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Abstract: Deep neural networks are widely deployed in a variety of application areas to provide real-time inference 
services, such as mobile phones, autonomous vehicles and industrial automation. Deploying trained models 
in end-user devices rises high demands on protecting models against model stealing attacks. To tackle this 
concern, applying cryptography algorithms and using trusted execution environments have been proposed. 
However, both approaches cause significant overhead on inference time. With the support of trusted execution 
environment, we propose bident-structure networks to protect the neural networks while maintaining 
inference efficiency. Our main idea is inspired by the secret-sharing concept from cryptography community, 
where we treat the neural network as the secret to be protected. We prove the feasibility of bident-structure 
methods by empirical experiments on MNIST. Experimental results also demonstrate that efficiency overhead 
can be reduced by compressing sub-networks running in trusted execution environments. 

1 INTRODUCTION 

Artificial neural networks based machine learning 
techniques have achieved great advancements in 
many tasks, such as image classification, language 
model and speech recognition. To provide a faster 
inference services, models are deployed in end-user 
devices for many services or applications. For 
instance, deep learning based object detection and 
classification techniques have been deployed in 
image-based advanced driver-assistance systems. 

However, deploying models in devices brings 
new challenge on model protection. It takes 
considerable amount of time and effort to train a 
learning model to its peak accuracy, especially for 
collecting training data and sophisticated training 
processes. It is important to protect those trained 
model against model stealing attacks. 

There are two types of model stealing attacks. The 
first type attempts to learn the network parameters 
and structure by probing the runtime environment in 
order to obtain the ability of the train model. The 
second type tries to construct an equivalent model by 
adaptively querying the model (Tramér et al., 2016). 
Here we address the first type of attacks. 

Previous studies took cryptographic approaches 
that applying secure computation for secure training 
and inference of machine learning models while 
keeping parameters in encrypted format (Chen et al., 

2018; Jiang et al., 2018; Juuti et al., 2019). Another 
approach is to use trusted execution environments, 
such as Inter SGX (Olga et al., 2016; Gu et al., 2018; 
Tramér & Boneh, 2019), or TEE (Volos et al., 2018; 
VanNostrand et al., 2019). Both approaches introduce 
significant performance overhead. 

 

Figure 1: Bident structure based neural network. 

We use a hybrid approach that combines the 
secret-sharing concept from cryptography 
community and trusted execution environments 
supported by commercial hardware, where the model 
is the secret to be protected. We propose the method 
of using bident structure based neural networks, 
bident networks in short, where inference can be 
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executed along two sub-networks in two separated 
environments with no intermediate interaction. As 
long as one cannot obtain both parts of the model, one 
is unable to reconstruct an effective model which has 
the same ability as the original one. An abstract 
network structure is illustrated in Figure 1. Each 
circle is a neural and each edge is a data flow path. 
The whole neural network consists of two sub-
networks and they are glued by a merge layer where 
output from two sub-networks are merged. One part 
of the network is deployed in untrusted environment 
(also called normal execution environment.) Another 
part of the network including the final output is 
deployed in trusted execution environment. 

To validate the feasibility of our proposed method, 
we conduct experiments on MNIST datasets by 
exploring several bident structure based neural 
networks. Experimental results not only prove the 
feasibility. They also show that the efficiency 
overhead can be reduced by compressing the sub-
network in trusted execution environment while 
keeping the same accuracy. 

Our main contribution is providing a model 
protection method by utilizing bident structures in 
neural networks and leveraging trusted execution 
environment while maintaining performance.  

2 BACKGROUND 

2.1 Deep Neural Network 

For a classification service, at a high level, a deep 
neural network model takes an input, transforms it 
along the network layers of neurons and finally 
outputs the predicted class. It requires a training 
dataset and an initial deep neural network model to 
generate such a model. For each neuron, the 
computation is applying an activation function on the 
weighted summation of input. An example is shown 
in Figure 2. Two input a1 and a2 are summed up by 
weights w1 and w2 on the corresponding edges and 
then provided to activation function f to generate the 
output. Generating a neural network model is called 
training and using a trained model is call inference.  

In this study, we focus on convolutional neural 
networks. 

 

Figure 2: Computation of a neuron. 

2.2 Trusted Execution Environment 

A trusted execution environment is isolated from an 
untrusted execution environment. It is implemented 
by hardware-software co-design. The isolated 
environment guarantees integrity of the execution 
codes, privacy of the execution processes, and data 
confidentiality in secure memory. Available 
providers include Intel SGX, ARM TrustZone and 
Sanctum.  

Operations in trusted execution environments are 
usually slower than ones in untrusted execution 
environment. Experimental results from (Tramér & 
Boneh, 2019) show that neural network operations in 
trusted execution environment is 50 times slower than 
in untrusted execution environment. Interactions 
between processes in two separated environment are 
also costly in terms of performance. Secure memory 
that can only be accessed from trusted execution 
environment is usually limited. For instance, the 
secure execution environment OP-TEE based on 
ARM TrustZone allocates 7MB secure memory while 
running neural networks requires much more memory 
(VanNostrand et al., 2019).   

3 RELATED WORK 

Previous studies took cryptographic approaches or 
used trusted execution environments.  

Applying secure computation for secure training 
and inference of neural network models keeps the 
model in encrypted format (Chen et al., 2018; Jiang 
et al., 2018; Juuti et al, 2019). Specifically, weights 
of the model are encrypted and then inference is 
performed in encrypted format. Those cryptographic 
operations results in significant computation 
overhead. 

Another approach is to use trusted execution 
environments. As described in previous section, 
trusted execution environments have performance 
constraints: less computation efficiency, limited 
memory space, and latency introduced by interaction 
between two environments.  

To address the efficiency constraint, researchers 
divide the inference computation into two parts and 
outsource the part of matrix multiplications from 
trusted execution environment to untrusted one 
(Tramér & Boneh, 2019). Figure 3 illustrates the main 
idea. During executing the neural network, for each 
layer in the network, there is one matrix 
multiplication. Matrices are masked in trusted 
execution environment and then sent to untrusted 
execution environment where matrix multiplication is 
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done. The result is sent back and unmasked in trusted 
environment. This method reduced the cost of matrix 
multiplication in trusted execution environment.  
However, inference computation involves many 
interaction between untrusted and trusted execution 
environments. The interaction cost is linear in the 
number of neurons in the network.  

 

Figure 3: Outsource matrix multiplications. 

To address the limited memory space constraint, 
researchers partition the neural network into several 
sub-networks and sequentially perform inference 
computation for each sub-networks in trusted 
execution environments (VanNostrand et al., 2019). 
Figure 4 illustrates the proposed partitioning method. 
The partition principle is that computation of each 
partition can be completed in trusted execution 
environment within the memory space limitation. 

 

Figure 4: Partitioning types. 

Above two methods address the model protection 
issue after the neural network model is made. We take 
another viewpoint to manage the model protection 
need. With the need in mind, a sophisticatedly 
designed neural network can be considered before the 
training phase, not after. It makes our method 
different from other similar approaches.  

Bident network structures are not new in the areas 
of applying machine learning. They are applied to 
processing heterogeneous input for object detection 
in autonomous vehicles (Chen et al. 2017). However, 
it is the first time that it is used for protecting models. 

4 BIDENT NETWORK  

We assume that a trusted execution environment is 
available in deployed devices. Our idea is to build the 
model in a structure such that part of the model is 
running in trusted execution environment. Analog to 
secret sharing techniques in cryptography, the secret 
(i.e. the model) is firstly transformed into another 
format (i.e. bident network structure.) Later the 
transformed format is split into pieces and each piece 
is hold by a different entity. As long as over a certain 
number of pieces are available, the secret can be 
reconstructed back. Inspired by this concept, we 
propose bident network structure for designing the 
neural network. Figure 5 illustrates an example of 
symmetric bident network structure where the 
network consists of two sub-networks deployed in 
two environments separately. Both sub-network takes 
the same input and their output are merged by the 
merging layer.  

 

Figure 5: Symmetric bident network. 

The generalized bident network structure takes 
input for two sub-networks without any limitation on 
how input are prepared. We focus on duplications 
here where input to sub-networks are identical. 

By putting a sub-network in trusted execution 
environment, corresponding parameters are protected. 
By putting another sub-network in untrusted 
execution environment, computation cost is partially 
offloaded from the trusted execution environment. By 
the bident structure, sub-networks can be performed 
in parallel, so the interaction between two 
environments is massively reduced. 

One may concern about the sub-network exposed 
in untrusted execution environment, the feasibility of 
the solution and the impact on the performance. We 
investigate them in the following.  
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With the bident network structure, when the sub-
network in untrusted execution environment makes 
major influence on the result, it reveals too much 
information. To avoid this situation, we implement 
the merging layer by operations that both input make 
influence, such as multiplication, maximum and 
average operations. 

To prove the feasibility of bident network 
structures, two issues need to be addressed. The first 
one is the potential overfitting issue since the network 
structure may be overkilled. We investigate this issue 
by conducting experiments where networks are fine-
tuned.  

The second issue is the offloading functionality. 
That is whether the computation in trusted execution 
environment can be reduced by the help of one in 
untrusted execution environment. We conducted 
experiments on asymmetric bident network to explore 
the opportunity. Figure 6 illustrates an example of 
asymmetric bident network structure. Our 
experiments are conducted to show that it is feasible 
to find a bident network structure where the resulting 
accuracy is above 99% and the sub-network in trusted 
execution environment can be slightly reduced.  

To observe the impact on performance, we 
analyse experimental results of variant networks in 
the next section.  

 

Figure 6: Asymmetric bident network. 

5 EMPIRICAL EVALUATION  

To evaluate the feasibility and performance, we 
conduct experiments on National Institute of 
Standards and Technology (MNIST) dataset, a 
handwritten classification dataset. Firstly, we train a 
base model with at least 99% accuracy as a baseline 
for the network configuration and the number of 
epochs. 

We then evaluate a symmetric bident network 
structure with concatenation operation to test the 
water. Taking one more step, we evaluate symmetric 
bident network structures with other merging 
operations, i.e. multiplication, maximum and average. 
Finally, in order to see if a sub-network can be 
reduced, we evaluate asymmetric bident networks. 

5.1 Setup 

Our experiment dataset is MNIST, where the training 
and test datasets contain 60,000 and 10,000 samples 
respectively. The training dataset is divided into two 
subsets with 50,000 samples and 10,000 samples for 
training and validation. 

 

Figure 7: Base convolution neural network. 

Each experiment has two major steps. The first 
one is to set the batch size as 32, train the model with 
30 epochs, and find the suitable number of epochs. A 
suitable number of epochs is where the accuracy is 
over 99% and there is no overfitting sign. Here we 
consider the overfitting sign is that when the number 
of epoch is increasing, accuracy of training dataset 
gets better and one of validation dataset gets worse. 
The second step is to train a model based on the 
original training dataset of 60,000 samples with the 
selected number of epochs and test on test dataset of 
10,000 samples.  

Over all experiments, the optimizer is the Adam 
optimization algorithm and the loss function is 
categorical cross entropy. We start from a basic 
convolution neural network (CNN) shown in Figure 
7. This neural network model is modified from 
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LeNet-5 (LeCun et al., 1998) by adding one more 
pooling layer, replacing activation functions as 
rectified linear unit (ReLU) and tuning detailed 
parameters. The number of epochs is set to 10 since it 
results in 99% accuracy without overfitting sign. 
Figure 8 shows how the number of epochs is selected. 
Dotted lines give the result of training and solid lines 
give the result of validation. After 10 epochs, 
validation loss and accuracy do not continue 
improving as training loss and accuracy do. It shows 
that more than 10 epochs may be overfitting. 

 

Figure 8: Training process of base CNN. 

5.2 Experiments 

We consider four different implementations for the 
merging layers. They are concatenation, 
multiplication, maximum and average. For each of 
them, we conduct a pair of experiments for symmetric 
and asymmetric bident networks. Among all 
networks in our experiments, activation functions are 
all rectifiers except for the final dense layer which 
uses softmax. For each experiment, we measure 
accuracy, loss and the required number of epochs for 
training.  

The first pair of experiments use concatenation 
operation for the merging layer. Experimental results 
of symmetric and asymmetric networks are shown in 
Figure 9 and Figure 10, respectively. The left sub-
network is in untrusted execution environment while 
the right one is in trusted execution environment. The 
colored boxes and numbers in bold font indicate 
major differences from the base model. Those 
differences are made in order to achieve 99% accura- 

accuracy without overfitting sign. 
There are several ways to mitigate overfitting, 

such as reducing the network size, using weight 
regularization and applying dropout technique. Here 
we take the approach of reducing the network size by 
using less layers and/or less neurons.  

 

Figure 9: Symmetric bident network with concatenation. 

 

Figure 10: Asymmetric network with concatenation. 

We then implement the merging layer by using 
multiplication. The results of symmetric and 
asymmetric bident networks are shown in Figure 11 
and Figure 12, respectively. 

Similarly, we implement the merging layer by 
using maximum and average operations for both 
symmetric and asymmetric networks, shown in 
Figure 13 and Figure 14, respectively. 
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Figure 11: Symmetric bident network with multiplication. 

 

Figure 12: Asymmetric bident network with multiplication. 

Our approach of making asymmetric bident 
networks is to reduce layers in trusted execution 
environment as the asymmetric one with 
concatenation. We tried to reduce more layers but the 
resulting accuracy cannot fulfil our requirement.  

There are other ways of forcing both sub-
networks jointly to decide the final result. For 
instance, weights on edges from sub-networks to the 
merging layer can be pre-configured significant 
enough. 

5.3 Summary 

We summarize experimental results of epochs in 
Table 1 where 99% accuracy is guaranteed.  

The performance overhead of the training phase 
can be observed by the number of epochs. Table 1 
shows training cost when using bident networks. The 
comparison between the base model and bident 
networks present the training overhead. In most cases, 
training overhead is significant. However, training is 
usually performed offline, we consider the overhead 
is acceptable in most scenarios. 

The comparison between symmetric and 
asymmetric bident networks gives no tendency on 
which one having higher training overhead. Networks 
with concatenation and maximum have higher 
training cost in asymmetric structure. Yet networks 
with multiplication and average have higher training 
cost in symmetric structure.  

The performance overhead of inference phase is 
well-maintained by the number of layers in the 
network.  

Although the experiment scale is limited, results 
still provide an initial positive evidence on the 
feasibility. 

Table 1: Required Epochs for Different Structures. 

Base Concat Multi Max Avg
Symmetric 10 10 20 10 25

Asymmetric N/A 27 18 25 12
 

 

Figure 13: Bident networks with maximum. 

 

Figure 14: Bident networks with average. 
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6 DISCUSSION 

From experimental results, we validate the feasibility 
of our idea on bident network structure. For each 
considered structure, the trained model can achieve at 
least 99% accuracy. In addition, results of using 
asymmetric network structures show that offloading 
computation from trusted execution environment to 
untrusted execution environment is doable.  

However, the training overhead varies among 
different operations. We evaluate the performance 
overhead for the training phase and the inference 
phase by the required number of epochs and the layers 
in the model. We consider the overhead of the 
training phase is more acceptable than one of the 
inference phase. The required numbers of epochs 
indeed are increased, so it takes more time to 
accomplish the training processes. We do not change 
the total numbers of layers among models in 
experiments, so the real-time performance (the 
inference phase) remains. 

Bident network structures protect the model by 
embedding it into two different environments. This 
method does not prevent the query-based model 
stealing attack. To fully protect the model, a 
complementary protection is preferred, such as 
limiting the query throughput or detecting query-
based attacks. 

7 CONCLUSION 

As trained models are crucial intelligent properties for 
deep learning based applications, we propose the use 
of bident network structure to protect model 
confidentiality. By dividing the neural network into 
two sub-networks and minimizing their intermediate 
interaction, each sub-network is deployed in a 
different environment. As long as one cannot obtain 
parameters from both environments, one cannot 
reconstruct the model. Experimental results of 
difference bident network structures on MNIST 
dataset show the feasibility with low performance 
overhead of the inference phase. 

We list some potential directions to explore more 
related to this research.  
 To validate the feasibility of bident networks in 

general, more experiments are required on 
different datasets, different types of input data 
(such as texts instead of images), different ways 
of inputting data into sub-networks (such as 
dividing instead of replication), and different 

types of models (such as recurrent neural 
networks instead of CNN.)  

 To quantify the impact on confidentiality, more 
investigations are required to analyze the 
information entropy on the sub-network.  

 In addition to trusted execution environment in 
devices, bident network structures are potentially 
applicable to machine learning-as-a-service cloud 
with multi-server structures where each server 
holds a sub-network. As an extension, bident 
network structures can be expanded to trident-
network, quadruplet-network, and more. 
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