
Classifying Unstructured Models into Metamodels using Multi Layer
Perceptrons

Walmir Oliveira Couto1,2, Emerson Cordeiro Morais2 and Marcos Didonet Del Fabro1

1C3SL Labs, Federal University of Paraná, Curitiba PR, Brazil
2LADES Icibe, Federal Rural University of Amazon, Belém PA, Brazil

Keywords: Classifying Unstructured Models, Model Recognition, Artificial Neural Network, MLP.

Abstract: Models and metamodels created using model-based approaches have restrict conformance relations. However,
there has been an increase of semi-structured or schema-free data formats, such as document-oriented repre-
sentations, which are often persisted as JSON documents. Despite not having an explicit schema/metamodel,
these documents could be categorized to discover their domain and to partially conform to a metamodel. Re-
cent approaches are emerging to extract information or to couple modeling with cognification. However, there
is a lack of approaches exploring semi-structured formats classification. In this paper, we present a methodo-
logy to analyze and classify JSON documents according to existing metamodels. First, we describe how to
extract metamodels elements into a Multi-Layer Perceptron (MLP) network to be trained. Then, we translate
the JSON documents into the input format of the encoded MLP. We present the step-by-step tasks to classify
JSON documents according to existing metamodels extracted from a repository. We have conducted a series
of experiments, showing that the approach is effective to classify the documents.

1 INTRODUCTION

Models and metamodels created using model-based
approaches have restrict conformance relations,
meaning that each element of a given model must
conform to a metamodel element. For instance, an
element ”Student” in a model could conform to the
element ”Class” in a Java metamodel. Similar rela-
tionships, with different terminology, are present in
other data models, such as a database tuple and its ta-
ble/column definitions, or an XML document and its
corresponding schema.

These relationships are restrictive and cannot be
applied to any kind of data model, in particular when
relying on semi-structured or schema-free representa-
tions, where there is no explicit conformance relation.
Such kind of data is very good for fast application
development, coming with the cost of being loosely
typed.

The most common semi-structured format are
document stores, which are often persisted using
JSON documents. JSON documents are used for in-
teroperability, storage of application data where flexi-
bility is important and also are becoming a de-facto
standard in RESTful APIs implementations. Despite
not having an explicit metamodel/schema, there are

initiatives, such as JSON schema, as solution to pro-
vide typed JSON documents.

When JSON schemas are not defined, i.e., for un-
typed documents, it is useful to classify JSON docu-
ments to discover whether they could be categorized
into a given domain and to partially-conform to a
metamodel or JSON schema. Recent approaches are
emerging to extract information or to couple meta-
modeling with cognification, i.e., to extract knowled-
ge from models and metamodels and to apply ma-
chine learning techniques to discover useful informa-
tion (Cabot et al., 2017; Perini et al., 2013). The paper
from Burgueño (Burgueño, 2019) shows an approach
which uses Long Short-Term Memory Neural Net-
works (LSTM) to automatically infer model transfor-
mations from sets of input-output model pairs. Ano-
ther one from (Nguyen et al., 2019) employed Ma-
chine Learning techniques for metamodel automated
classification implementing a feed-forward neural
network. However, there is a lack of approaches about
unstructured models’ classification. There are studies
comprising classification of complex structures, such
as solutions on graph classification (Zhang and Chen,
2018), but they are not focused on unstructured mo-
dels, meaning there is an open field to be studied.

In this paper, we present a methodology to analyze

Couto, W., Morais, E. and Fabro, M.
Classifying Unstructured Models into Metamodels using Multi Layer Perceptrons.
DOI: 10.5220/0008894202710278
In Proceedings of the 8th International Conference on Model-Driven Engineering and Software Development (MODELSWARD 2020), pages 271-278
ISBN: 978-989-758-400-8; ISSN: 2184-4348
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

271



and classify JSON documents according to existing
metamodels. We extract existing metamodels using
a One-hot encoding solution into a Multi-Layer Per-
ceptron (MLP) network, translating the metamodel e-
lements into the input neurons. The neural network
is trained and then used to classify input JSON docu-
ments, which are as well translated into the input data
to be classified. We present the step-by-step tasks to
achieve that. We have conducted a series of experi-
ments, using neural networks with different interme-
diate layers, showing that the approach is effective to
classify the documents.

This paper is organized as follows. Section 2
presents our approach to classify document stores into
metamodels. Section 3 describes the experimental
validation and discussions. Section 4 is the related
work, and section 5 presents the conclusions.

2 CLASSIFYING DOCUMENT
STORES INTO METAMODELS

In this section we show how to classify document
stores into metamodels. We start by a brief intro-
duction to MLP, then we present the definitions and
environmental assumptions. Finally we describe the
formalization of the solution.

2.1 Bried Introduction to MLP

In this section we present a brief background on MLP
(Multi-Layer Perceptron). The perceptron is a algo-
rithm that performs binary classification, i.e., it pre-
dicts whether a given input belongs to a certain cate-
gory of interest or not (Kumari et al., 2018). A per-
ceptron is a linear classifier; that is, it is an algorithm
that classifies input using a linear prediction function,
which needs to be defined. The input is a feature,
named vector x, where each element is multiplied by a
set of weights w and added to a bias b: y=w∗x+b. A
multilayer perceptron (MLP) is a deep, artificial neu-
ral network. It is composed of more than one percep-
tron. They are composed of an input layer to receive
the signal, an output layer that makes a decision or
prediction about the input, and in between those two,
an arbitrary number of hidden layers that are the true
computational engine of the MLP.

Formally, a MLP is a function f : RD→ RL, where
D is the size of input vector x and L is the size of
the output vector given by f (x), such that, in ma-
trix notation: f (x) = G(b(2)+W (2)(s(b(1)+W (1)x))),
with bias vectors b(1), b(2); weight matrices W (1),
W (2) and activation functions G and s. The vector

h[x]← Φ(x) = s(b(1)+W (1)x) constitutes the hidden
layer. W (1) ∈ RD×Dh is the weight matrix connecting
the input vector to the hidden layer. Each column
W (1)
·i represents the weights from the input units to

the i− th hidden unit. We use this definition in the
remaining of our work.

Multilayer perceptrons are often applied to super-
vised learning problems: they train on a set of input-
output pairs and learn to model the correlation (or de-
pendencies) between those inputs and outputs. Train-
ing involves adjusting the parameters, or the weights
and biases of the model, in order to minimize errors.
Backpropagation is used to make those weight and
bias adjustments relative to the error, and the error
itself can be measured in a variety of ways, including
by Root Mean Squared Error (RMSE).

2.2 Extracting Metamodels into MLP
features

First, we consider M the input metamodel, which de-
fines the structured information used as input to train
the network. A metamodel is composed of classes,
attributes, and references, which are translated into a
collection of name/value pairs in a JSON format. E
denotes the set of classes, attributes, and references in
M , where E ⊂M . In order to illustrate our approach,
the execution schema is depicted in Figure 1.

The Driver Program implements the control flow
and it launches the operations, managing the step by
step execution schema1. It starts reading the input
metamodel M , and it assigns it to a top level sin-
gle dataset Ds as Ds ← M . A dataset is a collec-
tion of data which can be split into others datasets
(Armbrust et al., 2015b). Ds is processed using an
extraction function fe(x) which selects classes (c),
attributes (a) and references (r), where {c,a,r} ⊂
E , assigning each one of them to specific datasets
ds(0)...ds(n), where n is the total number of elements.
Once this conversion is done, there is no distinction
between the types of the elements to encode the MLP
features. Then, each one of these datasets ds(0)...ds(n)
is converted into a binary number and bundled to
create the MLP Vector X: set of input layer neurons
{xi|x1,x2, ...,xm}.

The set of elements in the input data sets are ex-
tracted and encoded into a MLP Vector X applying
a One-hot Encoding (OHE) technique, which is a
widely used technique for transforming categorical
features to numerical features. Then, the network is
trained using a MLP Classifier, using a set of training

1It was developed on Apache Spark, an analytics engine
for data processing (Armbrust et al., 2015a).

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

272



samples. Once the training step is finished, it is pos-
sible to perform the unstructred models classification.

To perform the metamodel extraction we define
Algorithm 1. It starts by reading the input metamodel
M , applies an extraction function fe(x) and assigns
to dataset Ds. ItemsAmount receives distinct classes,
attributes and references amount which we use to cal-
culate the binary digits amount used to depict these
classes, attributes and references in a binary vector
which it is used as input features on MLP. For buil-
ding this binary vector, we use OHE technique be-
cause categorical data must be converted to numbers
when we are working with a sequence classification
type problem and plan on using neural networks.

At line 4, we create MLPVectorX to store all
distinct classes, attributes, and references of M
as a binary vector. From line 5 to 8, for each
distinct(c,a,r ⊂ E) ∈ Ds we apply an extraction
function fe(x) splitting Ds in classes (c), attributes (a)
or references (r), and it assigns each one to datasets
ds(0)...ds(n). It is important to note that for the MLP
neural network there is no difference between classes,
attributes, and references, each one is a binary num-
ber in MLPVectorX . At line 10, binaryDigitsAmount
takes n integer value as the exponential function re-
sult which takes ItemsAmount as a parameter. Then,
from line 11 to 15, each ds(0)...ds(n) is converted
into a binary number with binaryDigitsAmount di-
gits applying a BinaryGenerator function which takes
binaryDigitsAmount as a parameter, and it assigns
it to MLPVectorX , which it used as the MLP input
features (set of input layer neurons). The reference
between ds(n).element.name and its corresponding bi-
nary number at MLPVectorX .[n] is assigned to a spe-
cial dataset sD at line 13, and we write sD in JSON
file Re f erenceElementBinary which it will be used
to help represent models in JSON documents as the
MLP input. This enables to maintain a mapping bet-
ween the metamodel elements and their correspon-
ding elements in the network.

Consider a simplified Java metamodel2 repre-
sented by a UML class diagram. The algorithm
converts each class, attribute, and references in a
name/value pair in a JSON file, thereby creating the
input metamodel M .

2The metamodel used is the one from the following
public link: https://www.eclipse.org/atl/atlTransformations/
UML2Java/, ExampleUML2Java[v00.01].pdf

Algorithm 1: Extracting Metamodels into a MLP.

Input: Input Metamodel M .
Output: MLP Vector X, ReferenceElementBinary.
1: Ds← fe(M )
2: ItemsAmount← count(distinct(c,a,r ⊂ E) ∈ Ds)
3: binaryDigitsAmount← 0
4: MLPVectorX ← empty
5: for (n = 0 to ItemsAmount−1) do
6: ds(n)← fe(Ds.[n].element.name)
7: n← n+1
8: end for
9: n← 0

10: binaryDigitsAmount← toInt(exp(2n =
ItemsAmount))

11: for all ds(0)...ds(n) do
12: MLPVectorX .[n]←

BinaryGenerator(ds(n),binaryDigitsAmount)
13: sD← f (ds(n).element.name,MLPVectorX .[n])
14: n← n+1
15: end for
16: SaveFile(sD,Re f erenceElementBinary)
17: return MLPVectorX ,Re f erenceElementBinary

In this case, the JavaElement class is assigned to ds(0)
dataset, name attribute is assigned to ds(1) dataset, and
so on, and then each dataset from ds(0)...ds(n) is con-
verted into a binary number through a BinaryGener-
ator function, and assigned it to MLPVectorX . For
instance, after executing the algorithm, MLPVectorX
will have 20 positions, and its structure can be seen in
Table 1.

Table 1: Classes, attributes and references in MLPVectorX .

MLPVectorX structure for Java metamodel
Element Type Position Value

JavaElement class 0 0000000
name attribute 1 0000001
Type class 2 0000010

Modifier class 3 0000011
isPublic attribute 4 0000100
isStatic attribute 5 0000101
isFinal attribute 6 0000110

PrimitiveType class 7 0000111
Method class 8 0001000

isAbstract attribute 9 0001001
Field class 10 0001010
type reference 11 0001011

parameters reference 12 0001100
field reference 13 0001101

owner reference 14 0001110
methods reference 15 0001111

JavaClass class 16 0010000
classes reference 17 0010001
package reference 18 0010010
Package class 19 0010011

Classifying Unstructured Models into Metamodels using Multi Layer Perceptrons

273



Figure 1: Execution flow for classification of unstructured models.

2.3 Training the MLP Neural Network

Once the input features are extracted, it is necessary
to train the MLP neural network. To to this, it is
necessary to choose a set of metamodels to extract
its features using the explained algorithm. While any
set of metamodels could be chosen, we illustrate the
training step using a set of 4 metamodels: MySQL,
KM3, UML and Java. Metamodels are 3rd party
metamodels available in the ATL transformations web
site3. These metamodels will be also used in our de-
tailed experiments. For this subset of metamodels,
the MLPVectorX has seventy two positions, i.e., we
extracted seventy two distinct classes, attributes, and
references. Thus, for each position in MLPVectorX ,
it is assigned a binary number with seven digits where
ItemsAmount = 72 and 2n = ItemsAmount then n =
7. All 72 binary conversions and extractions can be
found on the github4. It is also necessary to choose
the number of hidden layers, together with the number
of input neuron for each layer. As there are no exact
rules for determining the hidden layers number and
the neuron number in each hidden layer, we choose
three hidden layers, each one with three neurons, and
one output layer neurons, which it will be assigned
a binary number with two digits, i.e., for four output
metamodels we have 2n = 4 then n = 2. We choose
for an artificial network multi-layered with backpro-
pagation training, and conventional random initializa-
tion, where each neuron in one layer, e.g. x1, connects
with a certain w[a][b][c] weight to every neuron in the
following layer, e.g. j1, j2, j3, where [a] is the origin
layer number, [b] is the neuron number in the origin
layer, and [c] is the neuron number in the following
layer.

In addition, each neuron in the hidden layers is
added to a bias b[d][e] weight, where [d] is the hidden
layer number, and [e] is the neuron number in the hid-
den layer. We generate random initial weights, e.g.

3https://www.eclipse.org/atl/atlTransformations/
4https://github.com/walmircouto/MLPTraining

from the range [–1, 1], for each w[a][b][c] weight, it
was generated 237 w[a][b][c] weights and 10 bias b[d][e]
weights in total. It is important to note that, one set of
updates of all the weights for all the training patterns
is called one epoch of training. In this first MLP train-
ing, we set up 4000 epoch of training. We implement
a second MLP training with the same amount of in-
put neurons, hidden layers, and epoch of training, but
with five neurons in each hidden layer, for this second
MLP training it was generated 415 w[a][b][c] weights
and 16 bias b[d][e] weights in total. All w[a][b][c] and
b[d][e] weights can be found on the github5.

In our MLP training, we choose s the logistic
sigmoid function for the activation functions, with
sigmoid(a) = 1/(1 + e−a). The output vector is
then obtained as: o(x) = G(b(2) +W (2)h(x)). To
train a MLP, we need to learn all parameters of the
model. The set of parameters to learn is the set θ =
{W (2),b(2),W (1),b(1)}. A neural network is stopped
training when the error, i.e., the difference between
the desired output and the expected output is be-
low some threshold value or the number of itera-
tions or epochs is above some threshold value; in our
approach, MLP training is stopped when the Mean
Squared Error (MSE) is less than 0.01 (1%).

2.4 Representing Models in JSON
Documents as the MLP Input

Before starting the classification step, it is necessary
to translate the input unstructured documents (in
JSON) into a compatible format with the MLP in-
put. We use a similar process to the one used to ex-
tract metamodels, as described in Algorithm 2 shown
above. It starts by reading the input model m, which
is formed by classes (c), attributes (a) and references
(r), it applies an extraction function fe(x) and assign
it to dataset Dsm. At line 2, we open a JSON file
Re f erenceElementBinary, created during the meta-

5https://github.com/walmircouto/MLPTraining

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

274



Algorithm 2: Representing Models in JSON Documents as
the MLP Input.

Input: m model, Re f erenceElementBinary JSON file.
Output: MLP text file.
1: Dsm← fe(m)
2: ItemsAmount← count(distinct(c,a,r ⊂ Dsm))
3: sd← OpenFile(Re f erenceElementBinary)
4: n← 0
5: MLPTextFile← empty
6: for (n = 0 to ItemsAmount−1) do
7: ds(n)← sd.select(name,binary) where name =

Dsm.[n].element.name)
8: if ds(n) 6= null then
9: MLPTextFile←MLPTextFile+ds(n).binary

10: end if
11: n← n+1
12: end for
13: return MLPTextFile

model extraction process, and assign it to dataset sd
which it will be used to found the reference between
element.name and its corresponding binary number,
assisting in the assembly of the MLPTextFile text file.
From line 5 to 11, for each distinct(c,a,r ⊂ Dsm)
we try to found the element.name from Dsm in dataset
sd, applying a select function at line 6, to obtain the
corresponding binary number, and the result of this
is assigned to ds(n). If ds(n) 6= null then we start
the assembly of the MLPTextFile text file including
the binary number from ds(n). The MLPTextFile text
file will be use as the MLP input to classify the input
model m.

3 EXPERIMENTAL EVALUATION

We conduct a number of experiments to validate our
approach. The main goal is to evaluate the preci-
sion of the constructed and trained network to clas-
sify unstructured JSON documents into metamodels,
i.e., which is the percentage of documents correctly
classified. All experiments were performed in a ma-
chine with 8 GB DDR3 RAM, processor 2,53 GHz In-
tel Core i5, MacOS High Sierra 10.13.6, Spark 2.3.3,
Scala 2.12.8, and Java 1.8.0 191. The experiments
had the following setting.
Network Configuration: as stated in the previous
section, we define 2 MLP networks: both with 3 hid-
den layers, the first one with 3 neurons on each layer
and the second one with 5 neurons on each layer, thus
we executed two training, with 4000 epochs each. We
know that one of the problems that occur during neu-
ral network training is called overfitting. The error
on the training set is driven to a very small value, but
when new data is presented to the network the error is
large. The network has memorized the training exam-

ples, but it has not learned to generalize to new si-
tuations. This is expected, since in this experimental
evaluation we do not address the overfitting problem
for all kinds of metamodels, since we target domain
specific scenario. We intend to carry out new train-
ing sessions with boarder testing data sets varying the
number of hidden layers toward finding lower overfit-
ting rate.

Our 2 MLP networks have the same amount of
input neurons, 72. The neurons are extracted from 4
metamodels: MySQL, KM3, UML, and Java. The ex-
traction process is automatically executed by a script
written in Scala language. The input metamodels
used are 3rd party metamodels, available in the ATL
transformations web site6. The metamodels are first
translated into JSON, then translated into the network
compatible format, as shown in sections 2.2 and 2.4.
The training set is composed by automatically gen-
erated JSON documents, in this case with elements
names extracted from a unique given metamodel, but
with a random distribution of the generated elements,
i.e., the documents may have different number of
classes, attributes or references. We generated 20 dif-
ferent documents for each one of the 4 input meta-
models.
Input Documents: we develop a script in Scala to
generate the input documents to be classified. The
generated documents are different from the training
set. They are generated according to two criteria:
first, the number of elements: we produce documents
with 50 and with 100 elements.

Second, we vary the degree of conformance of
the produced documents to evaluate the MLP pre-
cision. This means we first automatically gener-
ate documents with 50 and 100 instances where all
the elements’ names are equals to the ones existing
in MySQL, KM3, UML or Java metamodels. This
means it is not a strict conformance relation, but just
to generate JSON elements with a given name. In this
first case, we want to check the classification of do-
cuments which are 100 percent in conformance with
existing metamodels. Then, we generate elements ex-
tracted from classes, attributes and references mixed
between different metamodels, using the following
ratios: 80%-20%, 60%-40%, and 50%-50%. This
means we generate documents with 80% of confor-
mance with a given metamodel and 20% to a second
one. Then, 60% conforming to a given metamodel
and 40% to a second one. Finally, we used a 50-50
ratio. The goal of these distributions is to verify the
classification precision when varying the number of
elements conforming to a given metamodel. The re-
sult of MLP classification is shown in Tables 2 and 3.

6https://www.eclipse.org/atl/atlTransformations/

Classifying Unstructured Models into Metamodels using Multi Layer Perceptrons

275



Table 2: MLP classifier with 3 hidden layers.

Evaluating MLP with 3 Hidden Layers
Models with 50 elements

% MySQL KM3 UML Java
100% 100% 100% 100% 100%

Models mixed
% MySQL + KM3 UML + Java

80%-20% 96,3% 94,3%
60%-40% 84,5% 83,2%
50%-50% 47,2% 45,6%

Models with 100 elements
% MySQL + KM3 UML + Java

80%-20% 96,1% 93,9%
60%-40% 82,7% 86,4%
50%-50% 46,7% 45,2%

Table 3: MLP classifier with 5 hidden layers.

Evaluating MLP with 5 Hidden Layers
Models with 50 elements

% MySQL KM3 UML Java
100% 100% 100% 100% 100%

Models mixed
% MySQL + KM3 UML + Java

80%-20% 97,2% 96,6%
60%-40% 87,3% 85,6%
50%-50% 48,6% 47,3%

Models with 100 elements
% MySQL + KM3 UML + Java

80%-20% 97,6% 95,1%
60%-40% 83,8% 87,6%
50%-50% 47,7% 46,8%

3.1 Discussions

In this section we discuss the results our our solution,
with respect to the precision of the classifier, the fea-
ture encoding technique and the variety of the input
models.
Precision of the Classifier. Our objective is to test
the applicability and accuracy of the MLP classifier
to perform metamodel classification. From the results
shown in tables 2 and 3, it is possible to see that when
documents are produced with elements 100% accor-
ding to their respective metamodel, the MLP classifier
correctly classifies all the documents. This happens
because the MLP is trained with all the elements from
the metamodels, and in this case, when a document is
perfectly in accordance with a metamodel, the MLP

classifier is accurate. Thus, for both three hidden lay-
ers and five hidden layers, the precision is 100%.

When the elements are mixed, for instance, we
mixed 80% of elements from MySQL with 20% of
elements from KM3, the MLP precision decreases,
but the precision rates remain high, i.e., classifying
the documents according to the predominant number
of elements conforming to a given metamodel. The
MLP with three hidden layers showed 96,3% of pre-
cision, and the MLP with five hidden layers showed
97,2%, improving 0,9%. This means adding two lay-
ers had a small impact on the final result when the
documents are very alike.

When we increase the number of elements, from
documents with 50 elements to models with 100 e-
lements, the precision is slightly lower, from 96,3%
to 96,1% into the MLP with three hidden layers; ho-
wever the MLP with five hidden layers improved the
result, from 97,2% to 97,6%, showing a better fit for
this case.

Now, when we mix 80% of elements from UML
with 20% of elements from Java in a document
with 50 elements, the MLP with three hidden layers
showed 94,3% of accuracy rate, and the MLP with
five hidden layers showed 96,6%, improving by 2,3%.
The slightly lower result compared to MySQL and
KM3 may be explained because UML and Java have
some similar elements that could overlap. But the im-
provement from 3 to 5 layers is better, meaning that it
is a valid setting if models have a more variable stru-
cture.

When we mix 60% of elements from MySQL with
40% of elements from KM3, the MLP precision de-
creases, showing 84,5% into the MLP with three hid-
den layers, but improving 2,8% to 87,3% into the
MLP with five hidden layers, which is a relevant im-
provement. This means that even with only 60% of
elements from a MySQL, the MLP classifier performs
well, demonstrating that it can be used in document or
model recognition solutions.

Finally, when we mix 50% of elements from
MySQL with 50% of elements from KM3, the MLP
classifier precision is close to 50%. This result is ex-
pected because it could simulate a random test, as we
have 50% of elements from a x document and 50% of
elements from a y document, thus the MLP classifier
could classify as being the document x, sometimes as
being the document y. We intend to expand these ex-
periments varying the number of hidden layers and
the neuron number in each hidden layer aiming to im-
prove the MLP classifier accuracy.
Feature Encoding. The decision of implementing a
direct feature extraction technique enables to develop
a simple extractor, without encoding relationships be-

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

276



tween the metamodel elements. Usually, numeric for-
mat data gives better performance for classification,
regression and clustering algorithms. In addition, we
choose to not make a distinction if the metamodel el-
ement is a class, reference or attribute, i.e., they are
just metamodel elements with a name. When having
metamodels as input, the number of input features re-
mains manageable and the solution can be adapted or
reused in other scenarios. It is important to note that
the one-hot approach has some challenges as well: the
sparseness of the transformed data and that the dis-
tinct values of an attribute are not always known in
advance. However, in our OHE solution we mitigate
theses problems by implementing a direct feature ex-
traction as shown in Algorithm 1.

Other approaches for classifying the document
could be used, for instance, adapting schema match-
ing or clustering-based approaches for a metamodel
classification. However, our simple encoding scheme
showed good results. If the number of features be-
comes too high, other extraction schemes need to
be studied and compared, such as strictly structured-
based methods. This aspect could be critical if using,
in addition to the metamodels, documents or model
elements to encode the input features.
Models Variety. We have evaluated the classifier
with models from similar domains and mixing the
model elements between them, but other random
model elements could be used for testing as well.
We chose to automatically generate input metamodels
with explicit variation on conformance rates of the in-
put characteristics, to be able to analyze the solution
under distinct limits. With this validation done, a fu-
ture work will be to apply it it in real world scena-
rios, for instance, to classify metamodels in existing
Git repositories. However, we cannot affirm if such
repositories would be enough to validate explicit con-
formance rates. In addition, in such cases, we could
do additional pre-processing of the elements, or to use
it in conjunction with string similarity algorithms.

To summarize, these experimental results show
that we can use neural networks to help us for docu-
ment classification, with a simple encoding scheme.
We intend to extend this approach about model classi-
fying to other neural networks algorithms, such as the
Long Short-Term Memory Neural Networks (LSTM),
and make precision comparisons.

4 RELATED WORK

There has been extensive works on how to classify
different kinds of data, such as text, images or struc-
tured models. More recently, the vision paper from

paper (Cabot et al., 2017) suggests the application of
Cognification into Model-Driven Software Enginee-
ring (MDSE), which is the application of knowledge
to boost the performance and impact of a process. In
this context, the paper from Xie (Xie, 2018) discusses
recent research and future directions in the field of in-
telligent software engineering, exploiting the synergy
between AI and software engineering, and showing
that the field of intelligent software engineering is a
research field spanning at least the research commu-
nities of software engineering and AI. Several initia-
tives aim to cognify specific tasks within the MDSE
ecosystem, for instance, using machine learning (ML)
for requirements prioritization (Perini et al., 2013). A
very recent work from (Burgueño, 2019) deals with
model transformation problems and relies on a ML-
based framework using a particular type of Artificial
Neural Networks (ANNs), Long Short-Term Memo-
ry (LSTM) ANNs to derive transformations from sets
of input/output models given as input data for the
training phase. Another one from (Nguyen et al.,
2019) employed Machine Learning techniques for
metamodel automated classification implementing a
feed-forward neural network where an experimental
evaluation over a datasetof 555 metamodels demons-
trates that the technique permits to learn from ma-
nually classified data and effectively categorize inco-
ming unlabeled data with a considerably high predic-
tion rate. Beside that, there are some works from
programming research community which mixing ML
and code transformation, for instance, the papers from
(Chen et al., 2017) use ANNs to translate code from
one programming language to another. Our work is
inspired by these ideas to take stock from existing AI
solutions and adapt them for unstructured documents
classification, such as supervised learning procedure
which has two main phases: training and predicting.
The subject of model classifying using cognification-
based tooling has also been relatively unexplored and
this is where we make a contribution.

Our approach could be used to support, for instan-
ce, metamodel repositories classifying unstructured
models into metamodels. The work from (Basciani
et al., 2016) proposes the application of clustering
techniques to automatically organize stored meta-
models and to provide users with overviews of the
application domains covered by the available meta-
models. The work from (Chang et al., 2015) explores
training of structured prediction model which in-
volves performing several loss-augmented inference
steps. It proposes an approximate learning algo-
rithm which accelerates the training processes, using
a structured SVM neural network. This scenario in-
spired us to train our MLP model classifier, howe-

Classifying Unstructured Models into Metamodels using Multi Layer Perceptrons

277



ver, in our approach, we use a MLP neural network,
which was trained based on a metamodels elements
set, where all elements are well known and the en-
coding schem is simple. The work in (Zhang and
Chen, 2018) deal with the link prediction problem
in network-structured data, it presents link prediction
based on graph neural network, where it proposes a
new method to learn heuristics from local subgraphs
using a graph neural network (GNN). A document or
a model could be encoded as a graph, but there is no
specific treatment for the metamodel elements. An in-
tegration of these approaches with our solution could
improve the capabilities of the classifier.

5 CONCLUSIONS

We presented an approach for classifying JSON docu-
ments into existing metamodels. The solution enables
discovering the domain of the JSON documents and
to serve as an initial typing scheme. We present the
automated steps of the approach, consisting on meta-
model extraction into an MLP using a one-hot encod-
ing (OHE) of the elements, network training, transla-
tion and classification of the input JSON documents.
The extraction algorithm relies on the presence (or
not) of the elements in a given input document, since
it translated the elements into a binary classification
problem. The results have showed that the approach
is effective from classifying JSON documents, with
precision varying from 46 to 97 percent, depending
on the kinds of the elements. We achieved our main
goal to show that a domain-specific and simple ex-
traction algorithm can be useful for classifying docu-
ments, instead of trying to adapt more complex struc-
tured based classification approaches. The results are
publicly available for download, as well as the algo-
rithms implemented.

There are several open issues subject for future
work, such as testing the extraction algorithm output
with other classification algorithms. We also plan to
extend the algorithm to cover more complex relation-
ships between model elements and to test if the results
can be improved.

REFERENCES

Armbrust, M., Das, T., Davidson, A., Ghodsi, A., Or, A.,
Rosen, J., Stoica, I., Wendell, P., Xin, R., and Za-
haria, M. (2015a). Scaling spark in the real world:
Performance and usability. Proc. VLDB Endow.,
8(12):1840–1843.

Armbrust, M., Xin, R. S., Lian, C., Huai, Y., Liu, D.,
Bradley, J. K., Meng, X., Kaftan, T., Franklin, M. J.,

Ghodsi, A., and Zaharia, M. (2015b). Spark sql:
Relational data processing in spark. In Proceedings
of the 2015 ACM SIGMOD International Conference
on Management of Data, SIGMOD ’15, pages 1383–
1394, New York, NY, USA. ACM.

Basciani, F., Di Rocco, J., Di Ruscio, D., Iovino, L., and
Pierantonio, A. (2016). Automated clustering of meta-
model repositories. In Nurcan, S., Soffer, P., Bajec,
M., and Eder, J., editors, Advanced Information Sys-
tems Engineering, pages 342–358, Cham. Springer In-
ternational Publishing.

Burgueño, L. (2019). An lstm-based neural network archi-
tecture for model transformations. In IEEE/ACM 22nd
International Conference on Model Driven Engineer-
ing Languages and Systems (MODELS).

Cabot, J., Clarisó, R., Brambilla, M., and Gérard, S. (2017).
Cognifying model-driven software engineering. In
Seidl, M. and Zschaler, S., editors, STAF Workshops,
volume 10748 of Lecture Notes in Computer Science,
pages 154–160. Springer.

Chang, K.-W., Upadhyay, S., Kundu, G., and Roth, D.
(2015). Structural learning with amortized inference.
In Proceedings of the Twenty-Ninth AAAI Confer-
ence on Artificial Intelligence, AAAI’15, pages 2525–
2531. AAAI Press.

Chen, X., Liu, C., and Song, D. (2017). Learning neural
programs to parse programs.

Kumari, G. V., Rao, G. S., and Rao, B. P. (2018). Lm, rp
and gd based ann architecture models for biomedical
image compression. i-manager’s Journal on Image
Processing, 5(3).

Nguyen, P., Di Rocco, J., Di Ruscio, D., Pierantonio,
A., and Iovino, L. (2019). Automated classification
of metamodel repositories: A machine learning ap-
proach. In IEEE/ACM 22nd International Conference
on Model Driven Engineering Languages and Systems
(MODELS).

Perini, A., Susi, A., and Avesani, P. (2013). A machine
learning approach to software requirements prioritiza-
tion. IEEE Trans. Softw. Eng., 39(4):445–461.

Xie, T. (2018). Intelligent software engineering: Synergy
between ai and software engineering. In Feng, X.,
Müller-Olm, M., and Yang, Z., editors, Dependable
Software Engineering. Theories, Tools, and Applica-
tions, pages 3–7, Cham. Springer International Pub-
lishing.

Zhang, M. and Chen, Y. (2018). Link prediction based on
graph neural networks. In Bengio, S., Wallach, H.,
Larochelle, H., Grauman, K., Cesa-Bianchi, N., and
Garnett, R., editors, Advances in Neural Information
Processing Systems 31, pages 5165–5175. Curran As-
sociates, Inc.

MODELSWARD 2020 - 8th International Conference on Model-Driven Engineering and Software Development

278


