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Abstract: During of the life cycle of ship, multiple decisions concerning design, operation and demolition must be made. 
The Life Cycle Assessment/Cost (LCA/LCC) framework applied in ships, mandates that such decisions need 
to encounter dominant economic and environmental aspects about the ship. In this paper we consider these 
decisions in the context of Multi-Criteria Decision Analysis and present a methodology to construct composite 
indicators to assist decision making. For the criteria introduced we propose the use of key performance 
indicators (KPIs) that quantify economic and environmental dimensions. For the construction, aggregation 
and weighting of the KPIs we present linear programming models that estimate the weights endogenously 
from the data. The models developed can discriminate the optimum designs, thus assisting decision making.  

1 INTRODUCTION 

A ship Life Cycle Assessment (LCA) is a framework 
to evaluating different economic and environmental 
aspects and impacts, from its design and building 
from raw materials, through operation, maintenance, 
end-of-life treatment, recycling and final disposal to 
its end of lifetime. It is a tool to better understand 
costs, risks, opportunities, trade-offs and nature of 
environmental impacts. LCA can assist in identifying 
opportunities to improve the environmental 
performance of a ship at various points in its life 
cycle, in informing decision and policy makers in the 
maritime industry and in selecting relevant indicators 
of economic and environmental performance.  

The basic theory of LCA (Curran, 1996) is 
transferred to the field of maritime and shipping from 
the products and services design throughout their 
lifespan. For the products, the requirements and the 
implementing guidelines for LCA is covered by the 
international standards ISO 14040 and 14044 (ISO 
2006). Especially the economic impact of LCA, has 
been addressed by the concept of Life Cycle Cost 
(LCC) (Aurich et. al., 2007; Dhillon, 2013). LCC 
aims to identify factors that affect cost, to quantify 
them and to evaluate the cost effectiveness of 
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alternative strategies to incur over a specified period 
of time. LCA/LCC were applied to energy systems, 
electromobility, buildings and built environment, 
food and agriculture, biofuels and biomaterials, 
chemicals, wastewater treatment, solid waste 
management, etc. (Hauschild et. al, 2018).  

Ships, seen as complex systems, integrated in 
economic, technical and transportation activities, 
need to be studied in line with the concept of 
LCA/LCC (Marius, 2014; Angelfoss, 1998). Ships’ 
life cycle is decomposed in three phases: the design 
and ship building (phase I), the operation & 
maintenance (phase II), and the end-of-life, 
demolition and disposal (phase III). During the ships’ 
life, designers, shipowners, executives, and others, 
are confronted with different decision situations that 
are complex and involve a large number of options 
and alternatives. For example, in the ship 
design/construction phase, shipbuilders -- based on a 
primitive ship construction (ship reference) that 
fulfils all the technical, cruising, safety and 
environmental regulations -- have a large number of 
options to consider and evaluate as type of fuel and 
engines, materials for the structure and 
superstructure, type of generators. Every single 
combination, if applied to the final ship structure, has 
economic and environmental consequences.  
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During the operation phase of a ship, the 
LCA/LCC approach may give useful answers to 
questions such as which technical adjustments are 
cost /environmental effective so to reduce operating 
expenses? which are the most beneficial options for 
ship lay-up or hire out for offshore storage facility? 
which is the most environmental friendly and cost 
efficient solution among alternatives such as to burn 
diesel fuel inside ECA or to install scrubbing 
technology or even after a costly damage? which 
alternative decisions (in terms of costs) are the most 
valuable: repair the vessel? to sell the ship in the 
second-hand market or to sell ship for scrap?. Finally, 
in the end-of-life period, the decision whether to 
dismantle a ship or continue the activity by 
restructuring it in a retrofit procedure or convert it to 
another type of maritime mission, requires both 
technical condition assessment and economic 
evaluation since a decision may end up in adverse 
economic results, with a negative impact on the 
environment. 

In this paper we allege that a significant number 
of problems that arise during the life cycle of a ship 
with the context of LCA/LCC, can be formulated and 
considered under the scope of decision-making 
theory. Accordingly, a decision-maker is called to 
evaluate alternatives on the basis of two or more 
criteria so to discriminate the superior in terms of 
economy and environmental impact. For the criteria, 
we particularly consider established economic and 
environmental key performance indicators (KPIs) 
that measure the performance of each alternative 
decision in specific aspects (ship building cost, 
operational expenses, maintenance and repair costs, 
energy efficiency, NOx/Sox emissions etc.). Then, 
based on mathematical programming methods, we 
propose to aggregate the KPIs in composite indicators 
that express more abstract concepts, understandable 
by the users thus assisting the decision-making 
process.  

This paper is organized as follows. Section 2 
presents the relation of KPIs used as criteria in the 
decision-making LCA processes. Section 3 presents 
the construction of composite indicators so to exploit 
KPIs and assist decision making by identifying the 
optimized alternative decisions. Section 4 presents an 
illustrative example for evaluating alternative ship 
designs. Conclusions appear at the end of this paper.  

 
 
 
 
 
 

2 KPIs AND COMPOSITE 
INDICATORS IN SHIP LIFE 
CYCLE ASSESSMENT 

Key performance indicators (KPIs) within the 
LCA/LCC framework are quantifiable performance 
measurements used for specific economic, technical, 
operational and environmental dimensions of a ship. 
Common KPIs, potentially used in ship LCA/LCC 
are the: (1) Building Cost, Capital Expenditure 
(CAPEX), (2) Operational Expenditure (OPEX), (3) 
Maintenance and Repair costs (MRC), (4) Average 
Annual Cost (AAC), (5) Required Freight Rate 
(RFR), (6) Net Present Value (NPV), (7) Average 
Annual Benefits (AAB), (8) Earnings Before 
Interests, Taxes, Depreciation and Amortization 
(EBITDA), (9) Return on Investment Capital (ROIC), 
and (10) Energy Efficiency Design Index (EEDI). 
KPIs like the above, are provided in different units, 
dollars, number of years etc., may have any scale of 
measurement, ratio, ordinal etc. and may have 
positive contribution/utility (e.g., NPV, EBITDA, 
EEDI) or negative (OPEX, MRC, AAC, NOx/Sox 
emissions). Such KPIs have been used in past 
research studies to estimate the ships’ performance. 
For instance, the work of Gratsos & Zachariadis 
(2009) examines the importance of the Average 
Annual Cost (AAC) as an indicator to evaluating 
different ship designs that technically appear as 
optimized. Furthermore, the Energy Efficiency of 
Operation (EEO) (Lu et al., 2015) is defined and 
utilized to predict the operational ship performance. 

According to the LCA/LCC, KPIs are used for 
measuring costs, revenues, energy efficiency, etc., not 
only for a specific period but for the entire lifecycle 
of the ship. For example, during the ship design (first 
phase of LCA), different ship models and 
configurations are evaluated in terms of operating – 
maintenance costs, total revenues gained during the 
operation phase, price at the time of demolition, 
potential use of recycled materials etc. In this context, 
the decision-making problem is to identify those 
alternative designs that have the total optimum 
performance (minimum costs, maximum revenues, 
minimum environmental impact). This goal cannot be 
achieved by only exploiting KPIs, because they are of 
low-level and measure only partial dimensions. 
Furthermore, KPIs may usually conflict one another. 
For example, a ship built with low budget, at the 
operation stage may have higher maintenance and 
repair costs.  
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In this study we propose as more beneficial for the 
assessment of different alternative decisions the use 
of composite indicators derived from the aggregation 
of properly selected KPIs. Composite indicators, in 
general, are commonly used for benchmarking of 
entities, summarizing in a single measurement, 
complex social, economic, environmental etc. 
concepts by involving several thematically related 
sub-indicators. According to our approach, composite 
indicators’ that measure abstract concepts such as 
“economic benefits”, “environmental impact” etc., 
meaningful to a decision-maker, may derive from the 
aggregation of the values of individual sub-indicators 
(KPIs).  

 

Figure 1: The hierarchy of data processing, from raw data 
to KPIs and composite indicators. 

Figure 1 presents the place of the composite 
indicators in the hierarchy of data processing, 
deriving from KPIs regarded as sub-indicators which 
in turn are estimated from data sources (ship technical 
specifications, Operations and Maintenance data, 
Maritime statistics, Market Analysis data etc.).  

3 DERIVATION OF THE 
COMPOSITE INDICATORS  

In the derivation process of composite indicators, the 
aggregation and the weighting are the most important 
steps and for them, a number of alternative 
methodologies (Nardo et al. 2005, OECD 2008) have 
been proposed to substitute the common approach of 
using additive or multiplicative average formulas in 
conjunction with constant, predetermined values for 
the weights: Principal components/Factor analysis, 
Benefit of the doubt approach, Unobserved 
components model, Budget allocation process, 
Analytic hierarchy process, Conjoint analysis etc. 
Among them, the Benefit of the doubt (BoD) 

modelling (Melyn and Moesen, 1991; Cherchye, 
2007) uses linear programming and an additive 
weighted-based form to estimate the scores of the 
composite indicator. Advantage of the method is that 
it arranges so the weights of the sub-indicators to 
derive directly from that data, endogenously, as result 
of an optimization process. BoD is inspired by the 
multiplier formulation of Data Envelopment Analysis 
(DEA) (Charnes et. al, 1978) as it estimates different 
weights for each unit (alternative design) under 
assessment, choosing the most favourable values so 
to let them reach the highest possible score. BoD 
modelling can discriminate alternative decisions to 
superior and non-superior. Figure 2 depicts the 
estimation process.  

 

 

Figure 2: The estimation of the superiority index from the 
decision matrix. 

BoD linear programming models are applied to 
the decision matrix composed of alternative decision 
scenarios and the KPIs (criteria) to obtain a total 
performance score. Alternative decisions with score 
equal to 1 are regarded as superior. The mathematical 
background of this method is briefly described in the 
following sub-sections. 

3.1 Optimization Models for the 
Aggregation and the Weighting of 
KPIs 

Assume that in a typical assessment in the ship design 
/building phase I, n alternative designs have to be 
assessed in terms of m KPIs so to derive scores of a 
composite indicator. The decision matrix of the 
problem is composed of a set of n alternative designs 

1 2{ , , ..., }nA a a a and of m individual KPIs 

Alternative 

scenarios KPI_1 KPI_2 ….. KPI_m

#1 0.25 1250 ….. 55.3

#2 0.48 1750 ….. 48.18

#3 1.32 1950 ….. 23.45

….. ….. ….. ….. …..

#n 0.99 980 ….. 60.15

KPIs
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1 2, , ..., mX X X , 1 2( , , ..., )i i i inX x x x  

1,..,i m . The values , 1, .., , 1, ..,ijx i m j n 
denote the performance score of the alternatives 

ja  

on the KPIs iX .For any alternative
ja , the 

contribution of a the i-th KPI to the total value of the 

composite indicator, is expressed by the factor i ijw x

, with the weight iw  to be unknown, under 

estimation. In such a setting, the value of the 
composite indicator for an alternative j derive by the 

additive linear form 
1

m

j i ij
i

I w x


  . The value jI

expresses the total performance of the alternative ja

on all the involved KPIs. Consequently if for two 
alternatives 1 2,j j  holds 

1 2j jI I , the conclusion is 

that alternative 1j , is superior (has better 

performance) than alternative 2j . It is important to 

note that this additive form function designates a 
compensatory approach (OECD 2008, Bandura 2011) 
according to which, any possible disadvantage (low 
value) of a particular alternative design in a specific 
KPI can be counterbalanced by the advantage (high 
value) in other KPIs.  

For the estimation of the values of the weights iw
, the BoD model (1) is proposed.  

0 0
1

  I
m

j i ij
i

Max w x


   

1

1,  1,..,
m

j i ij
i

I w x j n


    

, 1,..,iw i m   

(1)

Model (1) is solved n times, once for each alternative 
design 0j and estimates the optimal values 

* , 1, ...,iw i m of the weights so to maximize its 

total performance score. Let this score be 
0

*
jI . The 

constraints 
1

1,  1,..,
m

i ij
i

w x j n


   ensure a 

comparative assessment and set maximum attainable 

score 
0

*
jI equal to 1. The factor ε in the constraint

, 1,..,iw i m  , seen as a parameter, is assigned 

small values (approximately ε =10-6) and prevents the 
weights to accept zero values. Model (1) is able to 
discriminate alternative designs to superior and non-
superior. Superior are those that, in the comparative 

process, achieved to reach the upper bound score 1 by 
selecting the proper optimal values *

iw  (superior 

alternatives={ *: 1jj I  }) and non-superior are 

those that did not succeeded to do so ( non-Superior 
alternatives ={ *: 1jj I  }). 

About the meaning of the weights iw and the 

values that can be assigned to them, it is necessary to 
point out that they must not be considered as 
importance coefficients that reflect the contribution 

of a KPI to the value *
jI  but rather as the “trade-off” 

factors expressing the marginal rate of substitution 
between two alternatives (Decancq and Lugo 2013). 
In sub-section 3.4 the issue of restricting them 
according to the users’ opinion will be discussed.  

Despite the flexibility of Model (1) to choose the 
weight values directly from the data, there are certain 
drawbacks: it provides unrealistic weight values, it 
privileges the alternatives with high performance to 
only few sub-indicators, it is not capable to 
discriminate those that achieve the highest score 1 
and due to different set of weights, lacks a common 
cross-alternative comparison (Zhou et al. 2007). The 
latter can be resolved by a model variation that uses 
common set of weight values. The issue of common 
weights in BoD has been transferred again from the 
similar DEA context (see Kao (2010), Bernini et al. 
(2013), Koronakos et al (2019)). The modified 
extension of model (1) with common weights is 
formulated as follows.  

For an alternative j, let 
jd  be the difference 

between the sum 
1

m

i ij
i

w x

  and the 1 (the deviation 

factor from the absolute attainable score 1), i.e. 

1

1
m

j i ij
i

d w x


   . By its definition, 
jd is a positive 

number 0jd  , while the sum 
1

n

j
j

d

 denotes the 

total deviation of all the alternatives from the absolute 
score 1. The basic idea behind the common 
assessment is to let alternatives cooperate in order to 
get as close as possible to the absolute score 1. This 
approach can be characterized as fair and democratic 
since all the alternatives, collectively and equally, 
participate to the generation of the optimal set of 
common weights that yield the composite index. In 
terms of linear programming, this is translated as a 
goal to minimize the total deviation expressed by the 
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sum 
1

n

j
j

d

 . Model (2) achieves to do so.  

1

  
n

j
j

Min d

  

1

1,  1,..,
m

i ij j
i

w x d j n


    

, 1,..,

0, 1,..,
i

j

w i m

d j n

 

 
 

(2)

In model (2), the objective function minimizes the 
sum of the deviations (distance of L1 norm) of all 
alternatives between the performance that they can 
achieve using the common multipliers and their ideal 
rating. Compared to model (1), model (2) requires 
less computational effort as it is solved only once and 
it produces lower scores from model (1), thus 
providing higher discrimination.  

3.2 Controlling the Number of 
Superior Alternatives 

About the parameter ε, it is important to notice that 
higher values than ε =10-6 reduce the number of 
superior alternatives and thus affect the 
discriminating power of the method (Cook et al. 
1996). Large enough values may result to infeasibility 
of model (1). The greatest unique value of ε, say ε* 
that makes model (1) feasible, ensures that only one 
superior, the best, alternative is obtained from the 
process (Toloo & Tavana 2016). Such a value ε* can 
be estimated by model (1) when its objective function 
is replaced by   εMax  and the rest of the constraints 
remain unchanged. 

3.3 Normalization 

Models (1)-(2) are capable to incorporate data from 
KPIs that are expressed in different measurement 
units (dollars, years of ship operation, etc.). However, 
normalization of the data in KPIs is needed before 
applying the aggregation step. The main reason is to 
convert the data so all KPIs to have a positive 
contribution or utility – higher values are more 
desirable (for example Operational Expenditure - 
OPEX). Another reason is that models (1)-(2) are 
sensitive to outliers and to highly skewed data. The 
normalization can be achieved with different 
methodologies for example min-max, z-score etc. 
 

3.4 Implementation of  
Decision-Makers’ Preferences 

Models (1)-(2) give freedom to the alternative designs 
to assign such weight values so to appear as superior 
as possible. This means that any design can appear as 
excellent performer by overestimating those KPIs 
that has advantage over the rest. However, this 
situation may give results that contradict to prior 
common views and overestimate KPIs that are 
insignificant to the decision-maker. Fortunately, BoD 
models are able to incorporate prior information by 
imposing additional weight restrictions that express 
the common value judgments of the decision maker. 
The most important are those of type “pie-share”, 
initially proposed by Wong and Beasley (1990) and 
classified by Cherchye et al. (2007), that affect the 
contribution of each KPI to the total indicator score.  

For example the constraint 

1

i ij

m

i ij
i

w x
a b

w x


 


, 

imposes that the proportion /share of the i-th KPI will 
vary between the constants ,a b . In the same manner, 

ordinal constraints of the “share” type can be adopted 
to prioritize the contribution of a KPI over others. 
This type of restrictions overcome the difficulty on 
the interpretation of the weights and shift the focus to 
KPI shares which are completely independent of 
measurement units and easily understandable by the 
decision makers.  

4 ILLUSTRATIVE EXAMPLE 

Assume that in the design /building phase of a new 
40,000 DWT (Handymax) bulk carrier ship, the basic 
technical specifications have been decided so to 
consist the basic ship reference. Based on that, 18 
alternative designs are considered as feasible for 
implementation. These derive as distinct 
combinations of different types of superstructure 
materials (steel of various strength), of engines (2-4 
strokes DE, Gas turbine etc) and equipment 
(scrubber, ballast water treatment system, etc). The 
problem under consideration is, which set of the 
alternative designs achieve the best performance in 
terms of economy and environmental impact, 
considering the whole life of the ship, from its first 
day of operation to its last. The proposed approach of 
this paper is to define two composite indicators, say 
ECO for economy and ENV for the environment, 
estimate their values for all the alternative designs 
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and by comparing them, identify the most optimised 
designs, the ones candidate for implementation.  

For this problem, a number of KPIs may be 
selected to describe both the economic and 
environmental dimensions. In this example, we 
further assume that a decision maker selects as the 
most appropriate for the ship economy three KPIs, 
namely the CAPEX, OPEX to represent costs and 
AAB for the revenues. CAPEX measures, in thousand 
$, the funds that a ship owner uses to purchase a 
vessel from a shipyard, OPEX accounts in thousand $ 
per year, the ongoing costs that a ship owner pays to 
run the ship over a specific period, e.g. typical year of 
operation, while AAB represents the revenues and is 
the average annual benefits form the ship, measured 
in thousand $ per year. The details (formulas, data 
parameters) for the estimation of these KPIs are not 
mentioned here due to the limited size of the paper. 
Accordingly, the environmental savings are described 
by EEDI (Energy Efficiency Design Index) and the 
NOx and Sox emissions calculated from the technical 
specifications of each alternative design.  

The values of the above mentioned KPIs appear 
in Table 1. In this table, the first design, indicated as 
REF, corresponds to the basic ship reference that 
participates in the assessment equally with the rest of 
the alternative designs. 

Table 1: The basic data set.  

Desgin CAPEX OPEX AAB EEDI NOx SOx 
REF 6582 1.454 5.836 6.8 13.81 3.45 
d1 5377.1 1.447 3.494 7.7 12.3 2.26 
d2 5751.8 1.507 3.613 3.6 11.46 1.25 
d3 5924.2 1.362 5.284 4.5 11.99 2.92 
d4 6914.8 1.61 3.856 4.2 11.14 1.96 
d5 5432.2 1.328 5.397 4 12.09 3.74 
d6 5754.8 1.567 4.728 3.9 14.37 1.98 
d7 5650.4 1.6 6.023 3.1 11.01 1.5 
d8 5524.8 1.362 3.863 2.9 12.9 2.21 
d9 6718.6 1.61 3.8 4 12.09 3.74 
d10 7180.9 1.328 3.893 4.4 11.39 1.81 
d11 5944.9 1.424 3.875 5.6 14.44 3.75 
d12 7056.5 1.575 4.388 4 12.09 3.74 
d13 5360.7 1.338 5.879 3.2 11.35 4.98 
d14 5412.5 1.297 4.691 6.8 13.99 2.48 
d15 6247.4 1.547 3.474 7.7 11.66 3.76 
d16 6526.3 1.61 5.157 4 12.09 3.74 
d17 5337.8 1.328 4.058 3.4 12.51 2.6 
d18 6260.3 1.435 5.165 7.9 11.03 4.43 

 
From inspecting the data in Table 1, we may 

notice that a number of alternatives (e.g. d2) have 
adequate performance on economy and poor in the 
environmental KPIs while for others (e.g. d14) is 
vice-versa. 

In order to estimate the values of the composite 
indicators ECO, ENV, models (1), (2) are applied to 
the data set. Before that, a normalization process (see 
Section 3.3) eliminates the differences in the scales of 

measurement and reverses to positive the values for 
the indicators with negative utility such as CAPEX, 
OPEX, NOx, SOx. In such an arrangement the two 
composite indicators ECO, ENV appear both with 
positive utility (the higher the values, the better is the 
design). Moreover, for the estimation of the economy 
indicator ECO, we considered as most important the 
AAB sub-indicator, giving emphasis to the revenues. 
Accordingly, for the ENV indicator, the most 
important sub-indicator is considered EEDI. This 
initial information is implemented to the modelling as 
ordinal weight restrictions of type “share” (see 
Section 3.2). The values resulted from the model 
application for the composite indicators ECO and 
ENV, appear in the last four columns of Table 1.  

The values of composite indicators ECO, ENV 
derived from models (1)-(2) appear in Table 2.  

Table 2: The values of the two composite indicators ECO, 
ENV obtained by Models (1), (2). 

 Model (1) Model (2) 
Design ECO ENV ECO ENV 

REF 0.949 0.708 0.935 0.644 
d1 0.796 0.766 0.806 0.797 
d2 0.784 0.935 0.788 0.802 
d3 0.934 0.858 0.941 0.747 
d4 0.747 0.923 0.757 0.894 
d5 0.969 0.875 0.970 0.695 
d6 0.863 0.788 0.844 0.763 
d7 1.000 1.000 0.923 1.000 
d8 0.840 1.000 0.855 0.780 
d9 0.749 0.875 0.756 0.695 
d10 0.791 0.898 0.842 0.908 
d11 0.813 0.708 0.827 0.609 
d12 0.790 0.875 0.799 0.695 
d13 1.000 0.970 1.000 0.687 
d14 0.928 0.700 0.936 0.710 
d15 0.747 0.802 0.758 0.713 
d16 0.863 0.875 0.848 0.695 
d17 0.873 0.902 0.885 0.752 
d18 0.898 0.839 0.902 0.719 

 
Based on the results presented in Table 2, a 

number of remarks are possible. First, focusing on the 
results of model (1), several designs appear as 
superior (score equal to 1) in one of the two 
dimensions. This is the case for designs d7 and d13 
on economy (ECO indicator) and d7 and d8 on the 
environment (ENV indicator). Only design d7 is the 
best in both economics and environment and 
presumably this design is suggested as the optimum 
that achieves reduction of costs and the best 
environmental protection. Scores obtained from 
model (2) with common weights are lower that those 
from model (1). Consequently, alternative d8 loses its 
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superiority classification and only d7 and d13 are 
superior in ENV and ECO, respectively. Note that in 
this model, no alternatives are optimum in both 
composite indicators. 

 

Figure 3: Graph of the values ENV, ECO composite 
indicators derived from models (1)-(2). 

Figure 3 presents the scores of designs in two axes 
ENV and ECO, as obtained from model (1). Design 
d7 located at the upper right corner with score 1 on 
both ECO, ENV indicators is the best alternative. 
Other alternatives that lie on the horizontal and 
vertical boundaries (score 1) are superior in only one 
dimension. Note that the basic reference design 
(REF), being in an intermediate position, did not 
achieved to reach superiority as other designs have 
been proved better than this.  

5 CONCLUSIONS 

This study contributes to the ship LCA/LCC concept 
by suggesting composite indicators to assist decision 
making. Decision situations are formulated as multi-
criteria decision making/analysis problems in which, 
key performance indicators-KPIs are considered as 
economic and environmental criteria while the 
different decisions to be made consists the 
alternatives. The composite indicators use simple, 
additive weighting sum to aggregate the KPIs so to 
obtain scores for the alternative decisions. The 
aggregation and the weighting of the KPIs is based to 
linear programming models and the weights are 
estimated endogenously from the data. The proposed 
models are able to reveals the optimum performance 
alternatives, those that minimize costs, maximize 
revenues and minimize environmental impact.  

The proposed methodology is simple to use and 
implement without needing the user interaction. It is 
flexible to accept initial information as user 
preferences in order to access alternatives by a specific 

priority on KPIs. Furthermore, the modelling presented 
can be easily expanded to cover cases when the KPIs 
are expressed in ordinal form or include uncertainty, 
being expressed with intervals with constant bounds. 
We hope you find the information in this template 
useful in the preparation of your submission. 
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