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Abstract: When analyzing legacy software for security huge result lists may be generated. These lists may contain more
than 1,000,000 potential vulnerabilities. In this paper, we propose an approach to secure such legacy systems:
we define a process to systematically assess and process potential vulnerabilities using contextual system
knowledge. The process is complemented with tool-supported technical measures to actually mitigate the
vulnerabilities and code injection. The approach allows to efficiently repair vulnerabilities in legacy systems
while ensuring system availability for critical systems using a safe go-live technique. We evaluate our approach
by an industrial case study to show the applicability and flexibility of our code security cleansing approach.

1 INTRODUCTION

Developing a secure software system is a challeng-
ing task. Like for other quality attributes, achieving
security in large software systems is determined by
the software architecture: Usually, code level vulner-
abilities are easier to remedy and less crucial to a sys-
tem’s security than its architectural security measures.
Several tools exist for analyzing security on the code-
level. Some work also deals with architecture level
vulnerabilities (Jasser, 2019; McGraw, 2006).

However, for legacy systems security analysis
tools on both, the architectural and the code level, of-
ten provide huge lists of potential vulnerabilities, e. g.
about 800,000 in our case study. Few work exists on
systematically fixing vulnerabilities from such analy-
sis results, e. g. taking the effect on the system’s over-
all risks into account when determining measures.
Existing approaches lack consideration of the system
and vulnerability context. Instead, software vulner-
abilities are often remedied non systematically and
sub-optimally for their specific context. Based on
this, we identified three issues in existing approaches
for vulnerability mitigation in legacy systems:

RQ 1: How Can Organizations Deal with
Large Quantities of Analysis Results? Processing
huge vulnerability lists causes an enormous effort:
Not all vulnerabilities can be mitigated. To deal with
large quantities of vulnerabilities, organizations need
a systematic process to reduce the risks with reason-
able effort. In this paper, we provide a methodology

that defines a systematic process on assessing, priori-
tizing and mitigating vulnerabilities (see Section 2).

RQ 2: How Can Vulnerabilities Be Fixed Sys-
tematically? Mostly, there several mitigation strate-
gies can be used to fix a vulnerability. Choosing the
best option for security and cost-benefit reasons is dif-
ficult. In Section 2 we present our funnel approach
that supports project teams in narrowing vulnerability
lists based on fixing strategies.

RQ 3: How to Ensure System Availability Dur-
ing Mitigation? Fixing vulnerabilities in legacy sys-
tems is a complex task: unlike refactoring, fixing
vulnerabilities changes the system behavior, i. e. the
modifications may also change the functionality. The
mitigation must therefore be tested before applying
them on the live system. Introducing an additional
logging phase provides further reliability. This way,
an organization can take appropriate measures to en-
sure the system availability before putting a mitiga-
tion into productive operations. For safe go-live we
use our soft cleansing approach (s. Section 3).

To address these issues, we provide a systematic
and practicable approach to deal with large lists of
potential vulnerabilities in legacy systems. This ap-
proach is a framework for individual adaptation.

2 CLEANSING APPROACH

Our approach bases on provided vulnerability analy-
sis results. It defines a systematic and safe way of
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mitigating huge lists of potential vulnerabilities. The
approach may be used with vulnerability lists from
different sources, i. e. it is not limited to a specific
security analysis approach.

In the following Section, we list the requirements,
we found prior to the conceptual design of our cleans-
ing approach. Based on these requirements, we de-
signed an approach for fixing software vulnerabili-
ties. The concept comprises two aspects of a secu-
rity cleansing: first, a systematic process and, second,
adequate technological and tool support.

2.1 Requirements for a Mitigation
Process Approach

For our cleansing approaches we found the following
requirements prior to the conceptual design:

Req 1: Respect Individual Security Requirements.
Different enterprises have different security guide-
lines and requirements. They even differ between
software projects. The approach should respect and
respond to these varying security requirements.

Req 2: Minimize (Manual) Code Changes. Code
modifications often have unexpected impact on a soft-
ware system. To minimize side effects, our approach
should prefer solutions that avoid code modifica-
tions.For vulnerabilities that need to be fixed through
code modifications, the modifications should be done
tool-supported if possible.

Req 3: Safe Go-live (Availability of Operational
Environment). Mitigating changes may reduce the
availability of a system: even correctly implemented
changes usually restrict the accessed functionality.
Users may not be able to use functionality they used
prior to the mitigation. The approach must provide a
mechanism to avoid such availability limitations.

Req 4: Optimize Effort-benefit-ratio. To be feasi-
ble, the cleansing approach must have a reasonable
effort-benefit-ratio. The workload has to be defined
based on a systematic prioritization of the overall total
vulnerability list. Additionally, the approach should
automate as many solutions as possible.

Req 5: Context-sensitive Assessment of Vulnera-
bilities. Vulnerabilities exist within a software sys-
tem. The context is essential for choosing a good re-
pair solution. The vulnerability assessment must con-
sider this context of a vulnerability and the system.

Req 6: Meet Individual Quality Alignments. Be-
yond individual security requirements, enterprises
follow different quality and coding guidelines. Al-

though, the approach should be automated where pos-
sible, it must meet these quality requirements.

Req 7: Flexibility Regarding Enterprise Processes
and Heartbeat. Cleansing projects take place within
a company’s heartbeat: we need a flexible approach
that fit’s into company’s processes and schedules.

Req 8: Auditability of Process and Documenta-
tion. Software security cleansing is required for
the overall compliance and security of companies.
Hence, the process, decisions made and all documents
must be audit compliant including appropriate docu-
mentation.

2.2 The Process

Our approach leads to a systematic handling of huge
vulnerability lists. It aims to minimize code level mit-
igation when reducing a system’s security risks. To
achieve this, we a) identify false positives and vulner-
abilities that only cause minor risks, b) do as much
mitigation beyond code level as possible and c) min-
imize manual solutions, if code-level fixing is neces-
sary. This funnel approach is presented in Figure 2.
Figure 1 shows the project method we suggest.

Step 1: Project Initialisation and Cleansing
Preparation

A code cleansing project starts with a workshop to de-
fine the scope of the project: the workshop includes
sessions on specific protection objectives, a selection
of security rules to check and the specification of an
individually acceptable risk level. Through this work-
shop we meet requirement no 1. Based on the rules in
scope, the contextual knowledge needed can be spec-
ified. The contextual knowledge on the software sys-
tem is used to select the solution type for each vulner-
ability. It may be necessary to collect these data first,
if this has not been done prior to the project.

In parallel, the tools to support mitigation should
be installed. Furthermore, the presentation of the
cleansing method to responsible persons and neces-
sary approvals should be obtained in the meantime.

Step 2: Unused Code Decommissioning

The steps 2, 3 and 4 are interchangeable: their order
can be changed or they can be executed in parallel, if
the usage data on a system are available prior to the
project. Otherwise, they have been collected in Step
1 as a part of the context data.

Unused code objects and fragments have not been
used on the live system within a certain period of time.
This may usually be 6 or 13 month. We use this usage
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Figure 1: Project method.

Figure 2: The funnel approach to minimize (manual) code modifications.

statistics to get rid of inactive code and it’s vulner-
abilities Besided mitigation of its vulnerabilities, we
do not need to put maintenance effort into this code
any more. However, most developers resist to actually
delete code in the first step: We use an easy to reverse
decommissioning approach. The decommissioning is
done by code injection and control mechanisms that
allow to deactivate the mitigation logic without fur-
ther code changes (see Section 2.3).

Step 3: Technical-organizational Mitigation

Changing source code is risky, inter alia, due to unpre-
dictable impacts on the system. We reduce the num-
ber and impact of code modifications due to their fault
proneness: Concerning vulnerabilities in active code,
we prefer technical or organizational measures that
supersede code modifications. For instance, many
frameworks provide functionality to limit the paths
a user may access from an application and, thereby,

reduce the risk of directory traversal attacks. Be-
fore making potentially unnecessary code modifica-
tions, appropriate configuration and customization of
the system and its building blocks should be ensured.

It depends on the software system’s context,
which technical or organizational measures can be ap-
plied. For instance, this is affected by the technolo-
gies used and the project’s basic conditions.

Step 4: Mitigation through Code Modifications

To invest no unnecessary effort in code modifications,
we first conduct an analysis of the findings in scope to
identify false positives and findings that do not need
to be mitigated due to low risk.

Although we try to avoid code modifications, they
are necessary sometimes: in these cases, we intend
to automate the code modifications. Each vulnerabil-
ity may be caused by multiple code patterns. We use
the patterns to identify the code fragments to mod-
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i f ( c u r r e n t U s e r
== ” j d o e ” ){

doSomething ( ) ;
}

sw i t ch ( c u r r e n t U s e r ){
case ” j d o e ” :
case ” jmodaa l ” :
case ” zsan ” :

doSomeht ing ( ) ;
break ;

d e f a u l t :
break ;

}

Figure 3: Two exemplary vulnerability pattern for hard-
coded username checks.

t r y {
A c c e s s C o n t r o l l e r . c h e c k P e r m i s s i o n (

c u r r e n t U s e r ,
new P e r m i s s i o n (

” someFunc t ion ” ,
” a c c e s s ” ) ) ;

doSomething ( ) ;
} ca tch ( A c c e s s C o n t r o l E x c e p t i o n e ) {

throw A c c e s s D e n i e d E x c e p t i o n (
” S u b j e c t has no a c c e s s ” ) ;

}

Figure 4: Mitigating code modifications for both examples.

ify. Based on the vulnerability type and the identified
code pattern, the necessary actions are determined,
e. g. code injections or the creation of table entries.

Figure 3 shows two exemplary code patterns of
hard-coded username checks: an if and a switch
case example that check the current username against
hard-coded values. The result influences the control
flow and, thereby, the system behavior. In this exam-
ple, the code would be modified as showed in Figure
4: the hard-coded username checks would be replaced
by checking the user’s authorization. The hard-coded
users must be granted the permissions.

If a vulnerability’s code pattern can be mitigated
using well-defined actions, these actions can be done
with tool-support. However, the mitigation should not
be done in batch mode but with a control mechanism:
each modification should be checked by a developer.
Thus, the mitigation is more efficient and less fault-
prone, because the developer does not need to change
the code manually. Hence, the developer will mitigate
more findings per day in this semi-automated mode
as in a completely manual mode. Additionally, the
solutions will probably cause less faults.

Some vulnerabilities have to be mitigated manu-
ally due to their complexity or severity: such vulner-
abilities can only be fixed by changing the fundamen-
tal logic of the program. For instance, this is the case
if code is uploaded and executed dynamically. Such
functionality often exists to repair incoming data dur-
ing run-time. However, an attacker may use this func-
tionality, to upload and execute malicious code.

Step 5: Safe Go-live

Applying the safe go-live approach to the cleansing
project is optional. We recommend it for software
systems that require high availability.

The approach makes the go-live safe by setting the
mitigation live gradually: It adds one transition phase
at the least. During this transition phase, the previ-
ous and the new mitigation logic are executed. If the
results diverge, this divergence is logged using an au-
ditable log. As the mitigation will usually narrow the
access to or generality of a functionality, most diver-
gences are about a user who could access a function-
ality prior to the mitigation and cannot access it any
more using the new logic. Finally, the original logic
is executed that applied prior to the mitigation.

Dependent on the vulnerability or chosen solu-
tion, there may be additional transition phases im-
plemented. The safe go-live approach is described in
more detail in Section 3.

Step 6: Project Completion

To complete the project, the documentation must be
finalized in an auditable way. Ideally, all major steps
and decisions have been aligned with the auditor di-
rectly throughout the project.

Partly, the auditable documentation has been cre-
ated throughout the project such as logs during the
transition phase or the methods and techniques used
for mitigation. However, the final result must be doc-
umented and presented at the project end. This in-
cludes assessing the remaining risks that have been
accepted due to effort-benefit ratio.

Beyond auditable documentation, measures for
staying clean must be defined: these may be technical
as well as organizational measures. Usually, the mea-
sures include a security awareness and secure code
training and an adapted software development pro-
cess. The process stipulates frequent tool-based se-
curity analysis or secure code reviews.

2.3 Tool-supported Mitigation

The tool we developed intends to support and partially
automate the mitigation of vulnerabilities. It is in-
tended to be used by developers.

2.3.1 Guided Code Vulnerability Mitigation

Recurring vulnerability patterns are often remedied
with identical solutions. We developed a tool that uses
code injection techniques to repair such vulnerabili-
ties. For tool-supported fixing, there are pre-defined
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vulnerability patterns. Unknown vulnerability pat-
terns cannot be fixed using the tool. This applies to
unknown variants of known vulnerabilities, too. If the
tool finds a known vulnerability pattern near to the
line in code at which the vulnerability occurs, it se-
lects the assigned solution for mitigation. The tool re-
pairs the vulnerability by code injection. Usually, the
code injection is not done in a batch but in a guided
mode: In the guided mode, the workload is processed
step by step. An editor shows the suggested solution
that would be applied. If the tool inserts or modifies
table entries, this is displayed, too. For instance, ta-
ble entries are inserted into the safe go-live control
tables, if the safe go-live approach is used. The devel-
oper may accept, reject and skip or manually modify
a solution. The safe go-live approach should be used
for all code injections by the tool.

All modifications that are made by the tool have to
be logged in an auditable way: not only the original
and the modified code but also the executing user is
logged. Additionally, every manual adaptation of the
suggested solution is logged.

2.3.2 Unused Code Decommissioning

Unused code usually contains as many vulnerabili-
ties as used code. By decommissioning unused code,
these vulnerabilities are remedied with little effort.
Decommissioning is done by injecting code into the
inactive code objects or fragments and creating con-
trol table entries on the database. The table entries de-
termine the fixing status, the message to be shown and
the mitigation code’s actual behavior for each miti-
gated vulnerability. It is used to apply the safe go-live
approach. These information are queried by the in-
jected code. E. g., the fixing status may be ”logging”.
In this case, the previous and the modified logic are
executed on trial. If the results differ, the difference is
logged. However, the previous logic is actually exe-
cuted in the end.

Beyond mitigating the vulnerabilities in unused
code, the decommissioning improves the system’s
maintainability and portability. This is due to the code
must no longer be considered during maintenance or
porting.

3 SAFE GO-LIVE: SOFT
CLEANSING

Availability is an essential requirement for many soft-
ware systems. There are several ways to unintention-
ally limit the availability through the cleansing ac-
tivities: Code modifications have the inherent risk

to cause faults in the system. This may be due
to wrongly implemented security fixes and modified
functionality or due to unexpected impacts on the sys-
tem. Yet, correct modifications may limit the avail-
ability, too: For instance, in case of a missing autho-
rization check, the straightforward fix is the introduc-
tion of a reasonable authorization check. This prob-
ably limits the availability as users may not be able
to access the functionality any more. However, some
of these users may be justified to access the function-
ality. Such users may not have the permissions be-
cause the missing permissions did never attract atten-
tion due to the lack of authorization checks.

For software systems that are required to be highly
available we developed a safe go live approach for
our cleansing projects: the soft cleansing approach.
The soft cleansing approach puts the mitigating code
changes into productive operations step-by-step.

As Figure 5 shows, the mitigating code is imple-
mented in the first step. The code is extended with
a control logic that enables the gradual go-live. The
implementation may be done using automated code
injection or by hand. Referring to the example pre-
sented in Figure 4, the code would be extended as
in Figure 6: The control logic queries the underly-
ing control tables that hold the soft cleansing sta-
tus. If the cleansing is in transition phase, the in-
jected authorization check is performed. If the ac-
cess is denied, the program executes the prior logic
indicated by doSomething() and logs the discrep-
ancy between prior and mitigation logic. The opposite
case – a user had no access before mitigation and can
now access the functionality – can not happen as we
had a missing authority check before. When the mit-
igation is set live finally (cleansing status ACTIVE),
the new logic actually refuses access and throws an
AccessDeniedException.

Soft cleansing is optional. If it is applied to a
project depends on the trade-off decisions regarding
availability and other protection goals.

4 FIELD STUDY

4.1 Initial Situation

We conducted our evaluation project with an indus-
trial partner in the technology sector. The project was
part of a security initiative. Initially, our industrial
partner conducted a vulnerability analysis on their
software systems. The analysis resulted in more than
800,000 findings, i. e. potential vulnerabilities. Find-
ings may be architecture-level or code-level vulner-
abilities. Analogously to security architecture viola-
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Figure 5: Safe go-live process.

1 Long f i x I d = 1 2 ;
2 C l e a n s i n g S t a t u s s t a t u s = A c c e s s M i t i g a t i o n C o n t r o l l e r
3 . g e t F i x I n f o r m a t i o n ( f i x I d )
4 . g e t C l e a n s i n g S t a t u s ( ) ;
5 I L o g D e t a i l l o g I n f o = new M i t i g a t i o n L o g D e t a i l ( f i x I d ) ;
6 boolean p e r f o r m L o g i c = f a l s e ;
7 t r y {
8 A c c e s s C o n t r o l l e r . c h e c k P e r m i s s i o n ( c u r r e n t U s e r ,
9 new P e r m i s s i o n ( ” someFunc t ion ” ,

10 ” a c c e s s ” ) ) ;
11 p e r f o r m L o g i c = t rue ;
12 } ca tch ( A c c e s s C o n t r o l E x c e p t i o n e ) {
13 i f ( s t a t u s == C l e a n s i n g S t a t u s . ACTIVE) {
14 throw A c c e s s D e n i e d E x c e p t i o n (
15 ” S u b j e c t has no a c c e s s ” ) ;
16 } e l s e {
17 p e r f o r m L o g i c = t ru e ;
18 l o g I n f o . s e t M i t i g a t i o n L o g i c R e s u l t ( e ) ;
19 }
20 } f i n a l l y {
21 i f ( p e r f o r m L o g i c ){
22 doSomething ( ) ;
23 }
24 i f ( l o g I n f o . c o n t a i n s D i v e r g e n c i e s ( )
25 && s t a t u s != C l e a n s i n g S t a t u s . NO LOGGING){
26 l o g g e r . l o g A c c e s s D e c l i n e d ( l o g I n f o ) ;
27 }
28 }

Figure 6: Mitigating code modifications including soft
cleansing logic.

tions, findings indicate vulnerabilities but may also be
false positives. The partner estimated that an experi-
enced software engineer may fix 4 vulnerabilities per
hour at average. This results in an overall effort of
about 25,000 man-days.

Our industrial partner aimed to minimize cyber se-
curity risk. To achieve this goal, we applied our code
security cleansing approach to the system. Due to
company guidelines, we had to fit our approach in an
agile project method that was similar to SCRUM.

4.2 Prototype

We implemented a prototype to apply our approach
to the industrial project. Its essential part is the semi-
automatic vulnerabiltiy fixing that is realized through
a fixing wizard: besides other information, it proposes
a solution by code injection that is highlighted in the
editor. The developer is responsible for reviewing the
solution. If the developer assesses the solution inap-

propriate, he can either edit it or skip the vulnerabil-
ity . Every modification is logged auditably: i. e. The
logs are protected from modification or data loss and
are in a readable and machinable format.

As the executing user of the tool takes responsi-
bility and it needs software and security engineering
knowledge to assess the proposed solutions, the user
should always be a software developer. The devel-
oper must have security knowledge to enable well-
grounded assessment.

4.3 Applying the Cleansing Approach

We applied the cleansing approach to our partner’s
most important software system. It controls crucial
production lines. At the beginning, we had about
800,000 potential vulnerabilities, which resulted from
a tool-supported code security analysis. The first step
in coping with this huge task list is to define the poten-
tial vulnerabilities to be considered in the project: We
held a workshop to define the project scope, i. e. to
prioritize and determine the subset of findings to fix.
Since the concerned software system controls produc-
tion lines, high availability is mission critical. Hence,
availability is the most important protection objective
to achieve. However, the considered software sys-
tem contains sensitive information such as informa-
tion on products, innovations and internal processes
of the technology company. The confidentiality of
these sensitive information’s must be protected. This
is the second most important protection objective as
agreed in the workshop.

Based on the protection goal priorities, we as-
sessed the vulnerability types from the analysis tool’s
documentation: e. g., the upload and execution of
code fragments may have an enormous negative im-
pact on the system’s availability and confidentiality.
Hence, this vulnerability type is assessed highly criti-
cal. Other vulnerabilities may have write or only read
access, such as SQL injection vulnerabilities. Usu-
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ally, we evaluate write access more critical than read
access. To further narrow the scope we only consider
findings that are likely to have an adverse effect on
the software system. This assessment is done by the
analyzing tool based on different parameters such as
if the vulnerability can be affected by user input.

In parallel, we gathered usage data from the live
systems to identify unused code objects. Through de-
commissioning of unused code we mitigated about
70 % of all findings (ca. 570,000 findings).

We split the remaining list of potential vulnerabil-
ities based on their fixing strategies, i. e. if they may
be fixed by technical-organizational measures beyond
code and within the source code. For instance, there
were existing mechanisms to restrict the access of un-
derlying system paths via authorizations. The system
automatically checks these authorizations for every
system path access. To mitigate directory traversal
vulnerabilities, we redesigned and customized the au-
thorization concept considering this aspect in collab-
oration with our industrial partner.

Subsequently, the developers analyzed all findings
that were not fixed before. They all had knowledge
and experience in software security. All potential
vulnerabilities were assessed regarding their damage
potential: they identified false positives and findings
with minor risk. The remaining vulnerabilities were
critical and must be mitigated by code modifications.

Most code-level mitigation was done automati-
cally: using the guided mode described above the tool
proposes a solution to the developer. The developer
reviewed the solution before it is finally applied. The
tool logs each code injection in an auditable way. In
our project the proposed solutions have rarely been
modified but have mostly been injected as proposed.
However, we had some vulnerabilities that had to be
mitigated individually. Mostly, these vulnerabilities
or their context are complex. Therefore, the logic has
to be rebuilt in a secure way to fix such vulnerabilities.

Concluding, we conducted code security reviews
on all manual mitigations. Vulnerabilities that have
been fixed by injecting a default solution or that have
been decommissioned are reviewed at random. Our
partner did the functional test.

We discussed the process and decisions with the
auditor throughout the project to obtain their ap-
proval. Due to their consent, the project and system
successfully passed the subsequent audit. On demand
of the auditor we defined an overall risk metric that is
calculated from the vulnerabilities’ criticality and the
probability of exploiting them: We defined the crit-
icality of the vulnerability types in relation to each
other while the analysis tool provides an estimation if
it is very likely, less likely or unlikely that a vulnera-

bility may be exploited. We translated this estimation
into a factor that is multiplied with the criticality value
per finding. To calculate the system’s risk level and
it’s relative changes over time, we added all finding
values within the system. Thus, we were able to show
the mitigation effect that our project had on the sys-
tem. The metric was defined in a joint workshop with
representatives of the project team, the risk manage-
ment, the information security officer, the software
development department and the auditor.

4.4 Measures to Stay Clean

We trained a selected group of developers in code
vulnerabilities and their mitigation in legacy sys-
tems. These developers build multipliers of knowl-
edge within the company: they transfer the knowl-
edge they gained to the whole development team.

Additionally, we introduced technical measures:
before functional testing the code is checked for po-
tential vulnerabilities using the analysis tool. There
must not be any findings that match the project scope
definition. Such findings must be mitigated before
functional testing and release of the functionality.

5 DISCUSSION

Based on the application of our approach to an indus-
trial case, we discuss the benefits and potential im-
provements of our approach in the following. First,
we discuss if our approach meets the requirements we
specified for it (see Section 2.1). Subsequently, the is-
sues mentioned in the introduction are discussed.

5.1 Field Study Results

Respect Individual Security Requirements (Req
1). Our approach stipulates an introductory work-
shop. An essential part of this workshop is the scope
definition: in our field study, we prioritized the com-
pany’s individual protection goals. Based on that, we
evaluated the criticality of the identified vulnerabil-
ity types. The mitigation scope can be narrowed or
broadened dependent on the stakeholder’s needs. An-
other tailored measure is the safe go-live option: The
team may apply it to the project if availability is im-
portant or may skip it if an immediate mitigation of
vulnerabilities is required instead. By the individual
prioritization and scope definition, the approach ex-
actly considers the individual security requirements.

Minimize (Manual) Code Changes (Req 2). Our
approach aims to mitigate as many vulnerabilities as
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possible beyond code: in our field study, we could
mitigate more than 75 % of the overall vulnerabil-
ities and more than 90 % of the vulnerabilities in
scope by decommissioning unused code, technical-
organizational measures and tool-supported mitiga-
tion through code injection. In numbers, this means
more than 10,000 critical vulnerabilities in scope and
about 605,000 vulnerabilities overall have been fixed
without manual code modifications. Despite these re-
sults are excellent, they are highly dependent on the
concrete system. However, we expect a major effects
of these steps in most legacy systems. Subsequently,
we conducted the false positive analysis on the re-
maining vulnerabilities in scope. Due to the initial
scope definition, 779 findings had to be analyzed in
this step, i. e. 779 vulnerabilities. 371 of these vul-
nerabilities had to be mitigated manually in the end.

However, through automation of the mitigation,
developers may not be sensitized as if they had to mit-
igate the vulnerabilities manually. Due to the cost-
effectiveness, we consider the tool-support valuable.
Yet, taking measures to build the developers’ aware-
ness is a reasonable supplement.

Safe Go-live (Availability of Operational Environ-
ment) (Req 3). We enable the safe go-live by adding
another optional phase to our approach. During this
phase, divergences in the result of previous and modi-
fied logic after mitigation are logged. In this case, the
previous logic is executed finally.

As the approach can be controlled using control
tables that have each mitigation’s safe go-live sta-
tus, modifications can be reverted easily in case of an
emergency situation. There is only a minimal risk to
the live system as a result. However, the vulnerabil-
ities are not actually mitigated until the safe go-live
status is set to active. This is due to the original code
is executed finally during transition phase.

Optimize Effort-benefit Ratio (Req 4). As de-
scribed above for Req 2, the effort-benefit ratio is op-
timized by narrowing the project scope and automated
mitigation. The cost-effectiveness further increases
due to additional steps in the project like conducting
a false positive analysis. Due to this methodology, we
only put effort into critical vulnerabilities that cause
high or very high risks for the system and organiza-
tion.

As mentioned in Section 4.1, our partner esti-
mated about 25,000 man-days for a straightforward
manual mitigation. We were able to reduce the major
risks of the system in about 460 man-days.

Context-sensitive Assessment of Vulnerabilities
(Req 5). We assessed the vulnerabilities using their

runtime context: we gathered information on the us-
age of code objects from the live systems. Our tool
proposes code objects for decommissioning if they
were inactive for a specified period of time. As our
industrial partner already gathered usage data prior to
the code cleansing project, we used the usage data of
15 months in our field study. It includes exceptional
usage at year end/beginning or quarter end/beginning.

Additionally, developers consider a vulnerability’s
context when conducting a false positive analysis:
they use the actual context to assess if a vulnerabil-
ity may be exploited or not.

Meet Individual Quality Alignments (Req 6). Con-
trolling the adherence to organization specific quality
guidelines are part of our security code review check-
list. Additionally, our fixing suite provides many
common security solutions like the introduction of au-
thorization checks or whitelisting mechanisms. By in-
jecting code that uses these components, we enforce
common design principles such as component reuse.
However, during our field study we found that our
prototype may be improved in following organization
specific developer guidelines such as naming conven-
tions: the tool should allow to adapt the mitigating
code templates that are injected. Otherwise, the in-
jections either do not follow the developer guidelines
or they have to be corrected manually.

Flexibility Regarding Enterprise Processes and
Heartbeat (Req 7). In our field study, we had to ap-
ply our approach to an agile project method. This
worked well for the code cleansing approach: The
vulnerabilities usually are well-defined and manage-
able tasks to perform within a sprint. This facili-
tates reliable estimations after a few sprints. Addi-
tionally, agile project methods require short feedback
cycles. As our project team worked in parallel to the
actual development team, these short feedback cycles
proved useful.

Auditability of Process and Documentation (Req
8). To ensure the auditability of the code cleansing
project, our prototype wrote logs for each modifica-
tion. These logs were designed for auditability: they
were protected from modifications and data loss.

Additionally, we aligned with the auditors from
the beginning. During the first project phase, we
presented the project method to the auditors to get
their approval. As agreed, we further discussed the
intended mitigation measures per vulnerability type
with them, before starting the actual mitigation.

However, the documentation of risk reduction had
to be done manually throughout the project. We cre-
ated the overview of mitigated and accepted risks as
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well as the risk metric mentioned in Section 4.3 man-
ually. There should be future work on creating a more
lightweight, tool-supported documentation.

5.2 Code Cleansing Issues

In the introduction, we mentioned three issues that we
identified when dealing with huge lists of vulnerabil-
ities. These issues mainly refer to the lack of system-
atic methodology and reasonable tool-support for the
mitigation of large quantities of vulnerabilities.

How Can Organizations Deal with Large
Quantities of Analysis Results? (RQ 1)

This issue is covered by the systematic process and
the tool-supported mitigation of vulnerabilities which
minimizes manual effort: Through the scope defi-
nition we were able to exclude non-critical findings
from the project which had an enormous effect in the
amount of work. Through measures beyond code and
tool-supported code injection, we enabled developers
to mitigate more than 90 % of the remaining findings
within a few days. It is affected by the requirements
Req 1, 2 and 4 or their fulfillment, respectively.

How Can Vulnerabilities Be Fixed
Systematically? (RQ 2)

The systematic mitigation is looked at in the require-
ments Req 1, 2 and 5: Similarly to RQ 1, we met this
issue with our methodology which defines a system-
atic process for the mitigation of vulnerabilities. Ad-
ditionally the code injection functionality leads to a
consistent use of mitigation measures throughout the
code. This only excepts for a few vulnerabilities that
had a particular context or that were too complex for
these solutions.

How to Ensure System Availability During
Mitigation? (RQ 3)

The system’s availability may be ensured by apply-
ing the safe go-live approach presented in Section 3.
Req 3 considers the safe go-live approach. The ben-
efits and drawbacks mentioned for this requirement
also hold true for RQ 3. Additionally, Req 6 treats the
code modifications’ quality assurance. Through code
reviews we enforce the four eyes principle. Review-
ers should pay attention to modifications’ unexpected
effects on the system availability.

6 RELATED WORK

In the field of software security, a lot of work has been
done recently. However, we didn’t find any approach
that handles huge vulnerability lists systematically as
ours that combines assessment, prioritization, auto-
matic repair and availability assurance.
Security Analysis. (Li et al., 2013) present a dy-
namic approach to detect vulnerabilities: They an-
alyze backwards traces to identify abnormal results.
(Almorsy et al., 2012) performs security scans on
OCL definitions for web applications and interfaces
(Almorsy et al., 2012). Other works deal with se-
curity conformance checking to identify fundamental
vulnerabilities in software systems (Jasser, 2019; Abi-
Antoun and Barnes, 2010). (Sametinger, 2013) gives
a short discussion on the increasing security aware-
ness and points out security flaws in the software ar-
chitecture as one major source of vulnerability risks.
Systematic Vulnerability Mitigation. Systematic
refactoring processes that do not affect the code be-
havior are proposed in (Mortensen et al., 2012; Rizvi
and Khanam, 2011). Both approaches use aspect ori-
ented programming (AOP) techniques. May authors
discuss the need of prioritization and fixing strategy
knowledge to handle a large quantity of flaws (Torn-
hill, 2018; Li et al., 2017; Mair et al., 2014; Herold
and Mair, 2014; Mair and Herold, 2013).

Tool-supported approaches aim to reduce the ef-
fort of software vulnerability mitigation: several
work has been done on automatic code modifications
(Xing and Maruyama, 2019; Anand and Ryoo, 2017;
Durieux and Monperrus, 2016; Hansson, 2015; Qi
et al., 2012; Le Goues et al., 2012). (Gazzola et al.,
2019) give an overview of generate-and-validate and
semantic driven mitigation approaches. In (Tang and
Huang, 2016) the authors present a soft-error mitiga-
tion by considering a combination between functional
unit configuration and instruction flow. Several au-
thors provide results on mitigation strategies that are
based on semi-automatic analysis of vulnerabilities
(Brunil et al., 2009) or API specific patterns (Niele-
bock, 2017). None of the approaches try to minimize
fault prone code changes, e. g. by considering coun-
termeasures beyond code or unused code.
Security Engineering. There is a wide range of dis-
cussions, papers and publications related to secure
software (Gazzola et al., 2019; Xu and Peng, 2016;
Gao et al., 2016). Due to the fast development of soft-
ware automatic detection and fixing becomes more
and more important. The fixing can also be supported
by machine learning (Tommy et al., 2017).
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7 CONCLUSION AND FUTURE
WORK

In this paper, we presented an approach for systemati-
cally dealing with huge vulnerability lists that may re-
sult from security analyses. Therefore, our approach
defines both a methodology and a technical approach.
While the methodology specifies how to execute a
code cleansing project, the technical approach pro-
vides support in mitigating the vulnerabilities beyond
code or at least with minimal manual effort. The ap-
proach has been applied to an industrial field study
for evaluation. Therefore, the technical approach has
been implemented prototypically.

Currently, we conduct additional field studies for a
more reliable evaluation of our approach. We intend
to iteratively optimize our tool-supported mitigation
through code injection based on the field studies. One
issue we want to improve is the adaptation to individ-
ual development guidelines such as naming conven-
tions. Therefore, we need to provide a possibility to
edit the code to inject for mitigation.
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