
Evaluation of a New Functional near Infrared Spectroscopy (fNIRS) 
Sensor, the fNIRS Explorer™, and Software to Assess Cognitive 

Workload during Ecologically Valid Tasks 

Bethany K. Bracken1, Colette Houssan2, John Broach2, Andrew Milsten2, Calvin Leather1,  
Sean Tobyne1, Aaron Winder1 and Mike Farry1  

1Charles River Analytics, 625 Mount Auburn St, Cambridge, MA, U.S.A. 
2University of Massachusetts Medical School, 55 N Lake Ave, Worcester, MA, U.S.A. 

{john.broach, andrew.milsten}@umassmemorial.org 

Keywords: Cognitive Workload, Functional Near Infrared Spectroscopy (fNIRS), Medical Simulation, Training, 
Ecologically Valid, Real World, Disaster Medicine Training. 

Abstract: Medical personnel and first responders are often deployed to dangerous environments where their success at 
saving lives depends on their ability to act quickly and effectively. During training, non-invasive measurement 
of cognitive performance can provide trainers with insight into medical students’ skill mastery. Functional 
Near-Infrared Spectroscopy (fNIRS) is a direct and quantitative method to measure ongoing changes in brain 
blood oxygenation (HbO) in response to a person’s evolving cognitive state (i.e., cognitive workload or mental 
effort) that has only recently received significant attention for use in the real world. The work presented here 
includes data collection with a new, more portable, rugged design of an fNIRS sensor to test the functionality 
of this new sensor design and our ability to measure cognitive workload in a medical simulation training 
environment. To assess sensor and model accuracy, during breaks from the training, participants completed a 
gold-standard, laboratory task and during training in a medical simulation environment. Linear mixed model 
ANOVA showed that when we accounted for fixed effects of intercept and slope in our model, there was a 
significant difference in the HbR Ch1 model for n-back load (coef=0.009, p=0.034), intercept (coef=0.96, 
p=1.21e-07***), and load (slope) (coef=-0.09, p=0.03). Future work will present data collected across all 
disaster response medical trainings.

1 INTRODUCTION 

Medical personnel are often deployed to a wide range 
of environments (e.g., sites of earthquakes, 
hurricanes, and other disasters) where their success at 
saving lives depends on their ability to act quickly and 
effectively. They are required to put to use the skills 
they have learned in the classroom and simulated 
trainings in some of the most stressful situations 
imaginable. To be truly effective, personnel must 
train to ensure skills transfer to environments that are 
chaotic and require performance over multiple days 
of sub-standard conditions (e.g., long working hours, 
sleep deprivation, abnormal food habits). In the field, 
personnel who experience cognitive overload due to 
inexperience or lack of skill may hesitate, make 
judgment errors, or fail to attend to critical situational 
details. Skills that are not mastered to the point of 

automatic response will not transfer optimally to 
these situations, putting patients at risk. Realistic 
training simulations ranging from classroom to 
simulated disaster scenarios provide medical teams 
with the opportunity to efficiently practice and hone 
medical skills; however, even the most rigorous 
training cannot ensure that personnel will perform 
effectively when faced with the aftermath of a 
disaster. Currently, trainers must infer trainees’ 
competence through behavioural observation alone. 
This is a challenging task as even highly experienced 
trainers cannot always reliably determine which 
trainees have mastered a task to the desired point of 
automatic response, or whether task execution still 
requires significant individual cognitive resources 
that will be exhausted in operational environments. 

Non-invasive measurement of cognitive 
performance can provide trainers with insight into 
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trainee skill mastery without overloading trainers 
with additional tasks, and support assessment of 
cognitive measures such as attention and cognitive 
workload. Objective information on attention and 
cognitive workload can help trainers understand the 
skill level of trainees and can provide insight into how 
much cognitive effort is required for trainees to 
accomplish certain tasks. (i.e., whether applying a 
new junctional tourniquet correctly was done 
effortlessly or still required significant attentional 
resources). A comprehensive understanding of 
trainee knowledge acquisition and skill application 
will both improve educational assessment techniques 
and increase the cost-effectiveness of current training 
practices by enabling trainers to focus on areas where 
trainees and teams require the most improvement.  

Non-invasive sensors can be used to supplement 
methods already used by trainers without significant 
extra effort and without further encumbering trainees 
(physically or cognitively). However, the majority of 
sensors commonly used to assess cognitive measures 
(e.g., electroencephalography (EEG)) are not 
designed for real world training environments, are 
sensitive to motion artifacts (Kerick, Oie, & 
McDowell, 2009), suffer from large variability across 
individuals (Mathan, Whitlow, Dorneich, Ververs, & 
Davis, 2007), and typically require post-hoc 
processing, preventing trainers from applying the 
resulting knowledge during training. Many sensors 
require significant training to learn how to correctly 
set up, use, and interpret and their measures are 
difficult to translate into a form that is easily 
understandable by the trainer (e.g., event-related 
potentials from EEG experiments). They also do not 
indicate to trainers which events (e.g., the entry of the 
30th casualty, or the application of a new tourniquet) 
resulted in the highest cognitive workload. These 
sensor systems are therefore unsuitable for use during 
live training exercises.  

Functional Near-Infrared Spectroscopy (fNIRS) 
is a quantitative method to measure ongoing changes 
in brain blood oxygenation (HbO) in response to a 
person’s evolving cognitive state (i.e., cognitive 
workload or mental effort) (Boas, Elwell, Ferrari, & 
Taga, 2014; Ferrari & Quaresima, 2012) that has only 
recently received significant attention for use in the 
real world. When cognitive workload increases, there 
is a corresponding increase in prefrontal blood flow 
that correlates with increased task engagement. Once 
the task becomes too difficult, there is a decrease in 
blood flow that correlates with disengagement from 
the task and decreased performance (Ayaz et al., 
2012; Bunce et al., 2011). Assessing cognitive 
workload with fNIRS when individuals are seated is 

well established. However, fNIRS sensor devices that 
can be used to assess cognitive workload during 
normal activities (e.g., combat medic training) are 
only recently emerging.  

One analogous study used fNIRS during real 
world navigation where participants had to navigate 
the Drexel University campus using either Google 
Glass or a handheld smartphone (McKendrick et al., 
2016). A secondary task was conducted concurrently 
to assess cognitive workload (an auditory version of 
the n-back). The n-back working memory task 
(Kirchner, 1958) is a gold-standard working memory 
task. The participants are presented with one stimulus 
at a time, and must respond “yes” if the current 
stimulus matches the one presented “n” items back. 
For the 1-back condition, this refers to the stimulus 
presented immediately before it. For the 2-back 
condition, this refers to the stimulus presented two 
items previously. Researchers found a decrease in 
hemodynamic response in right lateral prefrontal 
cortex (the location in which our fNIRS sensor is 
positioned) during correct responses. 

Standard sensors are large (e.g., full-head), 
expensive (~$10K), and require heavy equipment 
(e.g., batteries, laptops). To address this gap, we have 
designed and developed two new sensors that are 
smaller and more cost-effective, and is designed to be 
used outside the laboratory. We previously validated 
these sensors against other, larger and more 
expensive systems that in other environments 
(Bracken, Festa, Sun, Leather, & Strangman, 2019; 
Bracken, Elkin-Frankston, Palmon, Farry, & 
Frederick, 2017; Bracken, Palmon, Elkin-Frankston, 
& Silva, 2018). This paper presents our work to 
validate one of our fNIRS sensors and our software 
system to process and model data into estimates of 
cognitive workload, with a focus on medical student 
trainers during high-tempo training simulations in 
order to assist trainers in optimizing learning. The 
work presented here includes data collection with our 
next generation of portable, rugged fNIRS sensor to 
test both the functionality of this new sensor design 
and our ability to measure cognitive workload in a 
real-world medical training environment. 

2 METHODS 

All methods were approved by both the University of 
Massachusetts Institutional Review Board (IRB) and 
the United States Department of Defense Human 
Research Protections Office (HRPO). All participants 
were fully informed of all elements of the study and 
completed informed consent forms. We used a 
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rugged, portable, fNIRS sensor, the fNIRS 
Explorer™, shown in Figure 1. When compared to 
our previously-developed sensor, the fNIRS 
Pioneer™, the Explorer is smaller, consists of only 
one piece of hardware, is more comfortable due to 
including an adjustable headband, is more rugged 
with no charging ports or wired connects that could 
wear out or allow entry of sand, water, or dust.  

 

Figure 1: fNIRS Explorer sensor, bottom view of sensor 
that gets placed against the person’s forehead (left), and 
side view of the sensor with a pen shown for scale (right). 

When cognitive workload increases, there is a 
corresponding increase in prefrontal blood flow that 
correlates with increased task engagement. Once the 
task becomes too difficult, there is a decrease in blood 
flow that correlates with disengagement from the task 
and decreased performance (Ayaz et al., 2013, 2012; 
Bunce et al., 2011). However, sensor location 
matters. Because we are not using an EEG cap, and 
because our participants have different hair lines, we 
decided on the sensor placement in this picture with 
the optical density sensor (the square on the forehead-
facing side of the sensor) positioned ~2 inches above 
the outside edge of the eyebrow and the two light 
emitting diodes (the two small circles) positioned 
medially. Figure 2 shows the preferred positioning of 
our fNIRS sensors. The Pioneer is shown on the left 
to demonstrate more clearly position on the forehead. 
The Explorer is shown on the right as it was 
positioned for this study. 

   

Figure 2: fNIRS Pioneer sensor to demonstrate clear 
position on the forehead (left) and fNIRS Explorer as it was 
positioned for this study (right). 

To assess cognitive workload, we are focusing on 
dorsolateral prefrontal cortex (dlPFC). We acquired 
data from participants taking part in a Basic Disaster 
Life Support (BDLS), Advanced Disaster Life Support 
(ADLS), and/or Disaster Pre-deployment trainings 
which occur across multiple training environments 
ranging from in-classroom trainings (lecture format 
and interactive table-tops sessions) to high-tempo, live-
action role-playing simulated disaster events.  

Each course allowed time for us to collect data 
from each student during three levels of the n-back 
working memory task (Kirchner, 1958) to allow us to 
optimize accuracy of our cognitive workload models. 
We added this into the protocol based on results of our 
data modeling during our related efforts that found that 
we could increase model accuracy by collecting 
ground truth data using a well-validated cognitive task 
in order to train models to account for individual 
differences (Bracken et al., 2019). Participants 
completed the n-back on a tablet within the simulation 
environment during breaks from training. 

Although we only present data from the final 
training, we present the full set of trainings here so 
that the reader understands the training history of 
participants, and the full structure of the course. The 
first training included several classroom-based 
lectures. This is a full day and covered multiple 
topics. The second training included a lecture at the 
beginning of the day followed by splitting students 
into groups that move through four stations spread 
across multiple rooms including high-fidelity 
simulation labs. Each station lasted about an hour and 
topics included triage, basic life-saving skills (e.g., 
tourniquet application, airway), mass casualty triage 
(multiple simulated casualties in a room), donning 
and doffing personal protective equipment (PPE), and 
how to manage patient surge and patient flow 
(including logistics of handling a large surge in 
patients such as where there are open beds). The third, 
“pre-deployment”, course is spread over several large 
rooms near the Emergency Department. For the pre-
deployment course each station is 60-90 minutes. We 
planned to concentrate on two of the skills covered 
across all four types of training: triage and handling 
patient surges (similar to the mass casualty trainings), 
and to follow as many students across all three types 
of trainings as possible. 

Here, we will present the results of the second 
training. Eighteen people attended the second course 
on May 21-22 2019, and participated in research (9 
female; mean age 35, range 27-62). Participants were 
all recorded during three sessions – a series of lectures 
followed by interactive group table-top session. 
Recording sessions were randomized except for the 
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nine people we followed for the triage and surge 
activities. All 18 completed a baseline assessment (1-
, 2-, and 3-back versions of the n-back) on day one.  

The enrollment protocol was built based on the 
expected number of participants and the number of 
available sessions to record subjects for trainings and 
n-back testing. We had five time points to record n-
backs (registration, break1, lunch, break 2, and break 
3) and 14 segments from the four sessions. We 
assigned four people to each training segment in order; 
each with a separate Explorer sensor. The Casualty 
Triage and Public Health & Population Health/Q&A 
were used for the 10 people who were followed across 
trainings since their lessons correlated to the lectures 
and interactive session presented in ADLS and the pre-
deployment classes. The scenarios were pre-built into 
the MEDIC software so that the research assistants 
managing the training could press record when the 
subjects had their sensor placed on their heads. The 
scenarios for n-back were built as groups and before 
each set of subjects (3-4 at a time) took their n-back we 
added the subject number and which sensor was 
associated with each subject before we started 
collecting data. N-backs were completed on four 
laptops and the start of each n-back was recorded. As 
people checked in they completed their demographic 
survey, and a post-training session survey as soon as 
we collected the sensor from them.  

3 RESULTS 

To assess sensor and model accuracy, during breaks 
from the training, participants completed a gold-
standard, laboratory task and during training in a 
medical simulation environment. In this paper, we 
present only the data from that gold-standard task, the 
n-back. In future papers, we will publish results of the 
training simulation scenarios.  

We started by visually inspecting the data from 
the n-back task and the trainings (see Figure 7), and 
running data through our standard processing pipeline 
developed to handle data collected in non-laboratory 
conditions (e.g., when participants are not instructed 
to remain still, and data are collected on mobile 
devices (e.g., tablets) or moving around their 
environment taking part in realistic activities). This 
processing procedure applies advanced motion 
correction algorithms including wavelet filtering, 
movement artifact removal algorithm (MARA), and 
acceleration-based movement artifact reduction 
algorithm (AMARA) (Metz, Wolf, Achermann, & 
Scholkmann, 2015; Molavi & Dumont, 2012; 
Scholkmann, Spichtig, Muehlemann, & Wolf, 2010). 

analysing n-back data, pooling data across all 
participants. Figure 3 shows n-back response 
accuracy (correct responses) versus n-back level 
(load). There was a statistically significant decrease 
as determined by a one-way ANOVA (F(2,24)=4.27, 
p=0.03). A Tukey posthoc test with corrections for 
multiple comparisons revealed that accuracy 
significantly decreased between the 1-back and 3-
back condition (t=-2.913; p=0.02). We did not find a 
relationship between response time with load (one-
way ANOVA; F(2,24)=0.10, p=0.90). 

 

Figure 3: N-back performance—accuracy versus n-back 
load. There was a decrease with load (a one-way ANOVA 
(F (2,24)=4.27, p=0.03)). Tukey posthoc test revealed that 
accuracy decreased between 1-back and 3-back; no 
difference between 1-back and 2-back. Error bars are 
standard deviation. 

We next compared blood oxygenation changes 
across n-back load conditions. The Explorer sensor 
collects data at two locations, so there are four 
variables to consider: oxygenated blood signal (HbO) 
and deoxygenated blood signal (HbR) from channel 1 
(the location of assessment that is more lateral) and 
HbO and HbR from channel 2 (the location of 
assessment that is more medial). Figure 4 shows 
blood oxygenation versus n-back load. Oxygenated 
blood signal from Explorer channel 1 is shown in 
salmon (HbO Ch1); oxygenated blood signal from 
Explorer channel 2 is shown in green (HbO Ch2); 
deoxygenated blood signal from Explorer channel 1 
is shown in blue (HbR Ch1); and deoxygenated blood 
signal from Explorer channel 2 is shown in purple 
(HbR Ch2). We saw no significant difference when 
we pooled data across participants (four separate one-
way ANOVAs; all p>0.41). 

Based on our previous results showing large inter-
individual differences in both performance and blood 
oxygenation on both the standard working memory 
task, the n-back (Kirchner, 1958), and on a more 
complex task, the multi-attribute task battery  
(MATB; (Bracken et al., 2019; Comstock & 
Arnegard, 1992; Santiago-Espada, Myer, Latorella, 
& Comstock Jr, 2011)), a multi-task battery designed 
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by NASA. We next broke out the data to examine 
each individual subject. This is shown in Figure 5. 
These data are indicative of the high degree of 
variability in performance we have previously noted 
in working memory tasks. We have found that 
incorporating this variability is beneficial to 
modelling efforts. 

 

Figure 4: Blood oxygenation versus n-back load: no 
significant difference on pooled data. 

 

Figure 5: N-back accuracy versus load broken out by 
individual subject. 

Figure 6 shows changes in blood oxygenation 
versus load broken out by individual subject. As 
previously noted, the individual subject variability in 
performance and hemodynamics means any 
modelling efforts must incorporate this complexity. 
To this end, we turned to linear mixed effect models 
for our efforts to predict accuracy as a function of 
brain oxygenation and workload by incorporating a 
fixed effect of slope and intercept by subject. There 
was a significant difference in the HbR Ch1 model for 
n-back load (coef=0.009, p=0.034), intercept 
(coef=0.96, p=1.21e-07***), and load (slope) (coef=-
0.09, p=0.03). Model variants incorporating different 
blood oxygenation variables (HbO Ch1, HbO Ch2, 
HbR Ch2) also included significant intercept and load 
coefficients but not relationship between blood 
oxygenation and accuracy (i.e., cognitive workload). 

 

Figure 6: Changes in blood oxygenation versus load broken 
out by individual subject. Linear mixed model ANOVA 
showed that when we accounted for fixed effects of 
intercept and slope in our model, there was a significant 
difference in the HbR Ch1 model for n-back load 
(coef=0.009, p=0.034), intercept (coef=0.96, p=1.21e-
07***), and load (slope) (coef=-0.09, p=0.03). 

We next analyzed the medical curriculum training 
data. Each separate training focus (e.g., triage) was 
saved as a separate data file. However, the UMass 
experimenters only indicated the beginning of each 
training session, and did not annotate the data as to 
when the session ended. So we first visualized the 
data to decide if we should exclude some of the data 
collected during the session (e.g., if the last 25% of 
the data was a large outlier in terms of blood 
oxygenation, accelerometry, or any of our quality 
control (QC) variables that it seemed likely that it was 
collected after the termination of the course 
curriculum). In fact, this QC process was designed 
specifically for exploring issues of data quality. 
Figure 7 shows the corresponding data for HbR Ch1. 
This shows that data could not reliably be excluded 
from any particular quartile as there was not a 
characteristic difference in data split with this method 
(e.g., the first quartile is reliably different due to a 
difference in the experience of the participant such as 
donning of removing the sensor during this period). 

 

Figure 7: HbR Ch1 data collected during training scenarios 
binned by time within scenario (first 25% in pink, second 
25% in green, third 25% in blue, last 25% in purple). 

We will next visualize accelerometry data and QC 
variables in the same manner to determine which 
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chunk of the data we should exclude, if any. We 
began by asking whether the first or last quartile of 
each dataset contained significantly more artefacts 
than the middle portions of the dataset, and whether a 
heuristic could be used to remove portions of the data 
that consisted primarily of noise (e.g., by removing 
the last quartile of data for all subjects). We first 
plotted each individual subjects’ accelerometer data. 
We discovered that signal artefacts were primarily at 
the end of the data time series, rather than at the 
beginning of the time series, likely corresponding to 
the removal of the sensor from the subject’s head 
before the sensor was shut off or recording was 
terminated (see Figure 8).  

 

 

Figure 8: Accelerometry data from two subjects showing 
large motion artefact at the end of the session, likely 
corresponding to removal of the sensor. The x-axis is shown 
in red, y-axis is shown in green, and z-axis shown in blue. 

We also discovered that we could not reliably 
remove a percentage of the data (e.g., the last quartile) 
as the length of the time series differed between 
subjects within the same training due to differences in 
how the subject progressed through the training or 
how quickly the research assistants were able to 
attend to the sensors once the training was completed. 
In order to perform the necessary scrubbing of non-
training data from the end of the time series, we used 
the accelerometer data as an indicator of end-of-
session sensory removal (see section indicated by 
black box for Subject 2 in Figure 8 for example) and 
manually clipped these times from each individual 
subject’s dataset. In order to facilitate comparison of 

individual datasets with slightly different end-of-
session motion profiles we clipped all subject’s 
datasets within an individual training to the same time 
point (compare panels A and B in Figure 8). For 
example, both subjects in Figure 8 participated in the 
same training (“Triage for Disaster and Public Health 
Emergencies”) and displayed similar levels of motion 
across the training. Subject 2’s time series is longer 
than that of Subject 1, and the extra time contains a 
significant amount of motion. This likely corresponds 
to the removal of the sensor for Subject 2 without 
immediately turning the sensor off or stopping 
recording on the tablet. The accelerometer then 
continues to register movement which, due to the lack 
of annotations in the data, cannot be distinguished 
without manually inspecting the dataset. For the two 
subjects in question in Figure 8, no data was clipped 
from Subject 1 due to signal artefacts, while several 
thousand data points were clipped from Subject 2 to 
account for the erroneous data captured while the 
sensor was not placed on the subject. 

This gave us confidence to trim the data using this 
protocol. We visualized accelerometer data from all 
training scenarios together and evaluated each 
subject’s time series for motion. If motion was 
present, we determined an approximate point at 
which the aberrant motion started and then removed 
that data from the time series. When possible, subject 
time series’ from the same training were clipped at 
the same point to facilitate a fair comparison across 
subjects. Figure 9 displays the raw (left) and 
AMARA-filtered (right) signal for a single subject 
before (top) and after (bottom) the clipping 
procedure. It is clear that the clipping procedure does 
not alter the characteristics of the signal in any way 
as it is performed after all online pre-processing is 
performed. In addition to verifying that the data are 
not altered in some way by clipping out the aberrant 
signal at the end of the time series, we also noted that 
the initial transient at the beginning of the time series, 
likely due to the initial online sensor calibration, is 
still present in the data. We might not have been 
aware of this if we were not evaluating each dataset 
individually. We will add an automated procedure to 
our existing processing pipeline to find and remove 
large transient in the first few sample of the time 
series. We will also pursue automated measures of 
detecting aberrant signal at the end of the time series 
based on the accelerometer data. 

Analysis of the training data began with 
determination of difficulty levels for the different 
trainings. No performance measures are available for 
these trainings, as is often the case for real-world, 
ecologically valid tasks, so we relied on the subjects 
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self-report level of difficulty experienced during the 
training as reported via an after-action survey 
administered through REDCap (https://www.project-
redcap.org/software/). Figure 9 displays stacked bars 
of the difficulty ratings per training, with the median 
difficulty marked by a black point. The range of 
difficulty spanned only 1 (“Not challenging at all”) to 
3 (“Somewhat challenging”), with the median overall 
perceived difficulty across trainings equal to 2. 
Overall, this meant that subjects may not have 
experienced the level of difficulty seen in the 2-back 
version of the n-back, which is typically reported as a 
very challenging test of attention and working 
memory. 

 

Figure 9: Raw (left) and AMARA-filtered (right) signal for 
a single subject before (top) and after (bottom) the clipping 
procedure.  

 

Figure 10: Self-reported difficulty ratings for each training. 
Median difficulty for each training is indicated by a black 
point. 

In addition to limited variability in the self-
reported difficulty rating, analysis of the training data 
was further complicated by the mismatch between n-
back data and training data. Not all subjects who 
completed the medical trainings possessed n-back 
dataset required for adapting modelling procedures to 

each subject. This limited the number of subjects 
available for a full analysis. As was done with the n-
back modelling, we attempted to model the training 
data according to level of experienced difficulty (i.e., 
performance), here indicated by the self-reported 
difficulty measure, using mixed effects models. We 
used standard mixed effects analysis with a random 
intercept. Unlike our n-back analysis, we could not 
include a random effect of slope as all subjects did not 
participate in trainings of all difficulties. As we have 
shown in the past, without the ability to model the 
subject specific baseline, we were unable to predict 
subject difficulty reported in the REDCap survey with 
any fNIRS-derived blood oxygenation metrics. In 
addition to mixed effects modelling, we also 
attempted to predict self-report difficulty using 
multinomial logistic regression and ordered logistic 
regression and found no relationship between fNIRS 
and difficulty.  

4 DISCUSSION 

The results of our n-back data analysis have validated 
that this new form factor of the sensor collects reliable 
data and that we are able to quantify cognitive 
workload. Our blood oxygenation data changed as 
expected with effort level on the task. However, we did 
not see significant changes until we had accounted for 
individual differences in performance on the task, 
which fits with our previously-published results.  

Unfortunately, the problems with dropped signals, 
unannotated data files, and device malfunction during 
acquisition of the medical training simulation data 
meant that we did not have adequate parity between n-
back data and training data on individual subjects. 
Therefore, we are unable to add individual 
performance on the n-back into the model.  

Here we primarily present pooled data, whereas 
all of our previous results have shown that large 
individual differences are likely present (e.g., an 
increase in HbR with increase mental effort for some 
subjects and a decrease in HbR with increased mental 
effort for others) (Bracken et al., 2019).  

Our future work is focusing on additional adding 
an individualization parameter to our model by 
adding information on each individual’s change in 
blood oxygenation during the n-back task to assess 
changes in cognitive workload during the medical 
simulation training data. Our prior work shows that 
this level of individualization of the model is required 
for adequate characterization of cognitive workload. 
We plan to automate the individualization procedure 
in future data acquisition and modelling efforts.  
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An objective, accurate, real-time capability to 
inform trainers of the level of cognitive workload 
experienced during training would enabe trainers 
effectively tailor trainings to maximize impact and 
decrease cost associated with over-training particular 
skills or trainees. Additional studies must be 
conducted to further validate our sensors and data 
analysis and modelling software to prove validity of 
such a system. 
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