www.arduino.cc/en/Main/arduinoBoardMega2560.

Bing-Min, S. and Chun-Liang, L. (2008). Design of an au-
tonomous lawn mower with optimal route planning. In
Industrial Technology, 2008. ICIT 2008. IEEE Inter-
national Conference on, pages 1–6, Chengdu. IEEE.
ISBN: 978-1-4244-1705-6.

Bloch, A. M. (2000). Nonholonomic Mechanics and Con-
trol. Addison-Wesley Publishing Company. ISBN:
0-387-95535-6.
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