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Abstract: In this paper, we propose a new algorithm for classification of aerial radar targets by using Radar Cross 
Section (RCS) time-series corresponding to target detections of a given track. RCS values are obtained 
directly from SNR values, according to the radar equation. The classification is based on analysing the 
behaviour of the RCS time-series, which is the unique “fingerprint” of an aerial radar target. The classification 
process proposed in this paper is based on training a fully-connected neural network on features extracted 
from the RCS time-series and its corresponding Intrinsic Mode Functions (IMFs). The training is based on a 
database containing RCS signatures of various aerial targets. The algorithm has been tested on a large and 
diverse set of simulative flight trajectories, and its performance has been compared with that of several 
different methods. We have found that the proposed neural network-based classifier performed better on our 
database.

1 INTRODUCTION 

Conventional uses of radar systems include detection 
of targets through transmission of radio waves and re-
scattering of echoes from targets (Skolnik, 1962). 
Radar systems, however, do not provide information 
regarding the specific type of target which is detected.  

In the past few decades, there has been an effort 
to approach the problem of radar target recognition 
(Herman & Moulin, 2002) – (Notkin et al., 2019). 
Most of the works presented so far utilized Radar 
Cross Section (RCS) of aerial targets for 
classification. RCS values are not obtained directly 
by the radar. In fact, the radar yields signal-to-noise 
ratio (SNR) values, which can be transformed into 
RCS values by using the radar equation. The RCS 
signature of aerial targets depends on various factors, 
such as the target’s unique geometry, size, 
orientation, and reflectiveness, as well as on the 
transmission frequency. RCS values can therefore 
provide useful information regarding target 
characteristics. 

RCS measurements of aerial targets are strongly 
dependent on the aspect angles (azimuth and 
elevation), relative to the radar. These angles 
determine where the radar beam hits the target. Since 
different points on the target reflect the radar beam 

differently, RCS values are characterized by large 
variances, and even a slight change in one of the 
aspect angles can cause large fluctuations. 
Nevertheless, development of an aerial target 
recognition capability is of great interest.   There have 
been several proposals to classify targets based on 
various methods (Herman & Moulin, 2002), 
(Molchanov et al., 2012), (Tian et al., 2015), (Notkin 
et al., 2019).  

The RCS time-series corresponding to an aerial 
target track contains abundant information, which can 
be used to characterise target types. However, RCS 
time-series is non-stationary, which makes it difficult 
to analyse. This calls for a comprehensive signal 
processing analysis.   

Empirical Mode Decomposition (EMD) is an 
effective nonlinear signal processing technique for 
adaptively representing non-stationary signals as a 
sum of zero-mean components, known as Intrinsic 
Mode Functions (IMF) (Huang et al., 1998). Since its 
introduction, it has been used in various applications 
(Colominas et al., 2014). 

In this paper, we present a new method for 
classifying aerial radar targets based on fully-
connected neural networks. Our algorithm utilizes a 
database of RCS signatures of various types of aerial 
targets, at a given resolution of aspect angles. Given 
an observed flight track, and the corresponding RCS 
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time-series, we extract RCS signals corresponding to 
the track, for all available targets in the database. RCS 
signals are then decomposed into IMFs using EMD. 
Features are then extracted from this set of RCS and 
corresponding IMF signals. Finally, a fully-
connected neural network is trained with these 
features to identify the observed target. 

We compare the neural network-based classifier 
with the K-Nearest Neighbour (KNN) classifier and 
three classifiers that are based on time-series 
similarity measures. In these types of classifiers, a 
target can be identified by measuring the similarity 
between the measured RCS signal, and RCS signals 
of available targets in the database, corresponding to 
the same flight track.  

The paper is organized as follows: Section 2 
describes the data preparation, and feature extraction 
stages. Section 3 describes the proposed neural 
network. Section 4 presents the results. Conclusions 
are provided in section 5. 

2 THE METHOD FOR 
PREPARING RCS DATA FOR 
THE CLASSIFIER 

In this section, we present our method for preparing 
the training and test data for the neural-network based 
classifier.  

In this work, we simulated a database that 
contains RCS signatures for 8 different targets at two 
aspect angles relative to the radar: azimuth 	∈
ሾ0,360∘ሿ , and elevation ∈ ሾെ90∘, 90∘ሿ  at a given 
resolution. The targets are indicated by the letters A, 
B, C1, C2, C3, C4, D and E. Targets C1-4 are four 
different configurations of the same aircraft model, 
which lead to mild changes in RCS signature.  

In addition to the simulated database, we 
simulated a radar tracker, and target trajectories. The 
tracker provided us with the position and velocity of 
the target, as well as the aspect angles (azimuth and 
elevation), relative to the radar. Knowing these aspect 
angles enabled us to extract the corresponding RCS 
values by interpolating the database.  

In each simulation of a target trajectory, we 
obtained a time-series of RCS values. The RCS time-
series corresponding to the observed flight track is 
given by ࢞ ∈ Թே , where ܰ  is the number of 
consecutive RCS measurements for a given 
trajectory. 

Since aspect angles obtained by the radar are not 
accurate, we generated RCS sequences for each pair 
of possible aspect angles. This is done for all targets 

in the database. The set of possible RCS time-
sequences for each of the targets form a “dynamic 
bank”. The dynamic bank is denoted by ۰ ∈ Թேൈெൈ௄. 
ܰ is the number of RCS measurements for a given 
trajectory. Since aspect angle estimation has inherent 
error, we generate ܯ  possible RCS sequences for 
each target corresponding to a resolution of ܯ 
possible aspect angles. ܭ is the number of targets in 
the database.  

The RCS time-series of a target-track is generally 
composed of low-frequency and high-frequency 
components. The assumption is that the low 
frequencies correspond to the observation angle and 
measurement errors, while the higher frequencies are 
related to the target’s geometry and aspect angles 
relative to the radar (Tian et al., 2015). Therefore, the 
rapidly varying components in the RCS time-series 
can characterize the targets well.  

The RCS time-series is decomposed into 
frequency components by using a signal processing 
technique known as Empirical Mode Decomposition 
(EMD).  EMD decomposes a non-stationary signal 
into stationary Intrinsic Mode Functions (IMFs) 
(Huang et al., 1998; Rilling et al., 2003). The IMFs 
are ordered according to their frequency components 
from high to low, as shown in figure 1. By using the 
temporal RCS data in the dynamic bank	۰, and the 
RCS time-series of the observed track ࢞ , we 
implement EMD to decompose the RCS data into 
IMFs.  

 

Figure 1: EMD of a fluctuating signal into two intrinsic 
mode functions.  

At this stage, we extract ten features from the RCS 
time-sequences in ۰,  and ten features from their 
corresponding IMFs. These features are later used as 
training data for the neural network. The features are 
chosen to characterize the statistical and spectral 
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nature of the time sequences well, while at the same 
time enabling separation of targets. Classifying 
targets based on noisy radar data using these features 
can suppress the effect the noise, in comparison with 
classification based on the raw RCS data.  

The first and second features, minimum and 
maximum values, are used as a measure of the range 
of values that the time-series can take. The next 
feature is the number of zero-crossings, which can 
represent the oscillatory nature of the signal. The next 
four features; the mean, variance, skewness and 
kurtosis of the time-series are the 1st-4th standardized 
moments, where the sample mean is the average of 
the time-series values, variance indicates the spread 
of data from the mean, skewness is a measure of the 
asymmetry of the data around the mean, and kurtosis 
is a measure of how outlier-prone the distribution of 
values is. The next feature is the energy of the signal, 
which is the squared ܮଶ norm. The last two features 
are Hjorth mobility and complexity (Hjorth, 1970). 
Mobility represents the mean frequency, or the 
portion of standard deviation of the power spectrum. 
Hjorth complexity represents the change in frequency 
of a signal.  

The RCS and IMF features for each time-series in 
the dynamic bank ۰ are concatenated into the tensor: 
ሺ௧௥௔௜௡ሻ܆ ∈ Թே೑ൈெ௄, where ௙ܰ is number of elements in 
each feature vector, and ܯ ∙ ܭ  is the number of 
training examples. ܯ is the number of possible aspect 
angles, and ܭ is the number of targets in the database. 
Each component in the feature vector is standardized 
using the z-score normalization. The feature-tensor 
:has a corresponding label tensor	ሺ௧௥௔௜௡ሻ܆ ሺ௧௥௔௜௡ሻ܇	 ∈

Թ௄ൈெ௄ . We denote	܇௞,௜
ሺ௧௥௔௜௡ሻ  as the ሺ݇, ݅ሻ element in 

the matrix, where ݇ ൌ 0,1, … , ܭ െ 1 , and ݅ ൌ
0,1, … ܭܯ, െ 1 ௞,௜܇	 .

ሺ௧௥௔௜௡ሻ ൌ 1  if training example ݅ 
belongs to class ݇, and 0 otherwise. The same feature 
extraction process is applied to the signal ࢞ , 
corresponding to the observed target, with ࢞ሺ௧௘௦௧ሻ ∈
Թே೑ the corresponding feature vector, which will be 
used to test the network.  

3 THE PROPOSED NEURAL 
NETWORK CLASSIFIER 

In this section, we will describe the proposed neural 
network-based classifier, and how it uses the features 
to classify the aerial targets. Artificial neural 
networks are mathematical models for solving 
complex problems, originally inspired by the way in 
which the brain processes information (Theodoridis 
& Koutroumbas, 2003). The network is composed of 

several layers of neurons, where the first layer is the 
input layer, and the last layer is the network decision, 
or solution to the problem. Neurons are nodes in the 
network that take in a weighted sum of values and 
produce a single output value, which is then 
processed by more neurons in the next layer.  

In order to identify the observed target as one of 
the targets in the database, we use a 2-layer fully-
connected neural network. The network has one 
hidden layer, and a softmax output layer that 
normalizes the outputs into probabilities for each 
target. The neurons in the hidden layer are defined by 
a hyperbolic tangent activation function, which take 
in a weighted sum of the values from the input layer, 
and map the results to [-1,1]. We have found that the 
network performs best when using one hidden layer, 
with 20 neurons. Using fewer neurons led to poor 
results, by being a too general solution, and using 
more neurons, or more hidden layers, caused 
overfitting the data.  

In figure 2, the neural network architecture is 
presented. The input layer has ௙ܰ  neurons, 
corresponding to the number of features in each 
feature-vector. The hidden layer’s neurons are 
denoted by: 	ܽଵ, ܽଶ, … , ܽଶ଴ . The output layer has ܭ 
neurons, denoted by ,ଵݖ	 ,ଶݖ … , ௄ݖ , which are 
normalized in the softmax layer to obtain the final 
outputs.  

 

Figure 2: The proposed neural network architecture. 

The neural network is trained on the feature 
vectors in 	܆ሺ௧௥௔௜௡ሻ  and the corresponding labels in 
ሺ௧௥௔௜௡ሻ܇ , as denoted in section 2. Training a neural 
network consists of two stages, feedforward, and 
backpropagation. Feedforward is the stage at which 
outputs at each layer are fed towards the final output 
layer. During backpropagation, we minimize a cross-
entropy loss function defining the error between the 
desired values in ܇ሺ௧௥௔௜௡ሻ, and the network outputs at 
the final layer. During the training process, the 
weights are adjusted accordingly to give a better 
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solution with each iteration. The weights and bias 
values in each layer are optimized through scaled-
conjugate backpropagation (Møller, 1993). 

The data was randomly split into training and 
validation sets with a ratio of 80% - 20% 
correspondingly. The training set was used to 
compute the gradients, and update weights through 
backpropagation. The validation set was used to 
monitor the learning process. Both the training and 
validation set errors are monitored during the training 
process. At first, validation error decreases with the 
training error, but after being presented with enough 
data, the network starts to overfit to the training set, 
the validation error begins to increase. We stop 
updating the weights when the validation error is at a 
minimum. In this way we make sure that the network 
can generalize when presented with new examples. 

Once the network is fully trained, we test the 
network with ࢞ሺ௧௘௦௧ሻ , the feature vector corresponding 
to the RCS time-series of the observed target. The 
network calculates probabilities for each target at the 
output layer. Classification is defined as correct when 
maximal probability corresponds to the correct target. 
A pipeline figure for our algorithm is presented in 
figure 3. 

 

Figure 3: Dataflow and algorithm pipeline. 

4 SIMULATION AND RESULTS 

In this work, we simulated 640 target trajectories, 80 
trajectories for each of the eight target types. The 
classification accuracy of the neural network was 
examined under various levels of noise. Additive 
white Gaussian noise of up to േ0.5∘	was added to the 
aspect angles of the target relative to the radar.  

We defined a classification to be either be correct, 
incorrect, or unknown. In order to reduce the false-
alarm rate, targets are defined to be ‘unknown’ when 
there isn’t a good match in the database, or due to a 
lack of data for a proper classification procedure. In 
other words, it is better to define a target as 
‘unknown’ than to classify it as an incorrect target.   
For example, for a short flight track with few RCS 
measurements, the features described in section 2 
provide little value, and therefore we classify the 
target as unknown.   

Table 1 presents the confusion matrix for the 640 
trajectories under 0.5∘	of aspect angle noise. For this 
amount of noise, we achieved an accuracy of 80.1%. 
The accuracies of the network under various levels of 
noise is presented in Table 2. 

Table 1: Confusion matrix for the neural network-based 
classifier. Results are shown for trajectories with additive 
white Gaussian noise of േ0.50.   

 Actual Target 
 
 

Predicted 
Target 

 A B C D E 

A 56 0 1 0 2 

B 1 58 15 2 0 

C 16 18 270 11 6 

D 2 0 8 63 0 

E 0 0 1 0 66 
 Unknown 5 4 25 4 6 

Table 2: Final neural network classification results for the 
simulated trajectories.  

Aspect Angle Noise Accuracy 
No Noise 93.3% 
േ0.10 87.5% 

േ0.30 82.7% 

േ0.50 80.1% 

 
We compared the results of the neural network-

based classifier with 5 other classifiers. The first 
classifier is the K-Nearest Neighbours (KNN) 
classifier (Covert & Hart, 1967). We implemented 
KNN with the Mahalanobis distance metric, which 
weights the distance by the inverse covariance of each 

Radar Data 

(Target Position, Target Velocity, SNR)

RCS Estimation

Generation of a dyanmic bank of possible RCS time-
sequences for targets in the database

Empirical Mode Decomposition of RCS time-series into 
Intrinsic Mode Functions

Feature Extraction

Neural Network Training and Classification

Predicted Target Type
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feature. We choose the target corresponding to the 
minimum Mahalanobis distance as the correct target, 
i.e. the first nearest neighbour. 

The next three methods that we implemented take 
a different approach, and rather than using features, 
utilize time-series similarity measures between the 
raw RCS signals in the dynamic bank and the RCS 
signal of the observed target. The chosen target is the 
target in the dynamic bank, with the most “similar” 
RCS time-series. The first method used for time-
series similarity is the matched filter (Turin, 1960), 
which correlates between signals by maximizing 
SNR. The other two methods are Dynamic Time 
Warping (Sakoe & Chiba, 1978), and Minimum 
Jump-Cost (Serrà & Arcos, 2012), which work by 
optimally aligning and stretching the time-series for 
the best temporal match. 

In figure 4, we compare the performance of the 
proposed neural-network classifier with the other 
methods. The performance of our proposed neural 
network is better than the other methods. 
Furthermore, the machine learning methods (neural 
network and KNN) performed better under large 
noise than the time-series similarity methods. 

 

Figure 4: Classification accuracies for the compared 
methods.  

 

 

5 CONCLUSIONS 

In this paper, we proposed a neural-network based 
classifier for aerial radar targets. The classification is 
based on features extracted from the RCS time-series 
of an observed flight track and from its corresponding 
IMFs. Comparison of the results have shown that our 
classifier is better than other methods for the same 
data. We conclude that the use of machine learning 
can be effective for the task of aerial radar target 
classification. 
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