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Abstract: Despite the significant progress in content-based video analysis of surgical procedures, methods on analyzing 
still images acquired during the operation are limited. In this paper we elaborate on a novel idea for computer 
vision-based assessment of the vascularity of the gallbladder (GB) wall, using frames extracted from videos 
of laparoscopic cholecystectomy. The motivation was based on the fact that the wall’s vascular pattern 
provides an indirect indication of the GB condition (e.g. fat coverage, wall thickening, inflammation), which 
in turn is usually related to the operation complexity. As the GB wall vascularity may appear irregular, in this 
study we focus on the classification of rectangular sub-regions (patches). A convolutional neural network 
(CNN) is proposed for patch classification based on two ground-truth annotation schemes: 3-classes (Low, 
Medium and High vascularity) and 2-classes (Low vs. High). Moreover, we employed three popular classifiers 
with a rich set of hand-crafted descriptors. The CNN achieved the best performance with accuracy: 98% and 
83.1%, and mean F1-score: 98% and 80.4%, for 2-class and 3-class classification, respectively. The other 
methods’ performance was lower by 2%-6% (2-classes) and 6%-17% (3 classes). Our results indicate that 
CNN-based patch classification is promising for intraoperative assessment of the GB wall vascularity. 

1 INTRODUCTION 

Laparoscopic surgery is a widely used technique for 
the treatment of various diseases of the 
gastrointestinal tract. The operation is performed via 
long-shaft tools and a laparoscopic camera, inserted 
into the body through small incisions. Compared to 
open surgery, LS requires the demonstration of 
advanced psychomotor skills, mostly due to lack of 
direct 3D vision, the limited working space, the 
fulcrum effect and minimal force feedback. On the 
other hand, LS offers several benefits for the patient 
such as less postoperative pain, minimal blood loss, 
faster recovery and better cosmetic results. In 
addition, LS provides the opportunity to capture 
video and image data via the laparoscopic camera, 
providing valuable visual information. The data may 
be used for various purposes, such as documentation, 
archival, retrospective analysis of the procedure, 
skills assessment and surgical training. If processed 
online, they may also be used to provide context 
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specific information to the surgical staff for decision 
for extra support and resource scheduling (Twinanda 
et al., 2019). 

In the literature various studies have proposed 
computer vision techniques, mostly for surgical 
workflow analysis and tool detection applications 
(Loukas, 2018). Surgical workflow analysis aims to 
segment the recorded video into the main phases of 
the operation. In offline mode these techniques could 
be utilized for video database indexing and retrieval 
(Loukas and Georgiou, 2013), whereas when applied 
online they could be utilized to improve staff 
coordination and resource scheduling in the operating 
room (Twinanda et al., 2017). Given the close relation 
between surgical phases and the tool types employed, 
recent works have proposed the joint detection of 
tools and phases (Jin et al., 2019). Some approaches 
also aim to detect and localize the tool tip for tool 
motion analysis and skill assessment (Jin et al., 2018). 
Other developments in video-based analysis of 
surgical interventions include shot detection (Loukas 
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et al., 2016), keyframe extraction (Loukas et al., 
2018), event detection (Loukas and Georgiou, 2015) 
and surgery classification (Twinanda et al., 2015). 

Despite the significant progress in surgical video 
analysis, studies related to the analysis of still images 
captured intentionally during the operation are 
limited. These images may be captured for various 
purposes, such as: (a) for patient information, (b) as 
supplementary material to the formal report, (c) for 
future reference with regard to the condition of the 
operated organ or the patient’s anatomy, (d) as 
evidence of the procedure outcome, and (e) for 
medical research. Although retrospective image 
extraction from the video stream is technically 
feasible, manual video browsing and image selection 
is tedious and time consuming. Moreover, still images 
provide an important supplement to the operational 
video, depicting certain visual characteristics of the 
operated organ and the patient’s anatomy 
(Petscharnig and Schöffmann, 2018). 

Based on the aforementioned remarks, in this 
paper we investigate a novel concept for visual 
assessment of the gallbladder (GB), the operated 
organ in laparoscopic cholecystectomy (LC), based 
on computer vision. In particular, we investigate 
various image analysis and machine learning 
techniques for assessment of the GB condition from 
intraoperative images. LC is a widely used technique 
for the treatment of GB diseases, with approximately 
600,000 operations performed every year in the 
United States (Pontarelli et al., 2019). The purpose of 
the operation is the removal of the GB following 
some preoperative indications, such as the presence 
of cholecystitis, gallstones, etc. The procedure is 
mainly divided into 7 phases, some of which are 
either repeated or not required to be performed, 
depending on the operation progress (Twinanda et al., 
2017). An important task at the initial stage of the 
operation (‘preparation phase’), is when the surgeon 
inspects the GB to assess its condition, such as the 
thickness of its wall, presence of inflammation, fat 
coverage, etc. Among the various parameters 
assessed by the surgeon is the GB wall vascularity 
pattern. For example, the vascular pattern may 
become less visible when the GB wall is covered by 
fat or due to wall thickening, potentially as a result of 
cholecystitis. Hence, in this study we aim to 
investigate the feasibility of a computer vision 
approach to assess the vascular pattern of the GB 
wall, using laparoscopic images extracted from the 
operation’s video. Such a system could potentially be 
utilized for the management and classification of 
surgical image databases, as well as to support 
surgical training (Loukas et al., 2011). For example, 

it could be utilized to retrieve cases from a video 
database where the GB appears similar to that in a 
query image. This would help trainees retrieve and 
review similar operations in terms of the GB 
condition. Another application could be the 
automated classification of LC operations. Various 
useful metrics for the operations (e.g. mean/longest 
duration, etc.) associated with a particular GB 
condition could then be extracted for: management 
decision support, resource scheduling and evaluation 
purposes. The proposed system could also be used in 
online fashion, to assess the complexity of the 
operation or for recruitment of extra resources (e.g. 
senior surgical staff). To date, the assessment based 
on preoperative imaging (e.g. US, CT), cannot always 
provide adequate evidence about the GB condition, 
such as for example presence of an acute or chronic 
cholecystitis. Visual assessment of the GB condition 
during the initial stage of LC is an important factor 
for early assessment of the operation progress or for 
potential need of extra resources. 

Figure 1 illustrates an overview of how such a 
system could potentially be utilized in practice. Given 
a database of surgical videos (a), an image of the GB 
is captured during the preparation phase (b). Then, 
regions of interest (ROIs) from the GB wall are 
manually selected and annotated by an experienced 
surgeon (c). The ROIs along their ground truth labels 
are fed into a supervised learning algorithm to 
develop a predictive model of the GB’s vascular 
pattern (e.g. Low, Medium and High). In surgical 
practice (d), the surgeon outlines a ROI on the GB 
image. Using the predictive model, the GB is 
classified based on the selected ROI (or aggregation 
of ROIs). 

2 METHODOLOGY 

2.1 Dataset 

To create the GB image dataset, 31 LC videos were 
selected from the publicly available Cholec80 video 
collection (Twinanda et al., 2017). From each video 
we manually extracted various still-images (854 × 
480) of the GB. The images originated mostly from 
the preparation phase of LC, during which the 
surgeon approaches the endoscope towards the GB 
for inspection. Besides, the GB is lift with the aid of 
a grasper, providing an appropriate view of the GB 
body. From the videos we managed to extract 121 
images (median 4) with a large and clear view of the 
GB wall. 
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Figure 1: Graphical overview of the proposed system (see text for details). (a) Database of laparoscopic videos. (b) GB images 
extracted from the videos. (c) ROIs along with annotations are provided by an expert surgeon. The ROIs are used to build a 
predictive model based on supervised learning. (d) Use-case scenario: a sample ROI outlined on the GB image is classified 
based on the predictive model. 

Figure 2: Example image-patches with different vascular
patterns. From top row to bottom: High-, Medium- and
Low-degree of vascularity. All patches come from different
GB images. 

Then, rectangular patches with various patterns of 
vascularity were selected from the GB wall (body and 
fundus areas). GB regions with specular reflection 
were excluded. At this point it should be noted that 
the GB may not necessarily exhibit the same vascular 

pattern across its wall. There may be regions of high 
vascularity separated by regions covered with fat (i.e. 
low vascularity), and vice versa. Hence, a significant 
step towards the assessment of the entire GB wall is 
to be able to classify the vascular pattern of individual 
sub-regions (patches). After experimentation with 
various patch sizes, a 70 × 70 size was selected 
providing a compromise between distinct pattern of 
vascularity and adequate resolution to perform 
assessment. Figure 2 illustrates sample image patches 
with various patterns of vascularity. Note the high 
inter-class color variance and the color similarity 
between the middle and bottom row patches. 

From the GB images, a total number of 525 image 
patches was selected. The patches were classified by 
a faculty surgeon based on two schemes, as this is the 
first time that such a classification is examined. The 
first scheme employed a 3-class classification: low- 
(L), medium- (M), and high-degree (H) of 
vascularity. In particular, H denotes presence of 
prominent superficial vessels, L denotes absence of 
vessels or extensive fat coverage, and M denotes 
moderate vascularity or/and fat coverage. Second, we 
employed a 2-class classification so that all patches 
classified as M, were reclassified as L or H, 
depending on whether they are closer to one class or 
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the other. An overview of the surgeon’s annotations 
for the two schemes is provided in Table 1. 

Table 1: Ground-truth data statistics. Number of image-
patches per class for the two classification schemes.  

 L M H 

3-class classification 188 133 204 
2-class classification 262 - 263 

2.2 Classification based on 
Handcrafted Features 

From each image patch we extracted a rich set of 
color, edge, texture, and statistical features that 
describe the image on a global level (Lux and 
Marques, 2013),(Vallières et al., 2015). Color and 
color-edge information was based on the improved 
color coherence (Pass, et al., 1996), auto color 
correlogram (Huang et al., 1997), color histogram, 
and color edge magnitude/direction feature vectors. 
To limit the number of colors, the RGB images were 
first quantized to k = 32 colors based on a k-means 
algorithm applied on the training set. This method 
was preferred instead of the standard uniform color 
quantization process, were the RGB color space is 
divided into equal-sized partitions, as it was observed 
that the colors of the images distribute across a 
limited region of the entire RGB space. The improved 
color coherence vector takes into account the size and 
locations of the regions with a particular quantized 
color, whereas the auto color correlogram counts how 
often a quantized color finds itself in its immediate 
neighborhood. The color edge magnitude and 
direction histograms were based on the gradient of 
each quantized color image plane using the Sobel 
gradient operator. 

Image texture and edge description was based on 
the Histogram of oriented gradients (HOG) (Dalal 
and Triggs, 2005), Tamura features (coarseness, 
contrast and directionality) (Tamura et al., 1978), and 
edge histogram descriptor (Vikhar and Karde, 2016), 
extracted from the intensity component of the color 
image. 

Moreover, we extracted various statistical 
features using the radiomics feature extraction 
process, applied on the quantized color image 
(Vallières et al., 2015). In particular, we extracted 
global features such as variance, skewness and 
kurtosis as well as statistical measures using higher-
order matrix-based texture types: GLCM (gray-level 
co-occurrence matrix), GLRLM (gray-level run-
length matrix), GLSZM (gray-level size zone matrix) 
and NGTDM (neighborhood gray-tone difference 
matrix). Note that compared to the standard 

calculation of these matrices on 2D images using 8-
heignboors connectivity, in our case each color image 
is considered a 3D volume and thus the texture 
matrices were determined by considering 26-
connected voxels (i.e. pixels were considered to be 
neighbors in all 13 directions in three dimensions). 
From each texture matrix various statistical features 
were extracted such as: energy, contrast, etc. 
(GLCM); short run emphasis, long run emphasis, etc. 
(GLRLM); small zone emphasis, large zone 
emphasis, etc. (GLSZM); complexity, strength, etc. 
(NGTDM). 

After feature extraction from each image patch, 
we performed early fusion by combining all features 
resulting in a feature vector with D = 900 dimensions. 
Because the number of training image-patches was 
less than D, a PCA for high-dimensional data 
(Bishop, 2006) was applied leading to feature vectors 
with dimensionality of 165 (accounting for ≥ 95% of 
the overall variability). 

For the classification step we employed 3 
classifiers (Bishop, 2006): Support vector machines 
(SVM), k-nearest neighbors (KNN) and Naïve Bayes 
(NB). For SVM we employed the Gaussian kernel; 
the hyperparameters to optimize were the box 
constraint and kernel scale. For KNN the 
hyperparameters were the distance function 
(Euclidean, cosine and city block) and the number of 
nearest neighbors. NB was based on a Gaussian 
kernel and the hyperparameter was the kernel window 
width. For each classifier the optimization was 
performed on the validation set via a grid search (10 
values for each measurable hyperparameter). 

2.3 CNN based Classification 

The proposed CNN model is shown in Table 2. 
Overall we used 3 convolutional, 3 max-pooling and 
3 fully connected (FC) layers. The convolution kernel 
size was 3 × 3; the convolution filters were set to 16, 
32, and 64. All convolutions had stride and padding 
equal to 1. Each convolution layer was followed by 
Batch Normalization (Ioffe and Szegedy, 2015) and a 
rectified linear unit (ReLU) activation. For max-
pooling, the stride was 2 whereas the size of the first 
and the other two layers was 2 × 2 and 3 × 3, 
respectively. For the three FC layers, the number of 
neurons was set to 512, 256 and C (number of 
classes), respectively. The first two FC layers were 
followed by ReLU activation, whereas the last FC by 
a softmax function, which provided the class 
probabilities. To prevent overfitting, a dropout layer 
with probability p = 0.2 was used after each FC layer 
(except the last one) (Srivastava et al., 2014). The 
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weights of the convolutional filters and FC layers 
were randomly initialized from a normal distribution 
with zero mean and 0.01 standard deviation, whereas 
all biases were set to zero. 

Table 2: The employed CNN model. BN+ReLU denotes 
Batch normalization followed by ReLU. ReLU+Drop 
denotes ReLU followed by dropout with probability p. C
denotes the number of classes (dataset dependent). 

Layer Filter size Output W×H×K 

Input - 70 × 70 × 3 
Conv1 3 × 3 × 16 70 × 70 × 16 
BN+ReLU - 70 × 70 × 16 
Max-pool1 2 × 2 35 × 35 × 16 
Conv2 3 × 3 × 32 35 × 35 × 32 
BN+ReLU - 35 × 35 × 32 
Max-pool2 3 × 3 17 × 17 × 32 
Conv3 3 × 3 × 64 17 × 17 × 64 
BN+ReLU - 17 × 17 × 64 
Max-pool3 3 × 3 8 × 8 × 64 
FC1 - 512 
ReLU+Drop - 512 
FC2 - 256 
ReLU+Drop - 256 
FC3 - C 
Softmax - C 

 
During training we adopted a batch size of 35 and 

the Adam optimization with default parameters 
(Kingma and Ba, 2014). The loss function was based 
on the categorical cross-entropy: 

ࣦ ൌ െ
1
ܰ
ݕ,log߮ሺሻ



ୀଵ

ே
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 (1)

where j ∊ {1,…,C} is the class index, yi,j ∊ {0,1} 
is the ground truth corresponding to class j and image 
i, and φ(·) denotes the softmax output for the 
activations of the FC3 layer. To reduce overfitting, an 
L2 regularization term (weight decay) with λ = 1e-4 
was added to the loss function. 

The model was trained either for 40 epochs or 
until the loss on the validation set was larger than the 
previously smallest loss for 5 evaluations. The 
evaluation was performed every 10 iterations. The 
initial learning rate was 0.001, which was dropped by 
a factor of 0.1 after every 8 epochs. To increase the 
dataset size and improve generalization of the model, 
data augmentation was performed: horizontal flip, 
vertical flip and rotation by ±30o and ±60o. 

 
 
 
 

3 EXPERIMENTAL RESULTS 

The image patch dataset was randomly split into 
training (60%), validation (20%) and test set (20%), 
based on a 5-fold cross validation. Specifically, the 
image patches were randomly split into five parts of 
equal size with the constraint to preserve the 
frequency of each class among the folds. The 
frequency of each class was also preserved among the 
three sets in each fold. Each of the five folds was 
selected as test-set and the other ones for training and 
validation. The performance of the aforementioned 
approaches was evaluated in terms of the following 
metrics: 

Acc = (TP + TN)/(P + N) (2)

Pre = TP/(TP + FP) (3)

Rec = TP/(TP + FN) (4)

F1 = 2 × Pre × Rec/(Pre + Rec) (5)

where Acc, Pre, Rec, F1 denote: Accuracy, 
Precision, Recall, and F1-score, respectively; TP, TN, 
FP, FN, P, N denote: true positives, true negatives, 
false positives, false negatives, positives and 
negatives, respectively. In addition, we computed the 
area under curve (AUC) from the receiver operating 
characteristic (ROC) plot (i.e. true positive rate = 
TP/P vs. false positive rate = FP/N). The results are 
presented as mean values across the 5 folds, unless 
otherwise stated. 

Table 3 shows the performance of the four 
methods for the 2-class classification problem (i.e. L 
vs. H). The performance metrics of all methods are ≥ 
91%. The CNN model achieves the best performance 
across all metrics; its accuracy is 98% and a similar 
value is observed for the mean Precision, Recall and 
F1-score of the two classes (Table 4). SVM is the 
second best method with ~2% lower performance. 
KNN is ranked third (~94.4% mean performance) and 
NB fourth (~92.2% mean performance). It is worth 
noting that for all methods the Recall for the H class 
is higher than that of the L class, which means that 
high vascularity images are discriminated slightly 
better. The Precision of the CNN for the two classes 
is similar (~98%), so the model generates similar 
false positives. For the other methods, the Precision 
between the classes is mixed. Figure 3 shows the 
normalized confusion matrices of the four methods. 
The matrices were normalized after summation of the 
raw confusion matrices of the test-folds. From NB to 
CNN the performance rises with increasing on Recall 
and decreasing on misclassification (false positives). 
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Table 3: Performance comparison for 2-class classification. 

 
Table 4: Mean performance comparison for 2 classes. 

Method Pre (%) Rec (%) F1 (%) 

CNN 98.0 97.9 98.0 
SVM 96.5 95.8 96.1 
KNN 94.4 94.2 94.2 
NB 92.3 92.2 92.2 

 

Figure 3: Color-coded confusion matrices for 2-class 
classification. The X and Y-axis represent predicted and 
ground truth labels, respectively. 

Table 5 shows the methods’ performance for the 
ranking of the methods with respect to their 
performance is the same as that in 2-class 
classification (1st CNN, 2nd SVM, 3rd KNN and 4th 
NB), although in overall the methods’ performance is 
lower, as expected. Specifically, the accuracy of the 
CNN is 83.1% whereas the mean Precision, Recall 
and F1-score of the three classes is 81.5%, 80.3% and 
80.4%, respectively (Table 6). 

From Table 5 it is observed that the Recall of the 
L class is higher than that of the other two classes, 
denoting better classification for the L class. The 
same result is also valid for the Precision of the L 
class, implying that misclassification of the other two 
classes as L is lower. Moreover, for the L and H 
classes the Recall is higher than Precision, denoting 
that the methods generate less false negatives 

compared to false positives. Among the three classes, 
the best performance is yielded for the L class and the 
worst for the M class. For the CNN model, the F1-
scores of the three classes are: 95.7% (L), 83.0% (H) 
and 62.7% (M). It is worth noting that this 
performance ranking is the same in all methods. 
However, the performance of the SVM, KNN and NB 
is much lower than CNN’s. 

For the CNN model and the L class, it can be 
noticed that compared to 2-class classification (Table 
3), in 3-class classification (Table 5), the Precision 
and F1 are only 4.6% and 2% lower respectively, 
whereas the Recall is 0.8% higher. However, the 
performance of the H class deteriorates considerably 
(≥ 12%). Hence, it seems that the addition of the M 
class has a negative impact on the classification of the 
H class, mostly because samples between these two 
classes are misclassified as one another. This may 
also be noticed from Figure 4 that shows the 
normalized confusion matrices. It is observed that: (a) 
the CNN yields no confusion between L and H, 
whereas in the other methods there is a slight 
confusion, (b) the H class is more confused as M than 
what the L class is, (c) the M class is mostly confused  

 

Figure 4: Color-coded confusion matrices for 3-class 
classification. The X and Y-axis represent predicted and 
ground truth labels, respectively. 

Method Class Acc (%) Pre (%) Rec (%) F1 (%) AUC 

CNN 
L 

98.0 
98.2 97.1 97.7 

0.996 
H 97.9 98.7 98.3 

SVM 
L 

96.2 
97.8 93.2 95.4 

0.991 
H 95.1 98.4 96.7 

KNN 
L 

94.4 
93.7 93.2 93.4 

0.969 
H 95.0 95.2 95.1 

NB 
L 

92.4 
91.0 91.4 91.1 

0.977 
H 93.7 93.1 93.3 
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Table 5: Performance comparison for 3-class classification. 

Method Class Acc (%) Pre (%) Rec (%) F1 (%) AUC 

CNN 
L 

83.1 
93.6 97.9 95.7 0.992 

M 71.0 56.4 62.7 0.843 
H 79.8 86.7 83.0 0.929 

SVM 
L 

76.8 
86.7 97.0 91.6 0.977 

M 67.0 27.3 36.9 0.759 
H 72.2 90.2 80.0 0.916 

KNN 
L 

73.6 
79.9 99.1 88.5 0.965 

M 46.9 13.9 21.3 0.663 
H 72.0 88.6 79.5 0.883 

NB 
L 

69.5 
87.3 86.0 86.4 0.947 

M 38.5 26.7 31.1 0.605 
H 67.3 82.0 73.6 0.845 

 

Figure 5: The ROC curves for the: (a) L, (b) M and (c) H classes, respectively. 

as H and this confusion is greater than all other 
confusions, and (d) the confusion of the M class as H 
is more than the confusion of H as M. Overall, CNN 
outputs the fewest misclassifications across the three 
classes. 

Tables 5 and 6 also report the classes’ and class-
average AUC values, respectively. The mean ROC 
curves for every class and method are depicted in 
Figure 5. The CNN model yields the highest AUC 
across all classes: 0.992 (L), 0.843 (M) and 0.929 (H), 
something that may be also concluded from the ROC 
curves. 

Table 6: Mean performance comparison for 3 classes. 

Method Pre (%) Rec (%) F1 (%) AUC 

CNN 81.5 80.3 80.4 0.921 
SVM 75.3 71.5 69.5 0.884 
KNN 66.3 67.2 63.1 0.837 
NB 64.4 64.9 63.7 0.799 

4 CONCLUSIONS 

In this paper we present a novel idea for visual 
assessment of the GB wall vascularity from 

intraoperative LC images, based on machine learning. 
To the best of our knowledge, the research work 
presented in this paper is the first one that attempts to 
investigate this application field. As described in the 
Introduction, the vascular pattern of the GB wall 
provides some clues about the GB condition, the 
operation complexity, potentially need of extra 
resources (e.g. advanced surgical skills) and generally 
a means to characterize the operation. The 
classification of the vascular pattern was based on 
two alternative evaluations provided by an 
experienced surgeon (2-class classification and 3-
class classification), as there is no established 
consensus about the most appropriate vascularity 
grading scheme from laparoscopic images. Our 
results lead to the following conclusions.  

First, the CNN model outperforms all other 
methods both in 2-class and 3-class classification 
(e.g. by ≥ 1.8% and ≥ 6.3% in accuracy, respectively). 
Second, for all methods the best performance is 
achieved in 2-class classification. Third, in 2-class 
and 3-class classification, the CNN model yields a 
very high performance for the L class (Pre ≥ 93.6% 
and Rec ≥ 97.1%). Fourth, for the H class the 
performance is very high in 2-class classification (Pre 
= 97.9% and Rec = 98.7%), but lower in 3-class 
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classification (Pre = 79.8% and Rec = 86.7%). Fifth, 
the inclusion of the M class mostly deteriorates the 
performance of the H classification (e.g. for CNN: 
13.3% confusion). Moreover, the M class is mostly 
confused as H (33.9% for CNN), something that is 
observed for all methods. Hence, the M class was the 
most difficult one to recognize. A quantitative 
measure of independent reviewers’ agreement on the 
annotation of the M class would help evaluating the 
difficulty of this task, or even whether the 3-class 
classification scheme is indeed appropriate for our 
application. In the future we aim to elaborate further 
on this issue. 

Given that this study investigates a novel 
application in the area of computer assisted surgery, 
there are still open issues for further research. First, 
the results in this study are based on the ground truth 
assessment provided by a single expert. The 
recruitment of additional experts is essential in order 
to evaluate their level of agreement and most 
importantly to establish the most appropriate 
vascularity annotation scheme. Moreover, we aim to 
expand our dataset by including more images from 
additional LC operations. Second, the results are 
based on classification of patches extracted from GB 
images. Hence, it is important to extend the CNN 
model to predict the vascular pattern of the entire GB 
region in the laparoscopic image. A potential solution 
would be to sequentially extract patches from a user-
specified GB region and then aggregate the CNN’s 
patch predictions. The investigation of more 
advanced CNN models, alternative loss functions to 
penalize misclassifications of extreme classes, and 
color preprocessing techniques for visual 
enhancement of the GB wall vessels, are also major 
topics of interest for future research work. 
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