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Abstract: When attempting to examine three-dimensional micro-textsurfaces or illumination fluctuations, problems
such as shadowing can occur with many conventional vissgleiction methods. Thus, we propose a mod-
ified method comprising orientation codes based on comsigtef multiple pixel pairs to inspect defects in
logotypes printed on three-dimensional micro-texturedases. This algorithm comprises a training stage
and a detection stage. The aim of the training stage is tadamad pair supporting pixels that show similar
change trends as a target pixel and create a statisticall itwa@gach pixel pair. Here, we introduce our mod-
ified method that uses the chi-square test and skewnessréasscthe precision of the statistical model. The
detection stage identifies whether the target pixel matithesodel and judges whether it is defective or not.
The results show the effectiveness of our proposed methradetecting defects in real product images.

1 INTRODUCTION 2013), structural techniques (Kasi et al., 2014), filter-
based techniques (Jing et al., 2015), and model-based

Defect inspection has always played a key role in the techniques (Li et al., 2015).
manufacturing quality control (QC) process. There- In this paper, we analyze the surface of a printed
fore, many studies have focused on automatic qual- product embossed with randomly distributed three-
ity inspection based on computer vision. In this pa- dimensional (3D) micro-textures. These types of sur-
per, our interest is in assessing how the currently face are achieved by an embossing process. Em-
available visual inspection systems perform various bossing is the process of making tiny raised and
QC checks on printed products. We consider mainly concave patterns on the surface of metal, plastic or
the inspection of printed characters and text or logo- other materials. These embossed surfaces have an
types for defects, such as holes, dents, and foreignattractive appearance, good hand feel and excellent
objects (Mehle et al., 2016). Currently, QC in the slip resistance. Therefore, these surfaces have been
printing industry is often carried out manually, but it widely used in many products worldwide. These
is labor-intensive and time-consuming process. Ad- three-dimensional (3D) micro-structures, which are
ditionally, results can vary according to inspectors’ uniformly embossed on the surface, produce a slight
mood, experience, and individual level of skill. Thus, shadow under illumination and appear as a random
manual QC checks can be unreliable. Furthermore, notexture in their image. Fluctuations in illumination
operator-independent quality standard has been estabgreatly influence the imaging effect of the surface. To
lished. To overcome these problems, manual inspec-overcome this problem, we use our previously pro-
tion is beginning to be replaced by automatic visual posed approach of orientation code matching (Ullah
inspection systems (Ngan et al., 2011). and Kaneko, 2004), which is a robust matching or
Texture is one of the most important features for registration method based on orientation codes. We
detecting defects and the issues that arise with de-also analyze printed characters on 3D micro-textured
fect detection are generally considered to be due to surfaces, which causes statistical fluctuation and thus
problems with texture analysis. Texture analysis tech- makes matching or defect registration difficult. From
niques may be categorized, as reported by Xie (Xie, past studies, we have found that points at the same lo-
2008): statistical techniques (Karimi and Asemani, cations in printed characters can show statistical simi-
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larity so long as the difference between them is specif-
ically defined. The method we propose in the present
paper is called the Multiple Paired Pixel Consistency
(MPPC) Model in Orientation Codes, which is a mod-

ified version of the MPPC. Its effectiveness has al-

ready been demonstrated through many experiments

(Xiang et al., 2018). Based on the MPPC model of
defect-free images, we propose an algorithm for de-
fect inspection.

This paper is organized as follows. Section 2 in-
troduces in detail how the MPPC model works. Sec-
tion 3 introduces the modification for the MPPC. Sec-
tion 4 reports the experimental results and compares
the performance of the modified MPPC with that of

other advanced approaches. Section 5 concludes the

paper and addresses future works.

2 MPPC DEFECT-FREE MODEL

In this section, we first introduce the original ver-
sion of Orientation code and propose signed differ-

ence between any two codes as preparation for mak-

ing a more precise statistical model of their differ-
ence. Then we introduce how to make the MPPC
model for defect-free logo.

2.1 Orientation Codes

Orientation codes were proposed as filtering to extract
robust features based on only orientation information
involved in gradient vectors from any general types
of pictures. One could utilize it in the design of the
robust matching scheme, for example in the original
reference (Ullah and Kaneko, 2004).

Let|(i,]) be the brightness of pix€l, j). Then
its partial derivatives in horizontal and vertical direc-
tions are written a8lly = dl /ox andOly = 0l /dy, re-
spectively. The orientation angecan be computed
by 8 = tan~1(0ly/0lx) of which actual orientation
is determined after checking signs of the derivatives,
thus making the range & to be[0,2m). The orien-
tation code or OC is obtained by quantifying the ori-
entation anglé into N levels with a constant width
AB (= 21/N). The OC can be expressed as follows.

-]

N
whererl is a threshold level for ignoring pixels with
low-contrast neighborhoods. That is, pixels with

6i;
R

otherwise

1)

N = 16.
Fig. 1.

An example of a set of OCs is shown in

Figure 1: Sixteen-OC.

2.2 Signed Difference in OC

Here we propose a somewhat new definition in OC
space which is better suited for the more detailed sta-
tistical design than the original one. In contrast with
the previous definition (Ullah and Kaneko, 2004), the
definition used here has not only positive differences
but also negative ones. We expect it to give a more
complete and precise distribution of OC differences
that facilitates statistical handling. The expression is

(a—b)—N b< (%—1) N(a—b)
a—-b)+N b>(5-1)n(a—b)
a—b otherwise

A(ab) = <-4

(2
wherea andb represent the orientation code to be
compared or subtracted, for instance from a target
and a reference image, respectively, dhghows the
invalid-pixel code.

2.3 MPPC Modeling

Fig. 2 shows the schematic structure of the proposed
model ‘Multiple Paired Pixel Consistency (MPPC)’
which can represent one statistical characteristic in
orientation code difference between two elemental
pixels in the pairs. The main idea of this statistical
modeling of pictures s called ‘CP3’ that has been pro-
posed previously by Liang (Liang et al., 2015) for
robust background subtraction. We propose an exten-
sion of this scheme by introducing the cohesive rela-
tionship of orientation codes in logo-logo pairs which
are defined between each target pReln a logotype
and the set of its supporting pixels also on the same lo-
gotype, which should be selected to have higher con-
sistency or correlation with the target pixel. In other
words, all of them have similar trends of change as
the target pixel has, for which we can make a statis-

neighborhoods of enough contrast are assigned OCtical model by fitting a single Gaussian distribution

from the set{0,1,...,N—1} while we assign the
codeN to ignored pixels. In this papdr = 10 and

to the orientation code difference histogram of these
pairs of high consistency.
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Frequency 50[ 0.3 Density

Pair #1

-8-7-6-5-4-3-2-101234567 8
OC difference

Frequency S0 0.2 Density

-8-7-6-5-4-3-2-1012345678
OC difference

Frequency 50[0.2 Density

-8-7-6-5-4-3-2-1012345678
OC difference

Figure 2: Scheme of MPPC modeling.

We now consider how to select the supporting pix-
els from all the candidate pixels for a target pixel. For
an arbitrary logo-logo pixel paifP, Q), we have two
sets of OC sequences in the same positions iiKall
training images as follows:

P:{plaPZ»"'»pK} (3)

and

Q={01,q, - ,0k} 4)
whereK is a total number of training sample images
as shown in Fig. 2.

For formalization in this paper, we use capital let-
ters in boldface, such a3, to represent any set, sim-
ple capital ones to represent any pixel, lower ones to
show any orientation codes of the pixels, respectively.

The expectation values and the variances over

P and Q are defined asp = 1/KYK  pi, q=
K3 1o 03 = &3k (p—P)° and o}

15K | (a—g)? respectively.
The covariance betweéhandQ is defined as

K
Cro = %kzl(pk— p) (0k — Q) (5)

If Cpo > 0, then they have a consistency or
co-occurrence probability, and in order to measure

the consistency quantitatively, we use the Pearson

product-moment correlation coefficient:

Po ©®)
Op - Oq
whereop andog are the standard deviationsfind
Q, respectively.

For each target pixd? (u,v) at the position(u,v),
we may haveM — 1 candidate pixels in the same lo-
gotype, wheréV properly defines the total size of the

Yo =
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logotype in pixel. From these candidates we can se-
lectN (< M) supporting pixels in descending order of
the value ofye o. The set olN supporting pixels is

Q= {Qi(u,vi)lyeq > VP,Qi+1}i:1,2,-.-,N ()

We assume that each supporting pigklmain-
tains a bivariate OC difference with the target pixel
P,

A(p,gi) ~ N (W, 0i) (8)
whereN (l,0i) is the Gaussian distribution with the
meany; and the variance? which are calculated
from the corresponding pixel seftsandQ.

After the modeling for one target pixd?, the
above set oN pairs of four parameters for the po-
sition u;,v; and the two statistical parametegfsand
o; are recorded in a row of a look-up table (LUT).
Through the repetition of modeling, the LUT is filled
in to include the total set of MPPC models for all of
the pixels in an elemental logotype.

2.4 Defect Detection by MPPC

We now discuss how to utilize the proposed MPPC
model of the relationship between pixels in the defect-
free logotype for detecting many sorts of logotype de-
fects. Since the MPPC model can represent the sta-
tistical behavior of the relation of an individual target
pixel to the supporting pixels around it, we utilize it to
statistically test whether a target pixel is recognized as
a reasonable sample from the distribution registered
in the LUT or not. The scheme for defect detection
algorithm is shown in Fig. 3.

MPPC model
Frequency 50 0.3 Density

Pair #1 Defect free: DF *
e

A S
-8-7-65-4-32-1012345678
OC difference

Logotype ‘H’

Frequency 50~ 0,&Density

Pair #2

-8-7-6-54-3-2-1012345678
OC difference

Figure 3: Scheme of defect detection by MPPC model.
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Defects have several types, such as dust or parti-elemental Gaussian models for each pixel pair con-
cles, scratches, misprinting, hairs, spits, etc., of which sisting of a target pixel and a supporting pixel. To
characteristics are randomness in alignment, texture,realize this process, we need two schemes: a judg-
shape, or size. Because of high-performance qual-ment scheme and a localization scheme that locates
ity control in production lines, these defects may be inappropriate or outlying data.
very small, and furthermore, we should also keep in Fig 4 is an example of simulative detection. We
mind their very low probability of occurrence. In ad-
dition, in this paper we need to handle the randomness e
in 3D micro-textured surfaces too. Thus, these funda- ;
mental characteristics lead us to approaches based o
pixel-wise evaluation for detection. Afterwards we
may proceed to some next steps to recognize them a
aggregated regions that reveal some common charac
teristics. From these considerations and the investi-
gation in Section 2.3, the two features of our MPPC rigure 4: An example of a detection result. From left to
model, spatial sparseness and high consistency in corright, ground truth image, detection result, magnified view
relative relation, can be utilized for handling defects. of the defect.

The former may prevent any defect from occupyihg

and some Supporting pixeis Simuitaneousiy and then Can see that it contains some holes in the defective
by use of the latter feature we expect to have somesquared area. We suspect that there may be some
evaiuation Scheme for recognizing Whetﬁﬁs oCcCu- problems with the trained m0de|. So we need to an-
pied by any defect or not. alyze the trained model. We randomly select a pixel

The next task must be to design a measure for in the hole and analyze the statistical relationShip be-
judging defect pixels or defect-free pixels by use of tween the target and its supporting pixels.
the MPPC model. We first test each OC difference  Fig 5 is a histogram for one pixel pair that shows
between target pixdé? and a supporting pixé) in the

MPPC model or the LUT by usin@ for P in the tar- 20 ‘
getimage. We define the following measure: 19 I ! 'g'
> Fi il
1 [A(p.a) -l =C-o g . N
i = o 9 $ 10 Y111
P {0 otherwise ®) g ( H H H N
= ( §
for identifying the normal §; = 0) or the abnormal > H H H H H
(Bi = 1) states at the corresponding position defined 0 | o |
by the elemental MPPC model, where the constant 8-7-6-5-4-3-2-1012345€6 7 8
is a parameter which can be set from 1 to 3 to define ocb
an area for 68% through 98% acceptance probabil- Figure 5: A pixel pair histogram showing frequency of ori-
ity. Finally, we use the total sum entation code differences between the target pixel and its
supporting pixel.
1 N
£= N;Bi (10) the frequency of orientation code (OC) differences

. ) between the target pixel versus its supporting pixel.
to construct a decision rule folr the occkl‘patlorP_djy WhereO; is the measured data afi is the fitted
any defectf > T, whereT = g (floor (3) +1)isa  gata From this analysis, we could identify gaps be-
threshold for the general majority rule, ahtdis the  yeen the fitted distribution and the actual distribution
total number of supporting pixels. of measured data. The gaps may have been caused
by noise (possibly including defects) in the training
data, but there were probably quite rare. Detecting
3 MODIFICATION OF THE MPPC defects in the materials examined in this article is not
an easy task, even for professional inspectors who are
Two representative approaches are known for modify- trained to find small and/or obscure defects. Further-
ing or upgrading the performance of the MPPC model more, judgment may vary depending on the individ-
for defect detection. The first modifies the structure ual inspector. Another problem is that the number of
and the second modifies the parameters. In this pa-training samples is not so larger in general. If this
per, we attempt the first approach by excluding or fil- trial set of samples contains inaccurate data expressed
tering inappropriate data from the process of making as noise, it may have a not neglectable effect on the
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yi=E

3.1 Chi-square Qualification Test

4.1 Experimental Setup

We used six sets of real images from a factory: the
characters ‘H’, ‘U’, ‘A, ‘W', ‘E’, and ‘I', each of
which includes 160 defect-free images taken under 3
different illumination conditions: dark, normal, and
o bright. Of these 160 images, we chose 60 to train
3.2 Skewness-based Data Filtering the MPPC model. In our experiments, we set the
two thresholds in the detection stageGas- 2.0 and
Fig. 5 shows an example of outlying noisy data in the T =0.5.
rightmost bin. The next problem may be how to find We used two defect types: synthesized or artificial
the data or position of noisy data. Our MPPC model defects and real defects, as shown in Fig. 6 and Fig. 7,
is based on an approximation via the single Gaussianrespectively.
model, which is symmetrical in nature, so it is diffi- Because it was difficult to collect real defects from
cult to distinguish these biased data in the histogram. factories, we instead used synthesized defects in our
To estimate the locations of these data, we introducedexperiments, as shown in Fig. 7. Here, we first ex-
a statistical feature, that iskewnesgMardia, 1970), tracted a small square area from the logotype back-
where asymmetry is measured in probability distri- ground (unprinted portion) and pasted it onto the lo-
butions of a real-valued random variable around its gotype (printed portion). These artificial defects rep-
mean. Here, we utilize Pearson’s moment coefficient resent misprinted logotypes. Fig. 6 demonstrates that

resulting model structure. Therefore, we proposed a of skewnesg;, defined as:
process of filtering out these outlying data as a modi- 3
fication of the MPPC model. We hoped that this mod- (X - IJ> ] (12)
ification would make a version of the MPPC model o
that could detect defects more accurately. ) . o
The modification process comprises two steps. WNEreHis the meang is the standard deviatio, is
First, we test the appropriateness of any trained ele-the observ.ed.value, arE;h; the expec'tatlon operator.
ment of the MPPC model; in other words, we deter- y1 <0 mdmgtesnegat.lve skeywhich means thg
mine whether the fit is good. If the fit is poor, we need left t.a'l in the histogram IS Ipnggr than the right tai;
to proceed with the second step, which comprises fil- that is, the mass of the distribution is concentrated on
tering inconsistent image data. From the resulting fil- the ”ght.Of the histogram.
tered image, we can then create a single elementary In th|§ case, we may assume_that the leftmost
Gaussian model to fit the pair of target and support- columns in histogranto include noisy dgta. T.hus',
ing pixels again. we remove thes_e data or record the |dent|f|cat|pn
numbers, including those in the leftmost column in
histogramHo, to create a new histograHé). We
then perform a single Gaussian fitting basedl-tép
The MPPC model needs many elementary Gaussian;cieogti'enwaggghei;endemSl\t/lol:;?gﬁémggid Noﬁx:H;/v ﬁe?/\rle—
distributions for each pixel pair, w_hich are fitted 10 MPPC model. On the other hand, we must consider
?rosdel;[ct;f ﬁgvry[é)(ljej 3{;3{3 Ifivglljsé"t;r.l tE(')Sr Sef/ztrl)?rgle\zlﬁew- positi\./fa skewwhere the right tail is longer than the
tary model, we have two histograms. Opé shows the left tail; that is, the mass pf the distribution is concen-
oC differer’1ces for a pixel pair and is called the ob- trateg ont;lhet ltﬁft O.f t::te h|s;[ogr|am. Therﬁfotre,“\g/;can
. . . assume that the rightmost columns in histog
ﬁiesrt\g aglrgmsgjgr:i?:tzd Jyhtehgtag;é tr:?) dee);iazcrt)erzg- may contain_ noisy data_t. We must remove t_he image
cedure. Here, we introduce Pearson’s chi—squaredata belopglng ole nghtmost 9o|u_mn of hlstogram
test (McHugh, 2013) to measure goodness of fit. The HO' resultlng g4 e h'.s.togfa'*‘o- Finally, we uti- i
expression is as follows: Il_ze the ghl-square qualification test to (}heck the fit-
ting quality of the new MPPC model. This loop oper-
) N (O — Ei)Z ation is continued until the fitting quality improves.
X = ZT (11)
= i
whereN is the number of bins in thélp, O; is an 4 EXPERIMENTS
observed value in the i-th bin dip, andE; is the
corresponding expected value in tHg.
x? < p— valueindicates that the fit is good; oth-
erwise the fit is considered poor, in which case we
proceed with the next step of filtering noisy data, and
attempt the fit again until we achiexé < p — value
The p—valuecan be found in the chi-square table.
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Figure 6: Examples of defect detection results for syn#eesiefects. From the leftmost to rightmost column: tesgiesa
corresponding ground truth images, detected results bgepbraly transform, prior knowledge guided least squaragss@n,
modified robust principal component analysis with noisentend defect prior, multiple paired pixel consistency (MRPPC
and MPPC with modification, respectively.

Figure 7: Detected defects in real defect images.

the ground truth can not easily be defined for real de- class and the defect-free class. Along with our prob-
fects because the boundary is unclear between the lodem to detect defects in pixel, we utilized three eval-
gotype and its background, even with magnification. uation metricsPrecisior(also known as positive pre-
Therefore, we used the synthesized defects to quan-dictive value),Recall(also known as sensitivity) and
titatively evaluate the performance of the proposed F-measure These measures have wide application in

MPPC-based detection method. pattern recognition, information retrieval, and binary
classification. And pixel-level defect detection is a
4.2 Evaluation Metrics typical binary classification problem, so these three

indicators can also be used for the quantitative analy-

There are several ways to evaluate the performancesis of defect detectiorPrecisioncan be considered a
of defect detection. First pixel-level precision, re- measure of accuracy, whiRecallcan be considered
call, and F-measure are tried to test the proposed@ measurement of defect integrity.

MPPC models and the detection algorithm for the =~ F-measurés a harmonic average of th&recision
statistical test based on the models, where our ap-andRecall

proach assumes as a two-class or binary classifica- 2Precision Recall

i i ixel i i F —measure= — 13
tion problem to classify any pixel into the defective Precisiont Recall (13)
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Table 1: Pixel-level based performance of defect deteciomparison of 5 methods.
Defecttype Measurement PHOT PG-LSR PN-RPCA MPPC MPPC+Hitation

Recall 0.35 0.49 0.74 0.89 0.94

Synthesized  Precision 0.34 0.49 0.51 0.96 0.96
F-measure 0.35 0.49 0.61 0.91 0.95

Recall 0.46 0.53 0.51 0.83 0.88

Real Precision 0.44 0.87 0.51 0.97 0.97
F-measure 0.45 0.66 0.51 0.90 0.93

Table 2: Image-level based performance of defect detection
comparison gf 5 methods. P phase only transform (PHOT) for surface defect de-

tection (Aiger and Talbot, 2012), and modified robust
principal component analysis with noise term and de-

Defecttype Detection Rate(%)

Synthesized 48 . - -
PG-LSR ynRezsl'ze 65 fect prior (PN-RPCA) for fabric inspection (Cao et al.,
oHOT Synthesized 66 2016). All 3 methods are unsupervised. Also, they
Real 50 are very effective for detecting defects in textured ma-
Synthesized 66 terial. The texture of the material they process is
PN-RPCA - ) : A
Real 80 somewhat similar to the material mentioned in this pa-
MPPC synthesized 98 per. Furthermore, all of three methods disclose their
Reha' . 183 source code and indicate the setting of the parameters.
MPPC+Modification Sygteaels's 100 Here, we used 60 synthesized defect images taken

under the 3 different illumination conditions men-

tioned above and 20 real defect images of each char-
For image based performance evaluation (Ngan acter for comparison. Their implementation were

et al., 2011), we utilized the detection rate and the conducted by use of the source code disclosed, and

false alarm rate as follows: the selection of parameters were the recommended
Ny ones by the authors, respectively. Fig. 6 and Fig. 7
Detection Rate= Nro (14) show representative results for the synthesized and

D

real defects, respectively. Although fluctuations in
illumination were large, we found that the proposed
False Alarm Rate= N (15) method could detect defects of very similar size and
shape. This demonstrates that the OC in the MPPC
whereNt, Ng, Nrp andNyg are the numbers of de- models were highly robust. Furthermore, approxi-
fective logotypes or images correctly detected, defect- mately half of the defects detected by all 4 methods
free detected as defective, the total number of defec-were roughly consistent with the ground truth. For de-
tive samples, and defect-free logotypes, respectively. fects with high contrast, all the methods showed good
detection performance. However, for low-contrast de-
4.3 Experimental Result fects, PG-LSR, PHOT, and PN-RPCA showed lower
performance than the proposed method. This is due
to how the target materials used in the experiments
were sufficiently different from those that they were
initially designed for, which have somewhat consis-
" tent textures. The textures of our materials were gen-
erally random with irregular patterns. Table 1 shows
the pixel-level based performance evaluation, while
Table 2 shows the image-based performance evalua-

Many researchers carrying out defect detection
for surface inspection have commonly examined
steel (Selvi and Jenefa, 2014; Zhou et al., 2017), tex
tile (Li et al., 2017; Arnia and Munadi, 2015), and

wood (Zhang et al., 2015). For printing inspections,
examinations have generally been performed with pa-
per materials (Fucheng et al., 2009) and pharmaceu—tion for each method. These tables show that PG-LSR
tical capsules (Mehle et al., 2016). However, to our

K led tudies h . tinated defect det could successfully detect about half of all defects and
(nowledge, no studies have nvestigated detect deteC~y, o+ pyoT and PN-RPCA could successfully detect
tion for logotypes on 3D micro-textured surfaces, as

0, -
we have examined in the present study. To verify the about 70% of all defects. The performance of the pro

effectiveness of the proposed method, we Comparedposed method was very high. Furthermore, the MPPC
it and the original MPPC method with 3 methods: with modification showed obvious improvementcom-

prior knowledge guided least squares regression (PG_pared with the original MPPC.
LSR) for fabric defect inspection (Cao et al., 2017),
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5 CONCLUSIONS

We have proposed a novel model of statistical struc-
ture, the MPPC model, using orientation codes in
defect-free logotypes printed on a 3D micro-textured

surface. Based on the MPPC models of defect-free
images, we proposed a new defect localization algo-

rithm, which was effective for detecting defects in real

images. From this, we also proposed a modified ver-

sion of the MPPC. Our experimental results showed
that the modified MPPC was an obvious improvement
over the original MPPC.

In future works, we hope to design schemas to
identify and classify different defect types, which may
contribute to improving the effectiveness of QC in
manufacturing production lines.
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