
Exploring Vulnerabilities in Solidity Smart Contract

Phitchayaphong Tantikul and Sudsanguan Ngamsuriyaroj a

Faculty of Information and Communication Technology, Mahidol University, Nakhon Pathom, Thailand

Keywords: Smart Contract, Solidity, Security, Vulnerability.

Abstract: A smart contract is a decentralized program executed automatically, reliably, and transparently on a
blockchain. It is now commonly used in financial-related applications, which require heavily secure operations
and transactions. However, like other programs, smart contracts might contain some flaws. Thus, developers
are encouraged to write secure smart contracts, and some approaches are proposed to detect vulnerabilities
of smart contracts before deployment. Due to the immutability property of a blockchain, developers can-
not modify the smart contract even though there is a vulnerability which may cause financial losses. In this
paper, we propose the comparison of vulnerability detection tools to deployed smart contracts on the Ethereum
blockchain. We also present the analysis of the state of vulnerabilities in smart contracts as well as their char-
acteristics.

1 INTRODUCTION

A smart contract is a small piece of codes operating
on a blockchain system and now has various usages,
for example, as a currency token, as an escrow, as a
market exchange or as a game. Due to the character-
istics of the blockchain, the smart contract’s code is
stored immutably inside a block. In addition, when
the code starts to be executed, the result will be stored
in the form of a transaction in the blockchain. Since
anyone can read the code and see the results, the trans-
parency property is given to the smart contracts and
their execution process. The code can also be exe-
cuted by every responsible machine to ensure the con-
sistency of the execution results. Although the storage
of most blockchain systems and the smart contract’s
code are immutable, the state of variables inside the
smart contract’s code is not. Specifically, such vari-
ables could be changed by the execution of the pro-
gramming logic of the code. If the code has some
vulnerabilities, anyone with malicious intentions can
manipulate the code for his gain or for disrupting the
functions of the smart contract. Thus, it is crucial to
identify the vulnerabilities of a smart contract so that
the code can be secured properly.

There are many cases caused by programming
flaws of the smart contracts. For example, in the DAO
case (Siegel, 2016), attackers stole about $150 million
worth of Ethers (Ethereum’s currency unit) from a

a https://orcid.org/0000-0002-7079-2408

crowd-funding smart contract by triggering a vulner-
able function to send all Ethers inside the contract to
themselves. In the case of Parity’s wallet bug (Parity
Technologies, 2017), an attacker triggered a flaw to
set an uninitialized variable of a smart contract used
as the main library of smart contract wallets of other
Parity customers. The damage caused all Ethers in-
side those wallets to be frozen, and there is no way to
withdraw any Ether from them.

Several efforts had gathered and created a list
of vulnerabilities of smart contracts. For instance,
Solidity, the most popular language for smart contract
development, has listed vulnerabilities on its official
document (Ethereum, 2019). Moreover, Consensys,
one of the smart contract audit firms, collected
Solidity’s coding flaws into Solidity Best Prac-
tice (Consensys, 2019), and Mythril team has cre-
ated Solidity Weakness Repository (Smart Contract
Security, 2019). Such lists could help smart contract
developers in avoiding repetitions of similar mistakes.
Another approach is to compose a secure library for
common coding patterns. Zeppelin, a smart contract
audit firm, created an open-source project named
OpenZeppelin (OpenZeppelin, 2019) to provide a li-
brary of audited smart contracts for developers to use.
By extending the audited smart contract library, po-
tential bugs could be minimized, and the time to code
a smart contract could be reduced as well. However,
a developer could still make the same mistakes while
writing the code. Therefore, approaches to analyze
smart contracts to detect their vulnerabilities using au-

Tantikul, P. and Ngamsuriyaroj, S.
Exploring Vulnerabilities in Solidity Smart Contract.
DOI: 10.5220/0008909803170324
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 317-324
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

317

tomation methods are proposed. Oyente (Luu et al.,
2016), the first tool in detecting vulnerabilities in
Solidity, uses symbolic execution to test for vulnera-
bilities. SmartCheck (Tikhomirov et al., 2018) uses
static analysis, which parses the source code of the
smart contract to find out whether the code contains
common vulnerability patterns.

Although many works are invented to detect
vulnerabilities of smart contracts, there is still no re-
search in investigating the current state of vulnera-
ble smart contracts. Our research aims to discover
common occurrences and trends of vulnerabilities in
smart contracts as well as identify common charac-
teristics of vulnerable smart contracts. We have col-
lected the source code of 38,982 smart contracts from
Etherscan.com. We analyze smart contracts written
in Solidity in the Ethereum blockchain as it is widely
well-adopted. From those smart contracts, we have
found common occurrences and trends of vulnera-
bilities in already deployed smart contracts. In ad-
dition, we have suggestions for developers when de-
veloping a smart contract.

The remainder of this paper is organized as fol-
lows. Section 2 gives the background of smart
contract vulnerabilities. Section 3 explains the pro-
posed work of this research. Section 4 shows the re-
sults and discussions. Finally, we conclude our work
in Section 5.

2 LITERATURE REVIEW

2.1 Ethereum Smart Contract

Unlike Bitcoin, the most successful implementation
of a blockchain system, that only uses the blockchain
to store currency-transferring transactions, and the ac-
cumulation of those transactions becomes a ledger
where the balance of every account on the system
is kept. The goal of Ethereum(Wood, 2014) is to
use a blockchain to implement distributed applica-
tions. In Ethereum, an account’s balance is a state
that changes values by transactions. In other words,
a transaction is a state transition operator. The global
state is where Ethereum uses to store its own currency,
Ether, on each account. Moreover, Ethereum allows
each account to store code and has inner state vari-
ables, and that becomes a smart contract. The inner
state variables are changed by processing a transac-
tion that contains a function call, probably with ar-
guments, against the account’s code as shown in Fig-
ure 1. All Ethereum’s transactions, including smart
contracts, are operated by Ethereum virtual machine
(EVM).

Figure 1: Ethereum State Transition.

EVM operates on the machine-level code, called byte-
code, which is difficult for a human to write. There-
fore, Ethereum invented several new programming
languages for developers to use and later compiled
to bytecode for deployment. These languages are
LLL, Serpent, Tiger, Solidity and Vyper, and Solidity
which is currently the most popular language.

Calling to a function in a smart contract is a form
of a transaction. The caller can create a transaction
with data part containing function signature and ar-
guments. The caller can choose to send some Ether
along with the transaction. When a transaction is
committed to a block and distributed to nodes in the
network, each EVM will extract calling function and
arguments, and then execute the callee function with
the extracted information. The Ether sent along with
the transaction will be added to the smart contract’s
account balance.

2.2 Smart Contract’s Vulnerabilities
Analysis

Information on vulnerabilities of Solidity Smart
Contracts has been collected ((Ethereum, 2019),
(Consensys, 2019), (Atzei et al., 2017), (Luu et al.,
2016), (Tikhomirov et al., 2018)). Most studies focus
on the analysis of previous weaknesses found in var-
ious incidents such as the DAO case (Siegel, 2016),
King of Ether case (King of Ether Throne, 2016), and
Parity case (Parity Technologies, 2017). The follow-
ings explain the most important vulnerabilities.

2.2.1 Re-entrancy

In Solidity, there are three functions used to transfer
some currency to an external address; they are send,
transfer, and call. However, in a case that the
destination address is a smart contract, these func-
tions also act as a function call to “fallback func-
tion” in the destination smart contract. A malicious
contract might use this fact to create a “crafted fall-
back function” to execute something back in the orig-
inal contract.

Figure 2 shows an example of the re-entrancy
attack on a withdrawing function, and it is similar
to the cause of the incident happened in the DAO
case (Siegel, 2016). The attacker starts by creat-

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

318

ing his/her own malicious smart contract (2b) and
calls to the withdraw function of the victim’s smart
contract. After passing some validation on the first
line, the contract sends Ether to the attacker’s smart
contract. Since the destination of the transfer is
a smart contract, the fallback function is executed,
which in turn, calling to the withdraw function again.
Because the balance of the attacker is not deducted yet
(in Line 11 of Figure 2a), the victim’s smart contract
will send out Ether again. The execution loop con-
tinues until either the balance of the victim’s smart
contract is zero or the transaction gas is depleted.

(a) Victim’s smart contract.

(b) Attacker’s smart contract.

Figure 2: An example of re-entrancy attack.

2.2.2 Integer Overflow and Underflow

Integer overflow and underflow are common prob-
lems also found in other programming languages. In-
teger overflow occurs when increasing a value in a
limited-size variable till it is over the maximum ca-
pacity. The value of the variable then goes to the low-
est value as illustrated in the following code snippet:

uint8 num_users = 255;
num_users += 1;

This code creates a variable num_users as an 8-bit
unsigned integer having the range of possible values
from 0 to 255, and initiating its value to 255. When
the variable is increased by 1 and cannot store the
value of 256, the value gets truncated to only 8 bits
and zeroes are stored instead. The same principle is
applied for integer underflow.

2.2.3 Timestamp Dependency

Since a smart contract operates on an Ethereum Vir-
tual Machine (EVM) that only provides information
regarding the smart contract itself, i.e. its transactions
and blocks. It does not provide information about
environment, such as its host operating system, IP
address, or even time. A smart contract developer
would seek to find the information from the times-
tamp field in the block’s metadata. Unfortunately, the
block’s timestamp field is arbitrary and the block’s
miner can write any timestamp he wants without any
verification from other nodes in the network. If a
smart contract relies on such timestamp information,
it could be tricked by a malicious miner.

2.2.4 Transaction Ordering Dependency

Each operation in a smart contract is a transaction
and even if multiple transactions are not operated in
a parallel fashion, the order of those operations might
yield different results. Consider an example case:
assuming a smart contract has a record that Alice
initially has 0 token in her account, and she issues
two consecutive operations: withdraw(1000) and
deposit(1000). If the transactions are ordered as
withdraw(1000); deposit(1000);, Alice will not
have enough balance to withdraw and the first opera-
tion will fail while the second one will pass, and Alice
has 1000 tokens remaining. If the order is reversed,
both transactions would be completed, and Alice will
have 0 remaining tokens in her account. Miners are
responsible in collecting transactions and creating a
block. It could be possible for a malicious miner to
re-arrange depending transactions in such a way that
the result would benefit him.

2.2.5 Using Send

send is a Solidity’s function for transferring Ether
from a smart contract to an external address. If the ex-
ternal address is a smart contract, it would perform an
additional function by executing code in the fallback
function in the external address. Therefore, using the
send function in a smart contract could lead to a vul-
nerability, and the developer could use the transfer
function instead if they want to transfer Ether and pro-
hibit the code execution.

2.2.6 Unchecked Calls

Executing a code in an external smart contract could
be performed by send, call and delegatecall
functions. However, such functions do not stop the
execution or throw any error if the callee contract has

Exploring Vulnerabilities in Solidity Smart Contract

319

a runtime error. Instead, the functions would return
false and continue running on the origin contract.
Thus, it could lead to an erroneous execution flow.
For example, consider the following code for with-
drawing from a token contract:

msg.sender.send(amount);
wallet[msg.sender] -= amount;

If the send in the first line fails, the Ether would
not be properly sent to the msg.sender address,
and it would be successfully deducted from the wal-
let’s balance in the second line. The developer
should have put an “if condition” surrounding the
send/call/delegatecall function to handle the
case when it fails.

2.2.7 Denial of Service with Throw

A smart contract relying on the result from an external
contract could be vulnerable from this vulnerability.
An example case is the King of Ether Throne game
(King of Ether Throne, 2016). This game requires a
new king to bid higher amount than the current king.
If it succeeds, the contract sends the amount to the
current king’s address, some fee to developers, and
finally set the new king. However, if the current king’s
address is a smart contract, and its fallback function
issues the throw command to stop the execution flow
which means the refusal of receiving any Ether. The
payment to the current king will never succeed, and
no one can overthrow the current king.

2.2.8 Gas Limits and Loops

Ethereum has a great concern about computation and
storage needed to perform each operation. So, it re-
quires a user calling a smart contract to pay some
amount of Ether as “gas” to help fund the operations.
The higher the computation or storage required for
each operation, the higher the gas needed. An un-
aware developer might write a smart contract function
containing high gas-cost operations, which will fail to
call if the caller does not provide enough gas. Con-
sider an example below.

address[] accounts;

uint public fixedInterest = 0.0001 ether;

function distributeInterest() public {

require(msg.sender == owner);

for (uint i=0; i<accounts.length; i++) {

accounts[i].transfer(fixedInterest);

}

}

In this example, a developer wants to distribute
the interest to every address stored in the accounts
variable. Calling to this function might fail when the
number of addresses is growing larger and the cost
of looping over the transfer function, a high-cost
function, becomes too high.

3 PROPOSED METHODOLOGY

Figure 3 shows the system diagram of our proposed
work. The first step is to collect the smart contracts
deployed on Ethereum’s blockchain, and put into a
repository. The second step is to perform vulnera-
bility analysis using Oyente and SmartCheck tools.
In the final step, we do the correlation analysis on
the vulnerability results to get some insights of the
vulnerabilities states in the smart contracts.

Figure 3: System diagram.

3.1 Collecting Smart Contracts

Ethereum’s blockchain is a good source for collect-
ing smart contracts. However, they are stored in the
bytecode format, and it would be difficult to be ana-
lyzed for vulnerabilities. In this work, we collected
the source code of smart contracts from EtherScan.io
- a website providing information on Ethereum’s
blockchain data and smart contracts. The website
allows developers to publish their source codes and
verifies them if the source code corresponding with
the bytecodes is deployed on the blockchain, so that
people wanting to interact with the smart contract can
view the source code and the logic inside the contract
and be able to trust the contracts easier. Although
EtherScan.io does not have a collection of every smart
contract deployed on Ethereum’s blockchain, it con-
tains a large collection of smart contracts in the form
of source codes to be analyzed. In addition, we wrote
a crawler program to collect the information on veri-
fied smart contracts, metadata, application binary in-
terface (ABI), source code and bytecode. We success-
fully collected 38,982 contracts by August 15, 2018.
Metadata of the contracts are displayed in Table 1.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

320

Table 1: Metadata of the collected smart contracts from
EtherScan.io.

Field Description
address Address of the deployed smart

contract
name Name of the smart contract

(name of the main class)
compiler version Version of the compiler
compiler version
has bug

Whether version of the compiler
is outdated (checked by Ether-
Scan.io)

balance Current balance of the smart
contract (in Ether)

tx count Number of transactions related
to the smart contract

optimization ena-
bled

Whether the smart contract is
compiled with optimization

date verified Date of the smart contract source
code is verified by EtherScan.io

3.2 Vulnerability Data Collection

The source code of the smart contracts was analyzed
by two analysis tools – Oyente (Luu et al., 2016) and
SmartCheck (Tikhomirov et al., 2018).

3.2.1 Oyente

Oyente (Luu et al., 2016) is a tool used to perform
the smart contract analysis for vulnerabilities. Due to
its early stage of development, a small number of is-
sues are listed and only 6 issues can be detected as
shown in the top of Table 2 which are re-entrancy,
callstack depth, underflow, overflow, transaction or-
dering, and timestamp dependency. Oyente builds a
control flow graph from the compiled smart contract
bytecode, and uses the symbolic execution method to
detect whether any point in the execution path could
be attacked by any issue. We use the version from
the author’s paper obtaining from the official docker
image to perform vulnerability analysis on our smart
contract collection.

3.2.2 SmartCheck

SmartCheck (Tikhomirov et al., 2018) is another tool
we used for our vulnerability analysis. The tool
employs a different approach for detecting vulnera-
bilities of the actual source code. It parses a smart
contract code into an abstract syntax tree, encodes it
into XML, and searches for vulnerability patterns us-
ing XPath.

SmartCheck could detect all security and coding
issues shown in Table 2, except that underflow and
overflow were disabled from inside of the tool dues to
high false positive.

3.3 Vulnerability Correlation Analysis

We perform the correlation analysis on the detected
vulnerabilities to understand which vulnerabilities
could be related and what could be the common cause
to be avoided when developing a smart contract. The
correlation is a statistical analysis that helps deter-
mine whether two variables could be related. In this
paper, we use Pearson Correlation which can be cal-
culated using the following formula. The correlation
value is ranged from -1 to +1 where -1 means nega-
tive correlation, 0 means no correlation, and +1 means
linear correlation.

ρ(X ,Y) =
E[(X −µx)(Y −µy)]

(σxσy)
(1)

Where:
• X , Y are two variables
• ρ is the correlation coefficient between X and Y
• E is the expectation value
• µX , µY is the mean of X and Y
• σX , σY is the standard variation of X and Y

4 RESULTS AND DISCUSSION

We classified our analysis results into two categories:
trend of vulnerabilities and their correlations.

4.1 Trends

4.1.1 New Smart Contracts Over Time

The number of new smart contracts had been growing
over time. It reached the peak around February thru
April 2018 with the average of 3,537 new smart con-
tracts per month. This may result from the Bitcoin
price rise to its peak of $18,953 in December 2017
since the number has been later declined as well as
the concurrent decrease in the cryptocurrency market.

Figure 4: The number of new smart contracts over time.

Exploring Vulnerabilities in Solidity Smart Contract

321

Table 2: List of security coding issues.

Issue Description
Re-entrancy An attacker redirects the control flow back to the victim’s smart contract, to create

unintended consequence.
Callstack Depth EVM cannot execute functions higher than 1024 in depth, attacker could make use of

this fact and cause some target function to fail.
Underflow Deduct an integer value to under the minimal value of the data type,

uint8(0) - uint8(1) == 255.
Overflow Increase an integer value to over the maximum value of the data type,

uint8(255) + uint8(1) == 0.
Transaction Ordering Miner can choose the order of transactions included in a block, thus a set of dependent

transactions might yield different results on different orderings.
Timestamp Dependency Get time from using block.timestamp or now might be incorrect because a miner can

manipulate this field.
tx.origin tx.origin is a variable referenced to the original caller who initiate the call, not the

immediate caller to the function.
Using send Using send instead of transfer for payment is insecure.

Unchecked External Calls Detect using send, delegatecall, or call without under if condition.
DoS by external contract Detect whether the contract relies on an external call’s result. If the external call fails

with throw or revert, the caller contract cannot continue, or denial of service (DOS).
Costly loop Detect a function call within a loop. It might consume too much gas.

Balance Inequality Prefer >= or <= , rather than ==.
Malicious library Detect if the contract use any library.

Transfer forward all gas Using addr.call.value(x)() could send x Ether and all remaining gas to the addr
contract.

Integer Division Solidity does not support floating point data type; integer division will be rounded down.
Locked money Detect the contract contains none of functions for sending money out of the contract.

Unsafe type inference Solidity chooses smallest data type that appropriates to the initial data assigned to a
variable. If later the variable is used to store larger value, it could overflow.

Byte array Prefer using bytes instead of byte[]
Token API violation API standard for creating digital token (ERC20) does not support throwing exception

(e.g. throw, revert, require, assert).
Compiler version not fixed Source code specified compiler version with operator ˆ allowing it to be compiled with

future compiler version which might not have backwards compatible.
Private modifier Possible misconception of using private modifier to hide variable’s data.

Redundant fallback function Detects if source code contains function () payable throw; It is already built-in com-
piler version 0.4.0.

4.1.2 Vulnerabilities of the Smart Contracts
(Detected by Oyente) Over Time

As the number of new smart contracts has risen,
the vulnerabilities detected in smart contracts also
grew. The overflow and underflow vulnera-
bilities were found to be the first and second most
commonly vulnerabilities detected by Oyente in
the smart contract. The remaining vulnerabilities
are compiler version has bug, tx ordering dep,
timestamp dep, re-entrancy, parity bug, in the
decreasing order. compiler version has bug is
the result of EtherScan.io to detect whether a smart
contract is compiled using an old version of the
solidity compiler which has some known vulnera-
bilities. The rise of this vulnerability happened be-
fore October 2017 was dropped after issuing Solidity
Compiler (solc) version 0.4.18 which fixed 10 bugs.

4.1.3 Vulnerabilities of the Smart Contracts
(Detected by SmartCheck) Over Time

Similarly to Oyente’s results, SmarCheck also illus-
trates the growth of detected vulnerabilities. The
growth of the number of smart contracts occurred
before July 2018 before starting to decline. The
top 3 highest vulnerabilities are pragmas version,
visibility, and malicious libraries. They
were rising as number of smart contracts grew which
could be resulted from that they detect typical key-
words in the smart contract. One major observation
is that many vulnerabilities had been slowly dropped
due to more uses of libraries (malicious libraries
only detects whether the contract uses library key-
word). In addition, compiler version has bug had
dropped significantly since October 2017 when the
new version of the compiler with fixed bugs was in-
troduced.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

322

Figure 5: The number of vulnerabilities (detected by Oyente) over time.

Figure 6: The number of vulnerabilities (detected by SmartCheck) over time.

4.2 Correlation

In this paper, we perform correlation computation via
Pearson’s correlation in order to understand relations
between vulnerabilities. The computed correlation
values are used to investigate how often any pair of
vulnerabilities found on the same smart contract.

4.2.1 Correlation of Vulnerabilities Detected by
Oyente

Figure 7 illustrates the correlation matrix of vulnera-
bility issues detected by Oyente, and it is obvious that
the overall correlations between each pair of those is-
sues are very low, ranging from -0.1 to 0.3. In other
words, they are highly unrelated. The highest cor-
relation coefficient value is 0.3 and it happens in the
pair of “Overflow and Underflow” and “Timestamp
Dependency and TX-Ordering”. The detailed discus-
sion is given below.
• Overflow and Underflow pair has the highest cor-

relation of 0.3. Their relation is clear because
they are caused by the same issue which is the im-
proper handling of integer value greater than the
declared storage size.

• Timestamp Dependency and TX-Ordering pair
also has the highest correlation of 0.3. Their rela-
tion might stem from the same root cause that the
block can be manipulated by a malicious miner.

4.2.2 Correlation of Vulnerabilities Detected by
SmartCheck

Figure 8 illustrates the correlation matrix of vulnera-
bility issues detected by SmartCheck. Obviously, the

Figure 7: Correlation matrix of vulnerabilities detected by
Oyente.

overall correlation results from SmartCheck results
have a wider range than those of Oyente as the range
varies from -0.1 to 0.6 with the highest correlation co-
efficient value at 0.6. The four highest correlated pairs
are:

• DoS by external contract and costly loop
(ρ = 0.6) pair: Their similarity relation could
have a common cause that both of them detect
an external call within a loop condition. How-
ever, the effects of both vulnerabilities are dif-
ferent; DoS by external contract will stop the
execution while costly loop focuses on the cost
of execution.

• timestamp dependency and re-entrancy (ρ =
0.5) pair: These two vulnerabilities often occur

Exploring Vulnerabilities in Solidity Smart Contract

323

Figure 8: Correlation matrix of vulnerabilities detected by
SmartCheck.

together naturally since timestamp dependency
is detected by finding now keyword, whereas
re-entrancy checks for external contracts fol-
lowed by an internal call. Thus, the methods of
detection are different.

• costly loop and re-entrancy (ρ = 0.4) pair:
The common cause between the two relation is
the detection of external contract callings.

• using send and unchecked call (ρ = 0.4)
pair: They are related by the same cause since
using send checks that the contract is using the
send keyword, whereas unchecked call checks
for whether the contract calls to an external
contract, either by send, call, or delegatedCall
keyword.

5 CONCLUSIONS

In this paper, we have collected the source code of
38,982 smart contracts, performed vulnerability anal-
ysis using Oyente and SmartCheck which took differ-
ent approaches to analyze, and calculated correlation
coefficient for each pair of the detected vulnera-
bilities. As a result, we found many highly related
pairs as they have some common cause of the vulnera-
bilities including overflow and underflow, timestamp-
dependency and transaction-ordering, using-send and
unchecked-external-call. We also found that a group
of related vulnerabilities often occurs together since
the contract has an external contract calling: DoS by
external contract, costly loop, and re-entrancy. Lastly,
we found that a pair between timestamp-dependency
and re-entrancy is not related by a common cause,

but often appears together from the data we collected.
From the results we investigate, we would recom-
mend smart contract developers to be cautious when
using external calls, when relying on block metadata,
and when using math operations.

REFERENCES

Atzei, N., Bartoletti, M., and Cimoli, T. (2017). A survey of
attacks on ethereum smart contracts (sok). In Maffei,
M. and Ryan, M., editors, Principles of Security and
Trust, pages 164–186, Berlin, Heidelberg. Springer
Berlin Heidelberg.

Consensys (2019). Ethereum smart contract best practices.
Retrieved from https://consensys.github.io/smart-
contract-best-practices/.

Ethereum (2019). The solidity contract-oriented pro-
gramming language documentation. Retrieved from
https://solidity.readthedocs.io/.

King of Ether Throne (2016). Kotet - post-
mortem investigation. Retrieved from
https://www.kingoftheether.com/postmortem.html.

Luu, L., Chu, D.-H., Olickel, H., Saxena, P., and Hobor, A.
(2016). Making Smart Contracts Smarter. In Proceed-
ings of the 2016 ACM SIGSAC Conference on Com-
puter and Communications Security - CCS’16, pages
254–269, New York, New York, USA. ACM Press.

OpenZeppelin (2019). Openzeppelin. Retrieved from
https://openzeppelin.com.

Parity Technologies (2017). A postmortem on the parity
multi-sig library self-destruct. Retrieved from
https://www.parity.io/a-postmortem-on-the-parity-
multi-sig-library-self-destruct/.

Siegel, D. (2016). Understanding the dao attack. Retrieved
from https://www.coindesk.com/understanding-dao-
hack-journalists.

Smart Contract Security (2019). Overview · smart contract
weakness classification and test cases. Retrieved
from https://SmartContractSecurity.github.io/SWC-
registry/index.html.

Tikhomirov, S., Voskresenskaya, E., Ivanitskiy, I.,
Takhaviev, R., Marchenko, E., and Alexandrov, Y.
(2018). SmartCheck: Static Analysis of Ethereum
Smart Contracts Sergei. In Proceedings of the 1st In-
ternational Workshop on Emerging Trends in Software
Engineering for Blockchain - WETSEB ’18, pages 9–
16, New York, New York, USA. ACM Press.

Wood, G. (2014). Ethereum: a secure decentralised gener-
alised transaction ledger. pages 1–32.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

324

