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Abstract: Dynamical models of autonomous systems usually follow general assumption about rationality of the systems 
and their judgements. In particular, the systems acting under uncertainty are defined using probabilistic 
methods with the reasoning based on minimization or maximization of the expected payoffs or rewards. 
However, in the systems that deal with rare events or interact with human usually demonstrating irrational 
behaviour correctness of the use of probability measures and of the utility functions is problematic. In order 
to solve this problem, in the paper we suggest a Markov-like process that is based on a certain type of 
possibility measures and uninorm and absorbing norm aggregators. Together these values and operators form 
an algebraic structure that, on one hand, extends Boolean algebra and, on the other hand, operates on the unit 
interval as arithmetic system. We demonstrate the basic properties of the suggested subjective Markov process 
that go in parallel to the properties of usual Markov process, and stress formal differences between two 
models. The actions of the suggested process are illustrated by the simple model of search that clarifies the 
differences between Markov and subjective Markov processes and corresponding decision-making. 

1 INTRODUCTION 

Usually the models of autonomous systems acting 
under uncertainties are based on the Markov 
processes that define the evolution of the probabilities 
of the system states. The decision-making in such 
systems deals with the choice of the system’s 
activities in each state. 

In spite of a wide variety of methods and 
algorithms used in such models, the starting point of 
these probabilistic techniques is an assumption about 
rationality of the systems and their judgements (Luce 
and Raiffa, 1964; Raiffa, 1968). Consequently, the 
reasoning in such systems is based on minimization 
or maximization of the expected payoffs or rewards 
(White, 1993). 

However, in the models those consider the systems 
with rare events or deal with the systems interacting 
with humans, who usually demonstrate irrational 
behaviour (Kahneman and Tversky, 1979), 
application of probabilistic measures and 
minimization/maximization criterions are rather 
problematic. Subjective factors in such models 
usually are considered on the base of certain utility 
functions that represent preferences of the observer 
(Friedman and Savage, 1948), and by extending usual 

Markov processes (MP) up to partially observable or 
hidden Markov processes (HMP) (Monahan, 1982; 
Rabiner, 1989) or hierarchical HMP (HHMP) (Fine, 
Singer and Tishbi, 1998). Such techniques allow 
effective modelling of many types of particular 
systems, but as direct successors of the Markov 
decision processes (MDP) (White, 1993), these 
techniques are also based on probabilistic methods 
with no concern to the existence or correctness of the 
required probabilistic measures. 

In order to resolve these problems, in the paper we 
suggest subjective MP (μP) that goes in parallel to 
usual MP, but instead of probabilities is defined on a 
certain type of possibility measures (Dubois and 
Prade, 1988) that represent beliefs of the observer. 
Together with the uninom (Yager and Rybalov, 1996) 
and the absorbing norm (Batyrshin, Kaynak and 
Rudas, 2002), these measures form an algebraic 
structure that, on one hand, extends Boolean algebra 
and, on the other hand, operates on the unit interval 
as usual arithmetic system (Kagan, Rybalov, 
Siegelmann and Yager, 2013). In addition to clear 
definition of the process, such property allows 
consideration of the μP in comparison with the MP 
and stressing their similarities and differences. 
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In particular, in the paper we present a basic 
classification of the μP states that goes in parallel to 
the classification of the MP states and demonstrates 
formal differences between two models. The actions 
of the μP are illustrated by the simple model of search 
(Pollock, 1970; Kagan and Ben-Gal, 2013) that 
clarifies the differences between μP and MP and 
corresponding decision-making. 

2 UNINORM AND ABSORBING 
NORM 

Let us briefly recall the definitions of the uninorm 
(Yager and Rybalov, 1996) and absorbing norm 
(Batyrshin, Kaynak and Rudas, 2002). 

Consider the truth values that, in contrast to the 
Boolean logic, are drawn from the interval ሾ0, 1ሿ. In 
the theory of fuzzy sets and in fuzzy logic (Bellman 
and Giertz, 1973; Zade, 1965), such truth values are 
associated with the “grades of membership” 𝜇஺ሺ𝑑) of 
the points d of some domain 𝐷 to the set 𝐴 ⊂ 𝐷. The 
function 𝜇஺: 𝐷 → ሾ0, 1ሿ is, respectively, called the 
membership function. 

For the non-binary truth values are defined the 
multivalued “and” ⋏, “or” ⋎ and “not” ~ operators, 
such that for any 𝑥, 𝑦 ∈ ሾ0, 1ሿ also ሺ𝑥 ⋏ 𝑦) ∈ ሾ0, 1ሿ, ሺ𝑥 ⋎ 𝑦) ∈ ሾ0, 1ሿ and ሺ~𝑥) ∈ ሾ0, 1ሿ. These operators 
go in parallel to the Boolean “and” ∧, “or” ∨ and 
“not” ¬ operators and coincide with them such that 
for binary truth values 𝑥, 𝑦 ∈ ሼ0, 1ሽ it holds true that 𝑥 ⋏ 𝑦 = 𝑥 ∧ 𝑦, 𝑥 ⋎ 𝑦 = 𝑥 ∨ 𝑦 and ~𝑥 = ¬𝑥. In the 
most applications, they are also associated with 
statistical triangular norms (Klement, Mesiar and Pap, 
2000) (conjunction ⋏ with 𝑡-norm and disjunction ⋎ 
with 𝑡-conorm) or are defined arithmetically (Dubois 
and Prade, 1985). 

Later (Yager and Rybalov, 1996), conjunction ⋏ 
and disjunction ⋎ operators were united into a single 
uninorm aggregator ⊕ఏ: ሾ0, 1ሿ × ሾ0, 1ሿ → ሾ0, 1ሿ with 
neutral element 𝜃 ∈ ሾ0, 1ሿ such that for θ = 1 it is 𝑥 ⊕ଵ 𝑦 = 𝑥 ⋏ 𝑦 and for 𝜃 = 0 it is 𝑥 ⊕଴ 𝑦 = 𝑥 ⋎ 𝑦. 
In parallel, there was introduced (Batyrshin, 
Kaynak and Rudas, 2002) an absorbing norm 
aggregator ⊗ణ: ሾ0, 1ሿ × ሾ0, 1ሿ → ሾ0, 1ሿ with 
absorbing element 𝜗 ∈ ሾ0, 1ሿ; this aggregator extends 
the Boolean 𝑛𝑜𝑡 xor operator. 

Both uninorm ⊕ఏ and absorbing norm ⊗ణ are the 
functions that specify aggregation of the variables 𝑥, 𝑦 ∈ ሾ0, 1ሿ resulting in ሺ𝑥 ⊕ఏ 𝑦) ∈ ሾ0, 1ሿ and ሺ𝑥 ⊗ణ 𝑦) ∈ ሾ0, 1ሿ, and for all 𝑥, 𝑦, 𝑧 ∈ ሾ0, 1ሿ they 
meet the commutative and associative properties: 

𝑥 ⊕ఏ 𝑦 = 𝑦 ⊕ఏ 𝑥, (1a)𝑥 ⊗஬ 𝑦 = 𝑦 ⊗஬ 𝑥, (1b)ሺ𝑥 ⊕஘ 𝑦) ⊕஘ 𝑧 = 𝑥 ⊕஘ ሺ𝑦 ⊕஘ 𝑧) and (2a)ሺ𝑥 ⊗஬ 𝑦) ⊗஬ 𝑧 = 𝑥 ⊗஬ ሺ𝑦 ⊗஬ 𝑧); (2b)
for the uninorm it also holds true that 𝑥 ≤ 𝑦 implies 𝑥 ⊕஘ 𝑧 ≤ 𝑦 ⊕஘ 𝑧. (3)
Neutral 𝜃 and absorbing 𝜗 elements play a role of 
zero for their operators that is 𝜃 ⊕ఏ 𝑥 = 𝑥 and (4a)𝜗 ⊗ణ 𝑥 = 𝜗. (4b)

Interpretation of the aggregators ⊕஘ and ⊗஬  is 
the following (Rybalov and Kagan, 2017). The 
uninorm is an operator such that its truth value is 
defined by the extent (called also true by extent), to 
which both its arguments are true, and the absorbing 
norm is an extension of the not xor comparison and 
specifies the grade of similarity between its 
arguments. In the other situations, these aggregators 
can be considered as parameterized logical operators 
and applied for design of logical schemes (Rybalov, 
Kagan and Yager, 2012), or even as a tool for 
modelling operations in quantum information theory 
(Rybalov, Kagan, Rapoport and Ben-Gal, 2014). 

Together with formal properties of the 
aggregators ⊕ఏ and ⊗ణ, it was also proven (Fodor, 
Yager and Rybalov, 1997; Fodor, Rudas and Bede, 
2004) that for any 𝑥, 𝑦 ∈ ሾ0, 1ሿ there exist functions 𝑢 
and 𝑣 called generator functions such that 𝑥 ⊕ఏ 𝑦 = 𝑢ିଵ൫𝑢ሺ𝑥) + 𝑢ሺ𝑦)൯, (5a)𝑥 ⊗ణ 𝑦 = 𝑣ିଵ൫𝑣ሺ𝑥) ∙ 𝑣ሺ𝑦)൯. (5b)

while the inverse functions 𝑢ିଵ and 𝑣ିଵ considered 
on the open interval ሺ0, 1) are probability 
distributions (Kagan, Rybalov, Siegelmann and 
Yager, 2013). Such equivalence between inverse 
generator functions and probability distributions 
demonstrates deep relation between probabilistic and 
fuzzy logics (Kagan, Rybalov, Siegelmann and 
Yager, 2013; Kagan, Rybalov and Yager, 2014)  that, 
however, requires additional considerations. 

The truth values from the interval ሾ0, 1ሿ together 
with the uninorm ⊕ఏ and absorbing norm ⊗ణ 
aggregators form an algebraic structure. In the next 
section we define this structure. 
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3 ALGEBRAIC STRUTURE WITH 
UNINORM AND ABSORBING 
NORM 

Let ⊕ఏ be a uninorm with the neutral element 𝜃 and ⊗ణ be an absorbing norm with the absorbing element 𝜗. As operators on the interval ሾ0, 1ሿ, uninorm ⊕ఏ 
defines monoid ℳ⨁ = 〈ሾ0, 1ሿ, ⊕ఏ, 𝜃〉 with a unit 𝜃, 
and absorbing norm ⊗ణ defines monoid ℳ⊗ =〈ሾ0, 1ሿ, ⊗ణ, 𝜗〉 with a unit 𝜗. 

The algebraic structure 𝒜 = 〈ሾ0,1ሿ,⊕ఏ,⊗ణ〉 on 
the interval ሾ0, 1ሿ with uninorm ⊕ఏ and absorbing 
norm ⊗ణ aggregators is defined as a triple that joins 
monoids ℳ⨁ and ℳ⊗. It is clear that this structure 
extends Boolean algebra 𝐵 = 〈ሼ0, 1ሽ, ∧, ∨〉 defined 
for the operators ∧ and ∨, and to its multivalued 
version ℬ = 〈ሾ0, 1ሿ, ⋏, ⋎〉 defined for the 𝑡-norm ⋏ 
and 𝑡-conorm ⋎ and acts both as a multivalued logical 
system and as an arithmetic system on the interval ሾ0, 1ሿ. 

The basic properties of the structure 𝒜 are the 
following. 

− if 𝑢ሺ𝑥) = 𝑣ሺ𝑥) for all 𝑥 ∈ ሾ0, 1ሿ, then 𝜃 =𝜗; 
− the value λ = 𝑣ିଵሺ1) is an identity element 

of the absorbing norm that is λ ⊗ణ 𝑥 = 𝑥; below this 
value will be denoted by 𝕀⊗. 

Moreover 0 (Fodor, Rudas and Bede, 2004): 
− if 𝜃 = 𝜗, then absorbing norm is 

distributive with respect to the uninorm, that is ሺ𝑥 ⊕ఏ 𝑦) ⊗ణ 𝑧 =ሺ𝑥 ⊗ణ 𝑧) ⊕ఏ ሺ𝑦 ⊗ణ 𝑧); (6)

− for any 𝑥 ∈ ሾ0, 1ሿ there exists an opposite 
element ⊖ఏ 𝑥 = 𝑢ିଵ൫−𝑢ሺ𝑥)൯ ∈ ሾ0, 1ሿ such that 𝑥 ⊕ఏ ሺ⊖ఏ 𝑥) = 𝑥 ⊖ఏ 𝑥 = 𝜃; (7)

− for any 𝑥 ∈ ሾ0, 1ሿ, 𝑥 ≠ 𝜗, there exists an 
inverse element 𝜆 ⊘ణ 𝑥 = 𝑣ିଵሺ1 𝑢ሺ𝑥)⁄ ) ∈ ሺ0, 1) 
such that 𝑥 ⊗ణ ሺλ ⊘ణ 𝑥) = 𝑥 ⊘ణ 𝑥 = λ. (8)

In addition, notice that (Kagan, Rybalov, 
Siegelmann and Yager, 2013) 

− if 𝑢ሺ𝑥) = 𝑣ሺ𝑥), 𝑥 ∈ ሾ0, 1ሿ and so 𝜃 = 𝜗, 
then the structure 𝒜 is a commutative ring 
isomorphic to the ring of real numbers; otherwise, the 
structure 𝒜 is a non-distributive algebra such that ሺ𝑥 ⊕ఏ 𝑦) ⊗ణ 𝑧 ≠ሺ𝑥 ⊗ణ 𝑧) ⊕ఏ ሺ𝑦 ⊗ణ 𝑧). (9)

In the other words, the structure 𝒜 =〈ሾ0,1ሿ,⊕ఏ,⊗ణ〉 defines formal algebra on the interval ሾ0,1ሿ, where the aggregator ⊕ఏ is considered as an 
operation of summation and the aggregator ⊗ణ – as 
an operation of multiplication. In addition to these 
operations, there are obviously defined the operators 
of subtraction ⊖ఏ and of division ⊘ణ such that for 
any 𝑥, 𝑦 ∈ ሾ0, 1ሿ are 𝑥⊖𝜃𝑦=𝑢−1𝑢𝑥−𝑢𝑦, (10)
and 𝑥⊘𝜗𝑦=𝑣−1𝑣𝑥/𝑣𝑦, (11)

In the further considerations, we will need the 
following properties of the uninorn and absorbing 
norm: 

uninorm ⊕ఏ: 
− if 𝑥, 𝑦 > 𝜃 then 𝑥 ⊕ఏ 𝑦 > 𝜃; 
− if 𝑥, 𝑦 < 𝜃 then 𝑥 ⊕ఏ 𝑦 < 𝜃; 
− if 𝑥 > 𝜃 and 𝑦 < 𝜃 and |𝑥 − 𝜃| > |𝑦 − 𝜃| 

then 𝑥 ⊕ఏ 𝑦 > 𝜃; 
absorbing norm ⊗ణ: 
− if 𝑥, 𝑦 > 𝜗 or 𝑥, 𝑦 < 𝜗 then 𝑥 ⊗ణ 𝑦 > 𝜗; 
− if 𝑥 > 𝜗 and 𝑦 < 𝜗 then 𝑥 ⊗ణ 𝑦 < 𝜗. 

In order to prove these properties it is enough to 
exhibit a continuous monotonically increasing 
function 𝜏జ: ሾ0, 1ሿ →  ሾ−1, 1ሿ with parameter 𝜐 (that 
stands for 𝜃 in the uninorm ⊕ఏ and for 𝜗 in the 
absorbing norm ⊗ణ) such that 𝜏జሺ0) = −1, 𝜏జሺ𝜐) =0 and 𝜏జሺ1) = 1. The simplest example of the 
required function 𝜏జ is a partially linear function 

𝜏జሺ𝑥) = ቐଵజ 𝑥 − 1,               𝑥 < 𝜐,ቀ1 − జజିଵቁ 𝑥 + జజିଵ ,   𝑥 > 𝜐,  (12)

and such that 𝜏జሺ𝑥) = −1 when 𝜐 = 0 and 𝜏జሺ𝑥) =1 when 𝜐 = 1. 
Then aggregation using uninorm and absorbing 

norm are equivalent to the normalized summation and 
multiplication in the interval ሾ−1, 1ሿ, for which the 
required properties hold. 

Notice that since the properties of aggregation 
using uninorm and absorbing norm are equivalent to 
the summation and multiplication in the interval ሾ−1, 1ሿ, operations using these norms can be 
considered as a multivalued extension of the 
operations of the three-valued logic. 

Finally, in the further considerations we need the 
following values (Kagan, Rybalov and Ziv, 2016; 
Kagan, Rybalov and Yager, 2018) 𝕆⨁ = 𝑢ିଵሺ−1),    𝕀⨁ = 𝑢ିଵሺ1), (13a)𝕆⊗ = 𝑣ିଵሺ−1),    𝕀⊗ = 𝑣ିଵሺ1). (13b)
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The values 𝕆⨁ and 𝕆⊗ are called subjective false 
and the values 𝕀⨁ and 𝕀⊗ are called subjective true 
(both with respect to ⊕ఏ and ⊗ణ). These values are 
certainly differ from neutral element 𝜃 = 𝑢ିଵሺ0) and 
absorbing element 𝜗 = 𝑣ିଵሺ0). Moreover, from the 
properties of the generator functions for both 
aggregators it immediately follows that 0 < 𝕆⨁ < 𝜃 < 𝕀⨁ < 1, (14a)0 < 𝕆⊗ < 𝜗 < 𝕀⊗ < 1. (14b)

where 0 and 1 represent Boolean false and true values 
that are limiting values for subjective false and 
subjective true, respectively. 

Using the presented properties of algebra 𝒜 in the 
next section we define the Markov-like process called 
subjective Markov process. 

4 Markov AND SUBJECTIVE 
Markov PROCESSES 

We define subjective Markov process (μP) as a 
Markov process (MP) in algebra 𝒜. In order to 
demonstrate similarities and differences between μP 
and MP, we start with recalling the definition of MP 
and then define the μP in parallel to MP. Since we are 
interested in decision-making, we will consider only 
the discrete time processes with finite number of 
states that are the Markov chains. 

4.1 Markov Process 

Let 𝑆 = ሼ𝑠ଵ, 𝑠ଶ, … , 𝑠௡ሽ be a finite set of some abstract 
states, and consider a system that in time 𝑡 can be in 
one of the states from this set such that an exact state 𝑠ሺ𝑡) ∈ 𝑆 is unknown. In order to handle this 
uncertainty, assume that for the unknown system state 𝑠ሺ𝑡) at time 𝑡 and each state 𝑠௜ from the indicated set 𝑆 of abstract states there is defined the probability 𝑝௜ሺ𝑡) = 𝑃𝑟ሼ𝑠ሺ𝑡) = 𝑠௜ሽ  (15)
that the state 𝑠ሺ𝑡) is equal to the state 𝑠௜ ∈ 𝑆, 𝑖 =1,2, … , 𝑛. 

The dynamics of the system is defined using 
conditional probabilities 𝜌௝௞, 𝑗, 𝑘 = 1,2, … , 𝑛, such 
that for each pair ൫𝑠௝, 𝑠௞൯ ∈ 𝑆 × 𝑆 of abstract states 
probability 𝜌௝௞ represents the chance of transition 
from the state 𝑠௝ to the state 𝑠௞. In the other words, if 
it is known that at time t the system is in the state 𝑠ሺ𝑡) = 𝑠௝, then the probability that at the next time 𝑡 + 1 it will be in the state 𝑠ሺ𝑡 + 1) = 𝑠௞ is 

𝜌௝௞ = 𝑃𝑟൛𝑠ሺ𝑡 + 1) = 𝑠௞|𝑠ሺ𝑡) = 𝑠௝ൟ. (16)

Starting from the initial state probabilities 𝑝௜ሺ0), 𝑖 = 1,2, … , 𝑛, defined at time 𝑡 = 0, evolution of the 
system is formally defined by the product of the 
probabilities vector 𝑝ሺ𝑡) = ൫𝑝ଵሺ𝑡), 𝑝ଶሺ𝑡), … , 𝑝௡ሺ𝑡)൯ 
and the transition matrix 𝜌 = ฮ𝜌௝௞ฮ௡×௡ 𝑝ሺ𝑡 + 1) = 𝑝ሺ𝑡) ∙ 𝜌 = 𝑝ሺ0) ∙ 𝜌௧ାଵ. (17)

The resulting state probabilities form a basis for 
making decision about the action that should be 
conducted at time 𝑡 + 1 and about possible rewards at 
this time. Repetition of such multiplication allows 
prediction of the system’s state for some future time 
and correction of the decisions according to the 
predicted future rewards. 

However, as indicated above, definition of the 
state probabilities is problematic; even at the initial 
time it requires consideration of internal and external 
parameters of the system that usually are not 
available. Correct definition of the transition 
probabilities, in its turn, requires deep analysis of the 
system and its behaviour. But if such analysis was 
already conducted, then the behaviour of the system 
is known and its probabilistic modelling becomes 
meaningless. Additional problem rises because of the 
assumption about rationality of the system’s 
behaviour since usually the real-world systems 
interacting with humans follow irrational judgements 
based on the subjective factors. 

In order to resolve these problems, we suggest to 
use a μP that is a Markov process in algebra 𝒜. 

4.2 Subjective Markov Process 

As above, let 𝑆 = ሼ𝑠ଵ, 𝑠ଶ, … , 𝑠௡ሽ be a finite set of 
abstract states, and assume that at time 𝑡 the system is 
in the state 𝑠ሺ𝑡) ∈ 𝑆 that is unknown to the observer. 
However, for each abstract state 𝑠௜ ∈ 𝑆, 𝑖 = 1,2, … , 𝑛, 
the observer can ask the question: “Is it true that at 
time 𝑡 the system is in the state 𝑠௜?” and can conclude 
that the truth level of the answer: “At time t the 
system is in the state 𝑠௜” is 𝜇ሺ𝑠௜, 𝑡) = 𝜇௜ሺ𝑡) ∈ ሾ0, 1ሿ. 
For convenience, we consider this truth level as an 
observer’s belief that state 𝑠ሺ𝑡) is 𝑠௜ and denote it as 𝜇௜ሺ𝑡) = 𝐵𝑒𝑙ሼ𝑠ሺ𝑡) = 𝑠௜ሽ. (18)

Boundary value 𝜇௜ሺ𝑡) = 0 means that the 
statement “at time t the system is in the state 𝑠௜” is 
false and boundary value 𝜇௜ሺ𝑡) = 1 means that this 
statement is true. In the other words, belief 𝜇௜ሺ𝑡) = 1 
is interpreted as an exact knowledge about the 
occurrence of the event and belief 𝜇௜ሺ𝑡) = 0 is 
interpreted as an exact knowledge about non-
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occurrence of the event. The intermediate truth values 
represent the grades of the observer’s belief that at 
time t the system is in the state 𝑠௜, and belief 𝜇௜ሺ𝑡) =0.5 means an absence of any knowledge whether the 
event occurred or not. 

Denote by 𝜔௝௞ ∈ ሾ0, 1ሿ, 𝑗, 𝑘 = 1,2, … , 𝑛, the truth 
value, which for each pair ൫𝑠௝, 𝑠௞൯ ∈ 𝑆 × 𝑆 of abstract 
states represents the belief that from the state 𝑠௝ the 
system transits to the state 𝑠௞. In the other words, if 
the observer asks the question: “Is it true that the 
system transits from the state 𝑠௝ to the state 𝑠௞?”, then 𝜔௝௞ is the truth level of the answer: “The system 
transits from the state 𝑠௝ to the state 𝑠௞”. In the other 
interpretation the value 𝜔௝௞ can be considered as a 
possibility of transition from the state 𝑠௝ to the state 𝑠௞. Such interpretation allows application of 𝜔௝௞ in 
the analysis of coincidentia oppositorium (Rybalov 
and Kagan, 2017; Rybalov and Kagan, 2018) and 
consider it as a truth value of the statement that the 
system is both in the state 𝑠௝ and in the state 𝑠௞ (that 
happens when the system is transiting from 𝑠௝ to 𝑠௞: 
at some moment it is both in 𝑠௝ and in 𝑠௞, or neither 
in 𝑠௝ nor in 𝑠௞). 

Dynamics of the system is defined in the algebra 𝒜 as follows. Let 𝜇ሺ𝑡) = ൫𝜇ଵሺ𝑡), 𝜇ଶሺ𝑡), … , 𝜇௡ሺ𝑡)൯ be 
a vector of the states’ 𝑠௜ ∈ 𝑆 truth values, 𝑖 =1,2, … , 𝑛, and by 𝜔 = ฮ𝜔௝௞ฮ௡×௡ a matrix of 
transition possibilities 𝜔௝௞, 𝑗, 𝑘 = 1,2, … , 𝑛. Then, in 
parallel to MP, the update of the state truth values is 
specified as 𝜇ሺ𝑡 + 1) = 𝜇ሺ𝑡) ⊗ణ 𝜔. (19)
where the product of vector 𝜇ሺ𝑡) and matrix ω in the 
algebra 𝒜 is defined by application of the aggregators ⊕ఏ and ⊗ణ following usual “the row to the column” 
rule: for each 𝑖 = 1,2, … , 𝑛 𝜇௜ሺ𝑡 + 1) = ሺ𝜇ଵሺ𝑡) ⊗ణ 𝜔ଵ௜)  ⊕ఏ ሺ𝜇ଶሺ𝑡) ⊗ణ 𝜔ଶ௜) ⊕ఏ …⊕ఏ ሺ𝜇௡ሺ𝑡) ⊗ణ 𝜔௡௜). 

(20)

This process considers behaviour of the system 
from the observer’s point of view, and by changing 
the values of neutral 𝜃 and absorbing 𝜗 elements the 
observer’s beliefs and preferences can be tuned. For 
decision-making, the values 𝜇௜ሺ𝑡), 𝑖 = 1,2, … , 𝑛, can 
be used either directly (such as in the example in 
section 4) or can be transformed into the states 
probabilities using the means of possibility theory 
(Dubois and Prade, 1985) or of probabilistic logic 
(Nilsson, 1986; Kagan, Rybalov and Yager, 2014). 

 

4.3 Basic Types of the States in 
Subjective Markov Process 

Using the properties of algebra 𝒜 we can consider the 
basic types of the μP states. In parallel to usual MP, 
the states of μP are classified according to the 
corresponding beliefs and transition possibilities that 
allow prediction of possible states and beliefs of the 
observer. 

Let 𝑆 = ሼ𝑠ଵ, 𝑠ଶ, … , 𝑠௡ሽ be a set of states, and 
denote by 𝑠ሺ𝑡) ∈ 𝑆 the state of the system at time 𝑡. 
Then, in parallel to the probabilities that characterize 
MP, for μP we introduce the following beliefs and 
possibilities: 

− the first passage belief 

𝛽௜௝ሺ௟) = 𝐵𝑒𝑙 ቐ 𝑠ሺ𝑡 + 𝑙) = 𝑠௝,𝑠ሺ𝑡 + 𝑚) ≠ 𝑠௝, 0 < 𝑚 < 𝑙 | 𝑠ሺ𝑡) = 𝑠௜ ቑ  (21)

is a belief that if at time 𝑡 the system is in the state 𝑠௜, 
then at first time it will be in the state 𝑠௝ in l steps, 𝑖, 𝑗 = 1,2, … , 𝑛. 

− the 𝑙-step transition belief 𝜓௝௞ሺ௟) = 𝐵𝑒𝑙൛𝑠ሺ𝑡 + 𝑙) = 𝑠௞ | 𝑠ሺ𝑡) = 𝑠௝ൟ  (22)

is a belief that if at time 𝑡 the system is in the state 𝑠௝, 
then it will reach the state 𝑠௞, 𝑗, 𝑘 = 1,2, … , 𝑛, in 
exactly l steps. 

It is clear that by definition, 1-step transition 
belief is equivalent to the transition possibility that is 𝜓௝௞ሺଵ) = 𝜔௝௞  = 𝐵𝑒𝑙൛𝑠ሺ𝑡 + 1) = 𝑠௞ | 𝑠ሺ𝑡) =𝑠௝ൟ. 

(23)

Following usual notation, denote by 𝛽௜௝ =⊕ఏ௟ୀଵஶ 𝛽௜௝ሺ௟)  (24)

the belief that starting from the state 𝑠௜ in some time 
the system will reach the state 𝑠௝. Then, we say that 
the state 𝑠௜ 

− is believed to be persistent (or recurrent) if 𝕀⨁ ≤ 𝛽௜௜ ≤ 1, 
− is believed to be transient if 𝕆⨁ < 𝛽௜௜ <𝕀⨁, and 
− is believed to be separate (non-persistent 

and non-transient or non-recurrent and non-transient) 
if 0 ≤ 𝛽௜௜ ≤ 𝕆⨁. 

It means that the state is persistent if the observer 
highly believes that the system will sooner or later 
return to this state, is transient if the observer’s belief 
about return to this state is low, and is separate if the 
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observer highly beliefs that the system will never 
return to this state. In addition, notice that, in contrast 
to MP, in μP belief 𝛽௜௜ can change its value such that 
persistent state will become separate state and 
backwards. Such state is called oscillating state and 
represents the observer’s hesitations regarding this 
state. Finally, the state 𝑠௜ 

− is believed to be periodic (with period 𝑇) if 
these exists an integer number 𝑇 such that if 𝑙 = 𝑘𝑇, 𝑘 = 1, 2, 3, …, then 𝜓௜௜ሺ௟) ≠ 𝜗, otherwise 𝜓௜௜ሺ௟) = 𝜗. 

Formula “the state is believed to be…” is used for 
avoiding unambiguousness and stresses that the 
values 𝛽௜௝ሺ௟), 𝛽௜௝ and 𝜓௝௞ሺ௟) are beliefs and makes sense 
only in the context of observer’s knowledge; also it 
allows distinguishing the values and states used in μP 
from the probabilities and corresponding states used 
in MP. 

Relation between the first passage belief 𝛽௜௝ሺ௟) and 
the 𝑙-steps transition belief 𝜓௝௞ሺ௟) is similar to the 
relation between first passage and 𝑙 steps transition 
probabilities in MP and is defined as follows: 𝜓௜௝ሺ௟) =⊕ఏ௥ୀଵ௟ ൫𝛽௜௝ሺ௥) ⊗ణ 𝜓௝௝ሺ௟ି௥)൯, (25)

where 𝛽௜௝ሺ଴) = 𝕆⊗ (it is believed that in zero steps the 
system will not move from the state 𝑖 to the state 𝑗, 𝑗 ≠ 𝑖), 𝜓௝௝ሺ଴) = 𝕀⊗ (it is believed that during time unit 
the system will stay in its current state), 𝜓௜௝ሺ଴) = 𝕆⊗ 
(it is believed that in zero steps the system will not 
move from the state 𝑖 to the state 𝑗, 𝑗 ≠ 𝑖), and 𝛽௜௝ሺଵ) =𝜔௜௝ (belief that starting from state 𝑖 the system will 
reach state 𝑗 at first time in one step is equivalent to 
the possibility of transition from state 𝑖 to state 𝑗), 𝑖, 𝑗, 𝑘 = 1, 2, … , 𝑛. 

Relation between first passage belief 𝛽௜௝ሺ௟) and 𝑙-
steps transition belief 𝜓௝௞ሺ௟) for persistent, transient and 
separate states in μP is the following. The state 𝑠௜ 

− is believed to be persistent (or recurrent) if 
and only if there are no any hesitations about the 
possibility of return to the state, that is ⊕ఏ௟ୀ଴ஶ 𝜓௜௜ሺ௟) = 1; (26)

− is believed to be transient if and only if 
there exists some possibility of return but this 
possibility is not exact, that is 0 < ൫⊕ఏ௟ୀ଴ஶ 𝜓௜௜ሺ௟)൯ < 1; (27)

− is believed to be separate (non-persistent 
and non-transient or non-recurrent and non-transient) 

if and only if it is exactly known that there is no any 
possibility to return to this state, that is ⊕ఏ௟ୀ଴ஶ 𝜓௜௜ሺ௟) = 0. (28)

The proofs of these propositions are based on 
direct application of the monotonicity of the uninorn 
and of the convergence of its results to 0 or 1 for the 
terms less than or greater than 𝜃, respectively. The 
other way to prove these propositions is based on the 
application of the function 𝜏ఏ and its reverse that 
allows consideration of the propositions in the 
interval ሾ−1,1ሿ with usual arithmetic operations 
(together with normalization of sum). 

The formulated properties of the states in μP go 
in parallel to the properties of the states proven for 
MP (Feller, 1970). However, it is seen that both the 
meaning and formal characteristics of these states are 
different. 

In order to stress this difference and to illustrate 
the actions of μP in the next section we consider the 
simple model of search (Pollock, 1970; Kagan and 
Ben-Gal, 2013) using both models. 

5 SIMPLE MODEL OF SEARCH 
WITH MP AND μP 

We clarify the actions of μP and the difference 
between MP and μP by running example of classical 
Pollock model of search. In this model, the target 
moves between two boxes and the observer should 
catch the target by checking one of the boxes: if the 
target is in the chosen box, then the search terminates 
and if not, then the search continues (Pollock, 1970; 
Kagan and Ben-Gal, 2013). 

Below we do not address the optimization issues 
and do not compare MP and μP from this point of 
view; our goal is only to demonstrate that μP provides 
additional information about the considered system 
and can lead to decisions that differ from the 
decisions led by MP. 

Assume that the set 𝑆 = ሼ𝑠ଵ, 𝑠ଶሽ includes only two 
states that are associated with the boxes. At each time 𝑡 = 0, 1, 2, …, the target can be in one of the boxes 𝑠ଵ 
and 𝑠ଶ with the probabilities (𝑖 = 1, 2) 𝑝௜ሺ𝑡) = 𝑃𝑟ሼ𝑠ሺ𝑡) = 𝑠௜ሽ, 

(29)𝑝ଵሺ𝑡) = 1 − 𝑝ଶሺ𝑡), 
these probabilities are called location probabilities.  

The chances of movements between the boxes 𝑠ଵ 
and 𝑠ଶ are defined by the transition probabilities 
(𝑗, 𝑘 = 1, 2) 
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𝜌௝௞ = 𝑃𝑟൛𝑠ሺ𝑡 + 1) = 𝑠௞|𝑠ሺ𝑡) = 𝑠௝ൟ, 
(30)𝜌ଵଶ + 𝜌ଵଵ = 1, 𝜌ଶଵ + 𝜌ଶଶ = 1, 

where the probabilities 𝜌ଵଵ and 𝜌ଶଶ represent the 
chances that the target stays in its current box 1 or 2, 
respectively. 

Dynamics of the target is governed by MP as 
follows ൫𝑝ଵሺ𝑡 + 1), 𝑝ଶሺ𝑡 + 1)൯ =  ൫𝑝ଵሺ𝑡), 𝑝ଶሺ𝑡)൯ ∙ ቀ𝜌ଵଵ 𝜌ଵଶ𝜌ଶଵ 𝜌ଶଶቁ. 

(31)

On the base of probabilities 𝑝ଵሺ𝑡 + 1) and 𝑝ଶሺ𝑡 + 1) the searcher decides which box should be 
checked at time 𝑡 + 1: if the target is found, then the 
search is terminated, and if it is not found, then the 
location probabilities are updated (for the checked 
box it is set to zero and to the other box – to one) and 
the search continues. The one-step decision is clear 
and prescribes to choose the box with maximal 
location probability; however, since the unsuccessful 
decision leads to the probabilities update, the long-
term decision-making is rather nontrivial problem. 

Now let us describe the process using the 
suggested μP. For the same set 𝑆 = ሼ𝑠ଵ, 𝑠ଶሽ of states, 
let 𝜇௜ሺ𝑡) = 𝐵𝑒𝑙ሼ𝑠ሺ𝑡) = 𝑠௜ሽ, i = 1, 2, (32) 
be truth values that represent the beliefs of the 
searcher that the target is located in the boxes 𝑠ଵ and 𝑠ଶ; for briefness we call these values the location 
beliefs. The beliefs that the target can move from one 
box to another are represented by the transition 
possibilities (𝑗, 𝑘 = 1, 2) 𝜔௝௞ = 𝐵𝑒𝑙൛𝑠ሺ𝑡 + 1) = 𝑠௞|𝑠ሺ𝑡) =𝑠௝ൟ, (33)

where the values 𝜔ଵଵ and 𝜔ଶଶ represent the beliefs 
that the target stays in its current box 1 or 2, 
respectively. 

Then, the system is described directly from the 
searcher’s point of view as a search process that is 
governed by μP such that ൫𝜇ଵሺ𝑡 + 1), 𝜇ଶሺ𝑡 + 1)൯ =  ൫𝜇ଵሺ𝑡), 𝜇ଶሺ𝑡)൯ ⊗ణ ቀ𝜔ଵଵ 𝜔ଵଶ𝜔ଶଵ 𝜔ଶଶቁ. 

(34)

Similar to MP, in the obtained μP the searcher 
decides which box should be checked at time 𝑡 + 1 
following location beliefs 𝜇ଵሺ𝑡 + 1) and 𝜇ଶሺ𝑡 + 1). 
As indicated above, it can be done either directly or 

by the means of possibility theory or of the 
probabilistic logic. 

However, the values of the beliefs obtained in the 
μP, in general, differ from the values of the location 
probabilities and lead to the decision that differs from 
the decision made in the MP. The long-term decision-
making also differs; since the beliefs represent the 
observer’s subjective point of view, they do not 
updated and the next step beliefs are calculated using 
the current beliefs with no concern to the observation 
result. 

In order to illustrate the difference between MP 
and μP, we implement the distributive version of 
algebra 𝒜 with the aggregators ⊕ఏ and ⊗ణ defined 
by equations (5) with equivalent generator functions 𝑢 = 𝑣 = 𝑤, where 𝑤 is the inverse of Cauchy 
distribution 𝑤ሺ𝑥) = 𝑚 + 𝛼 tan ቂ𝜋 ቀ𝑥 − ଵଶቁቃ. (35)

Then 𝑤ିଵሺ𝜉) = ଵଶ + ଵగ arctan ቀకି௠ఈ ቁ, (36)

where 𝜉, 𝑚 ∈ ሺ−∞, ∞) and 𝛼 > 0. From the 
requirement 𝑤ሺ𝜃) = 𝑤ሺ𝜗) = 0 it also follows that 𝜃 = 𝜗 = ଵଶ − ଵగ arctan ቀ௠ఈ ቁ, (37)

In addition, we assume that parameters of the 
distribution are 𝑚 = 0 and 𝑎 = 1; thus 𝜃 = 𝜗 = ଵଶ. 

Consider the first step of the process. For 
convenience, we assume that the initial values of the 
location probabilities and location beliefs are equal 
and are 𝜇ሺ0) = 𝑝ሺ0) = ሺ0.8, 0.2), (38)

Direct calculations result in the following. Let 
transition matrices (transition beliefs and transition 
probabilities) be 𝜔 = 𝜌 = ቀ0.4 0.60.6 0.4ቁ. (39)

Then 𝑝ሺ1) = ሺ0.44, 0.56), 
(40)𝜇ሺ1) = ሺ0.27, 0.73). 

It is seen that the probability 𝑝ଵሺ1) = 0.44 that 
the target will be at the first box is smaller than the 
probability 𝑝ଶሺ1) = 0.56 that it will be in the second 
box and the same is true for the beliefs that are 𝜇ଵሺ1) = 0.27 and 𝜇ଶሺ1) = 0.73. Then, in both cases 
the searcher should check box 2. However, the 
difference between the probabilities 𝑝ଵሺ1) and 𝑝ଶሺ1) 
is essentially smaller than the difference between the 
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beliefs 𝜇ଵሺ1) and 𝜇ଶሺ1) that is the belief that the 
target is in the box 2 is greater than the probability 
that it is there. 

The further iterations of the processes 
demonstrate that in the MP the relation pଵሺt) < pଶሺt) 
remains until reaching the steady state pଵሺt) =pଶሺt) = 0.5. In the μP, in contrast, each iteration 
changes the relation between 𝜇ଵሺ𝑡) and 𝜇ଶሺ𝑡) such 
that 𝜇ଵሺ0) < 𝜇ଶሺ0), 𝜇ଵሺ1) > 𝜇ଶሺ1), 𝜇ଵሺ2) < 𝜇ଶሺ2), 𝜇ଵሺ3) > 𝜇ଶሺ3), … up to reaching the steady state 𝜇ଵሺ𝑡) = 𝜇ଶሺ𝑡) = 0.5. 

Thus, in the MP the searcher should all times 
check box 2, while in the μP the searcher should 
change the checked box at each step. 

Now assume that transition matrices (transition 
beliefs and transition probabilities) are 𝜔 = 𝜌 = ቀ0.4 0.60.3 0.7ቁ. (41)

Then the picture essentially changes and  𝑝ሺ1) = ሺ0.38, 0.62), 
(42)𝜇ሺ1) = ሺ0.66, 0.34). 

Here location probability 𝑝ଵሺ1) = 0.38 for the first 
box is again smaller than the location probability 𝑝ଶሺ1) = 0.62 for the second box, but the belief 𝜇ଵሺ1) = 0.66 that the target will be in the first box is 
greater that the belief 𝜇ଶሺ1) = 0.34 that it will be in 
the second box. Consequently, in the first case the 
searcher should check box 2, but in the second case – 
box 1. 

In the further iterations both relations 𝑝ଵሺ𝑡) <𝑝ଶሺ𝑡) and 𝜇ଵሺ𝑡) > 𝜇ଶሺ𝑡) remain until reaching the 
steady states 𝑝ଵሺ𝑡) = ଵଷ, 𝑝ଶሺ𝑡) = ଶଷ and 𝜇ଵሺ𝑡) =𝜇ଶሺ𝑡) = 0.5. This state in the MP prescribes to 
continue checking box 2 and in the μP it prescribes to 
choose the box by random. 

In addition notice that in both cases of transition 
matrices in the MP the steady state is reached faster 
than in the μP, thus the μP provides more information 
for making decision about the box for check. 

It is clear that the considered model is the simplest 
one and is used only as an example. However, even 
such simple model stresses the difference between the 
MP and μP and demonstrates that the decisions made 
in μP can differ from the decisions made in MP. 

More complex processes and decisions are 
obtained by the use of non-distributive version of the 
algebra 𝒜, where in the aggregators ⊕஘ and ⊗஬ the 
elements 𝜃 and 𝜗 differ or even differ generation 
functions 𝑢 and 𝑣; but these issues we remain for 
further research. 

6 CONCLUSIONS 

The suggested subjective Markov process (μP) goes 
in parallel to the usual Markov process (MP), but, in 
contrast to MP, it acts in the recently constructed 
algebra 𝒜 that implements uninorm and absorbing 
norm aggregators and combines logical and 
arithmetical operations. 

The values, with which μP deals, are considered 
as observer’s beliefs about the system’s states and can 
be associated with the grades of membership or with 
possibilities of the system to be in certain states. Such 
definition allows to use the suggested μP instead or in 
parallel to the MP for analysis of the systems that 
include rare events or follow subjective irrational 
decisions. 

For the suggested process, we considered the 
basic types of the states with respect to the transition 
beliefs that specify the possibilities of transitions 
among the states. The essential role in this 
consideration play recently introduced concepts of 
subjective false and subjective true that allow precise 
and meaningful classification of the states. 

The difference between the suggested μP and 
usual MP is illustrated by running example of the 
Pollock model of search. It was shown that even in 
such simple model (with maximization of the 
probabilities of finding the target) μP provides 
additional information and leads to the decisions that 
can differ from the decisions prescribed by MP. 
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