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Abstract: Electroencephalography recordings have a scale-invariant structure and multifractal detrended fluctuation 
analysis (MF-DFA) could quantify the fluctuation dynamics of these recordings in different brain states. 
However, the channel-based electrical activity of the brain has low spatial resolution and considering the 
source-level activity patterns is a good answer for this restriction. In this work, the multifractal spectrum 
parameters of the channel-based EEG, as well as the corresponding source-based independent components 
in children with Attention Deficit Hyperactivity Disorder (ADHD) and the age-matched control group, has 
been investigated. Considering the perceptual timing deficit in children with ADHD, for the analysis of the 
multifractality, two brain states including the eyes-open rest and the time reproduction condition have been 
considered. The results obtained showed that switching from rest to the time reproduction condition 
increases the degree of multifractality and so the complexity and non-uniformity of the signal. While the 
channel-based multifractal properties could not significantly distinguish two groups, the results for the 
source-based multifractal analysis showed a significantly decreased degree of multifractality for children 
with ADHD in prefrontal, mid-frontal and right frontal source clusters suggesting reduced activation of 
these clusters in this group. Utilizing support vector machine (SVM) classifier it is found that, the source-
based multifractal features provide a significantly higher accuracy rate of 86.67% in comparison to the 
channel-based measures.  

1 INTRODUCTION 

Electroencephalography (EEG) recordings as a 
nonstationary time series possess a scale-invariant 
structure which indicates that signal repeats its 
structure on different sub-intervals (Eke, Herman, 
Kocsis, & Kozak, 2002; Ihlen, 2012; Zorick & 
Mandelkern, 2013). Time series with a complex 
structure like EEG are multifractal and the 
multifractal detrended fluctuation analysis (MF-
DFA) has been proposed for evaluation of their 
fractal properties (Kantelhardt et al., 2002). Several 
reports suggest that changes in the scale-invariant 
structure of the biomedical signals reflect changes in 
the adaptability of physiological processes and 
successful treatment of pathological conditions 
might changes the fractal structure and improve 
health (Goldberger et al., 2002). Multifractal 
properties of the sleep stage EEG signals have been 
assessed in several studies representing that these 
measures correlated with the sleep depth, exhibiting  

different values for deeper sleep stages (Ma, Ning, 
Wang, & Bian, 2006; Weiss, Clemens, Bódizs, & 
Halász, 2011; Weiss, Clemens, Bódizs, Vágó, & 
Halász, 2009; Zorick & Mandelkern, 2013). Zorick 
& Mandelkern (2013) revealed that even short EEG 
tracings represent significant dissimilarities in the 
width of the multifractal spectrum for the different 
sleep stages. Assessing the height of the multifractal 
spectrum, Weiss et al. (2011, 2009) indicated that 
EEG signals tend to be less multifractal during 
NREM4 compared to NREM2 and REM sleep 
stages. Moreover, the predictive power of 
multifractal parameters in epilepsy research was also 
examined in order to detect and predict focal 
seizures (Dick & Svyatogor, 2012; Dutta, Ghosh, 
Samanta, & Dey, 2014; Easwaramoorthy & 
Uthayakumar, 2010; Figliola, Serrano, & Rosso, 
2007). Fractal parameters have also been utilized to 
study the scaling behavior of the fluctuations of the 
EEG while listening to musical stimuli (Maity et al., 
2015; Natarajan, Acharya U, Alias, Tiboleng, & 
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Puthusserypady, 2004). Despite this consistent 
evidence for the brain-state related adaptability of 
the multifractal structure, a few studies have been 
conducted in the area of neurodevelopmental 
disorders. Attention-deficit hyperactivity disorder 
(ADHD) is a common neurodevelopmental disorder 
in school-aged children which exhibit varying levels 
of hyperactivity, inattention, and impulsivity, and 
substantially affect their cognitive performance 
(American Psychiatric Association, 2013; Sadock & 
Sadock, 2011). 

In our previous study, the multifractal spectrum 
alterations of the resting-state EEG in children with 
ADHD have been identified (Khoshnoud, Nazari, & 
Shamsi, 2018). More precisely, during rest 
condition, over frontal and right parietal scalp 
channels, the multifractal spectrum was higher in 
children with ADHD compared to the age-matched 
control group. This elevated multifractal structure 
suggests more complex EEG patterns in children 
with ADHD compared to the healthy subjects during 
rest. Considering this outcome, an investigation of 
the multifractal structure of the EEG signals during 
different paradigms in this group would have a great 
impact on understanding their disorder. Several 
studies have demonstrated that children with ADHD 
have deficits in perceptual timing (Barkley, 1997; 
Barkley, Edwards, Laneri, Fletcher, & Metevia, 
2001; Barkley, Koplowitz, Anderson, & McMurray, 
1997; Noreika, Falter, & Rubia, 2013; Rubia, Halari, 
Christakou, & Taylor, 2009; Toplak & Tannock, 
2005; Toplak, Dockstader, & Tannock, 2006). 
Taking into account the different cortical activity 
patterns of these children during time reproduction 
(Khoshnoud, Shamsi, Nazari, & Makeig, 2017), one 
could expect to see distinct multifractal structures 
for these cortical sources during the time 
reproduction condition.  

To address this issue, we conducted an EEG 
study in children with ADHD and age-matched 
control subjects during two EEG recording sessions: 
eye-open rest and time reproduction condition. We 
used both the channel-based and the source-based 
multifractal spectrum analysis in order to visualize 
distinguished patterns of activity in both groups. 
Finally, two groups were classified based on these 
distinct multifractal patterns utilizing a support 
vector machine (SVM) classifier. Our main 
hypothesis was that children with ADHD would 
exhibit distinct multifractal structure during both 
EEG recording sessions and this pattern would be 
more distinguishable in the source-based level 
analysis. 

 

2 MATERIALS AND METHODS 

2.1 Participants and the Experimental 
Design 

The EEG data used here is the authors’ previously 
recorded dataset consisting of EEG time series of 15 
ADHD and 19 controls, 7-11 years of age in the 
eyes-open rest and time reproduction conditions. 
Details about the diagnosis criteria and inclusion 
procedures could be found in Khoshnoud et al. 
(2017). EEG recording starts with the eyes-open 
resting period for 3 min followed by a visual time 
reproduction task for approximately 10 min. In each 
trial, following a trial start cue, a target white disk is 
displayed on the screen center indicating the start of 
a target interval of 1000 or 2200 ms (short and long 
encoding phase). Participants are requested to keep 
this interval in mind and reproduce it after a waiting 
period of 1500 ms as indicated by a red disk 
displayed at the screen center.  

2.2 Data Processing 

EEG data collection was accomplished using the 
Mitsar® amplifier with 21 channels and WinEEG® 
software. The reference electrodes were linked ear 
lobes, with the ground electrode placed on AFZ. The 
sampling frequency was 250 Hz. For this study, we 
were particularly interested in the MF-DFA analysis 
of the channel-based EEG signals as well as the 
source-based components of the signals during both 
recording sessions. Therefore each analysis was 
followed by a specific processing procedure. The 
EEG data were processed using EEGLAB functions 
(version 13) (Delorme & Makeig, 2004) running on 
Matlab (MATLAB2013a, The Mathworks, Inc.).  

At first, the raw EEG signals were high-pass 
filtered above 1 Hz and were low-pass filtered below 
50 Hz using a windowed FIR sync filter to remove 
line noise and other artifacts. After re-referencing to 
a common average reference, the EEG time series 
were visually inspected to reject periods with 
abnormally high artifact levels. After this general 
pre-processing step, the channel-based study was 
continued with the MF-DFA analysis (section 2.3). 
For the source-based study, additional processing 
steps have been performed. The schematic overview 
of these steps has been illustrated in Figure 1. At 
first, the raw EEG signals were high-pass filtered 
above 1 Hz and were low-pass filtered below 50 Hz 
using a windowed FIR sync filter to remove line 
noise and other artifacts. 
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Figure 1: Overview of the EEG data processing steps for the source-based MF-DFA analysis after pre-processing of the 
data. 1) Single-subject EEG data are decomposed by AMICA into a set of ICs and then nonbrain ICs are identified and 
removed from further processing. 2) Equivalent current dipole positions for resumed ICs are estimated. 3) Based on the 
dipole position and mean log spectra, the ICs are clustered across subjects into 7 clusters. 

After re-referencing to a common average reference, 
the EEG time series were visually inspected to reject 
periods with abnormally high artifact levels. After 
this general pre-processing step, the channel-based 
study was continued with the MF-DFA analysis 
(section 2.3). For the source-based study, additional 
processing steps have been performed. The 
schematic overview of these steps has been 
illustrated in Figure 1. 
ICA Decomposition- In order to decompose the 
pre-processed EEG data to a corresponding set of 
statistically independent source components, the 
Adaptive Mixture Independent Component Analysis 
(AMICA) algorithm (Palmer, Kreutz-Delgado, & 
Makeig, 2006, 2011; Palmer, Makeig, Kreutz-
Delgado, & Rao, 2008) was used. AMICA has been 
shown to have superior performance among blind 
source separation algorithms for EEG decomposition 
(Delorme, Palmer, Onton, Oostenveld, & Makeig, 
2012). After identifying and removing the eye and 
muscle activity-related components based on their 
spectra, scalp maps, and time courses, the brain- 
related independent components (ICs) were 
selectedfor further analysis (Makeig et al., 2002).  
 

Equivalent Current Dipole Position Estimation- 
Subsequently, equivalent source distribution of the 
brain-related ICs were computed using the DIPFIT 
toolbox within EEGLAB 
(http://sccn.ucsd.edu/wiki/A08:_DIPFIT). Scalp 
electrode positions were co-registered to an MNI 
template brain (Montreal Neurological Institute, 
MNI, and Quebec) using nonlinear warping. Then, a 
best-fitting equivalent current dipole was matched to 
each IC using a template three-shell boundary 
element method (BEM) head model based on the 
MNI brain template. ICs with the equivalent dipole 
model located within the brain which explained 
more than 90% of the variance of the IC scalp map 
were retained for further analysis.   
IC Clustering- ICs across subjects were classified 
based on similarities in IC dipole locations and mean 
log spectra using K-means algorithm and totally 
seven clusters were computed (Makeig et al., 2002; 
Onton & Makeig, 2006). ICs whose distance to any 
cluster centroid was more than three standard 
deviations from the cluster mean distance were 
considered outliers. 
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2.3 Multi-fractal Detrended 
Fluctuation Analysis 

There are two distinct types of multifractality in time 
series: multifractality due to a broad probability 
density function and multifractality due to long-
range correlations of the small and large fluctuations 
in time series. While the former cannot be removed 
by shuffling the data, the corresponding shuffled 
series of the latter one will exhibit no- or weaker 
multifractality scaling behavior (Kantelhardt et al., 
2002). The complete procedure for Mf-DFA is 
divided into the following steps:  
Step 1: The noise-like structure of the time series ݔ௞ 
with length N was converted into a random walk:  

ܻሺ݅ሻ ൌ ෍ሾݔ௞ െ ,ሿۧݔۦ 						݅ ൌ 1, … , ܰ

௜

௞ୀଵ

 (1)

Step 2: The integrated time series are divided into ௦ܰ 
number of non-overlapping segments with equal 
lengths s as follows:  

௦ܰ ൌ ሺܰݐ݊݅ ܵൗ ሻ (2)

Step 3: For each segment, the root mean square 
(RMS) variance is calculated by Equation (3), in 
which ߥ ൌ ௦ܰ ൅ 1, . . . ,2 ௦ܰ  and ఔሺ݅ሻݕ  is the fitting 
polynomial in segment ν: 

,ݏଶሺܨ ሻߥ ≡
1
ݏ
෍ሼܻሾܰ െ ሺߥ െ ௦ܰሻݏ ൅ ݅ሿ െ ఔሺ݅ሻሽݕ
௦

௜ୀଵ

ଶ

 (3)

Step 4: Subsequently, to obtain the qth-order 
fluctuation function, the mean RMS value over all 
segments is calculated: 

ሻݏ௤ሺܨ ≡ ቐ
1
2 ௦ܰ

෍ሾܨଶሺݏ, ሻሿ௤/ଶߥ
ଶேೞ

ఔୀଵ

ቑ

ଵ/௤

 (4)

Step 5: Because of spatial and temporal variations in 
the scale-invariant structure of the multifractal time 
series, the procedure is repeated for several time 
scales (s). Finally, the scaling behavior of the 
fluctuation functions is determined by analyzing the 
log-log plots of ܨ௤ሺݏሻ versus s for each value of q: 

ሻݏ௤ሺܨ ൎ ௛ሺ௤ሻ (5)ݏ

The q-order Hurst exponent is related to the scaling 
exponents ߬ሺݍሻ by Equation (6):  

߬ሺݍሻ ൌ ሻݍሺ݄ݍ െ 1 (6)

 

Thereafter, scaling exponents could be converted 
into the q-order singularity exponent (α) and the q-
order singularity dimension (݂ሺߙሻ) by the following 
equations to obtain the multifractal singularity 
spectrum: 

ߙ ൌ ߬ ′ሺݍሻ  and     ݂ሺߙሻ ൌ ߙݍ െ ߬ሺݍሻ (7)

The width and shape of the multifractal spectrum 
are valuable factors for distinguishing different 
multifractal structures. In this study, we used the 
width (݀ߙ ൌ maxߙ െminߙ) and the height of the 
spectrum (݂݀ሺߙሻ ൌ ሻߙሺ݂ݔܽ݉ െ݂݉݅݊ሺߙሻ) as well 
as mean (α) and mean ݂ሺߙሻ  to evaluate the 
multifractal spectrum. 

2.4 Classification 

The distinguishability of the extracted fractal 
features was examined using a support vector 
machine algorithm. The aim of the SVM is to 
compute an optimal separating hyperplane to which 
the distance from each nearest data sample in each 
class is maximized (Vapnik & Lerner, 1963). SVM 
offers a solution for non-separable cases, using 
kernel mapping with projecting the data into a 
higher-dimensional feature space using a nonlinear 
function (ϕ(·)). Given a weight vector W and a bias 
term b, the formulation of the hyperplane is as 
follows:  

ܹ௧߶ሺ. ሻ ൅ ܾ ൌ 0 (8)

To find such an optimum hyperplane, the 
optimization problem is as follows: 

݁ݖ݅݉݅݊݅ܯ ሺܹሻܬ ൌ
1
2
‖ܹ‖ଶ 

ݐ݆ܾܿ݁ݑܵ ݋ݐ ݀௜ሺ்ܹ߶ሺݔሻ ൅ ܾሻ ൒ 1 
(9)

The above-mentioned problem is solved using the 
Lagrangian optimization theory. Here, we tested 
linear, polynomial and RBF kernel functions and 
RBF kernel led to a better discrimination accuracy. 
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Figure 2: a) Average values of the width (dߙ) and height (݂݀ሺߙሻ) of the channel-based multifractal spectrum in children 
with ADHD and age-matched controls during rest (R) and time reproduction (Tp). b) Mean dߙ for all scalp electrodes 
during rest and time reproduction. c) Mean ݂݀ሺߙሻ for all scalp electrodes during rest and time reproduction. 

3 RESULTS 

3.1 Group Differences in the  
Channel-based MF-DFA  

As mentioned in the previous section, the EEG time 
series have multifractal structures that contain both 
types of multifractality. The important intellectual 
question here is how this multifractality changes 
through different brain states. In order to assess 
variations in the degree of multifractality in 
transition from the rest to time reproduction, average 
MF spectra for each EEG signal in both conditions 
(rest and time reproduction) were computed. A 
comparison of the multifractal structures in the two 
brain states was made by evaluating four features 
extracted from MF spectra in each time series for all 
subjects. These features are as follows: the width 
(dα) and the height (݂݀ሺߙሻ ) of the spectrum, mean 
q-order singularity exponent (mean_	ߙ ), and mean 
q-order singularity dimension (mean_ ݂ሺߙሻ ). 
Repeated measures analysis of variance (ANOVA) 
was conducted separately on each feature with the 
condition (rest vs. time reproduction) and electrode 
positions as the within-subject factors and group 
(ADHD vs. control) as the between-subject factor. 
For the width and the height features, ANOVA 

revealed a significant main effect of condition [(F (1, 
32) = 9.15; p= .005), (F (1, 32) = 8.45; p =.007)], 
demonstrating that for both groups, the shape of the 
multifractal spectrum in the two conditions differ 
significantly. In transition from the rest to time 
reproduction, the width increased and the height 
decreased. Figure 2 (a) shows the averaged values of 
these two extracted features along with the standard 
deviations of them in each condition for both groups. 
Also, the electrode × condition interaction effect was 
significant. Figure 2(b) and 2(c) demonstrate the 
significant rise in the width and significant decline 
in the height of the multifractal spectrum during 
time reproduction in most of the scalp electrodes. 
For mean_ 	݂ሺߙሻ , there was a significant effect of 
condition (F (1, 32) = 8.52; p = .006) showing lower 
values for time reproduction than rest state (Figure 
3(a)). The effect of the group just for the mean_ߙ 
was near significant (F (1, 32) = 8.45; p =0.07) with 
controls showing higher values than ADHD subjects 
regardless of the paradigm (Figure 3(b) and 3(c)). 
This lower mean q-order singularity exponent value 
in individuals with ADHD shows that the degree of 
multifractality in signals of this group is marginally 
lower than control subjects. 
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Figure 3: a) Average values of the q-order singularity exponent (mean_ߙ) and q-order singularity dimension (mean_݂ሺߙሻ) 
of the channel-based multifractal spectrum in children with ADHD and age-matched controls during rest (R) and time 
reproduction (Tp). b) Mean_ߙ for children with ADHD and control in transition from rest to time reproduction. c) Mean_ߙ 
for all scalp electrodes during rest and time reproduction. 

3.2 Group Differences in the  
Source-based MF-DFA 

The channel-based multifractal features showed 
significant alterations between two conditions, failed 
to clearly distinguish two groups. Concerning better 
spatial resolution of the source-based analysis, one 
could expect to see a more significant trend in the 
source components. However, unlike scalp channels, 
a pair of independent components from two subjects 
might resemble or differ from each other in many 
ways. Even with one subject in a different paradigm, 
the results could be different as each paradigm leads 
to specific source components. Therefore making 
direct comparisons about the transition from rest to 
the time reproduction for ICs would not be logical. 
Notwithstanding, it is possible to assess ICs’ 
multifractal properties for two groups during one 
paradigm. To achieve this, the multifractal spectrum 
of 349 ICs from 34 subjects in 7 clusters were 
calculated and averaged for each group and each 
cluster. Figure 4(a) represents the clusters including 
two occipital, one occipital-temporal, three frontal, 
and one prefrontal cluster. The averaged multifractal 
spectrums of each cluster for both groups during the 
encoding phase of the time reproduction task has 

been shown in figure 4(b). According to the figure 
4(b), in the prefrontal, mid-frontal and right frontal 
clusters, the multifractal spectrum of subjects with 
ADHD in both durations exhibited a leftward shift 
reflecting a lower degree of multifractality for these 
individuals in these clusters. Similar to the previous 
section, for the purpose of statistical analysis four 
features of these spectrums (dα, 	݂ሺߙሻ,	mean_ߙ, and 
mean_	݂ሺߙሻ ) were assessed utilizing independent t-
test. The results showed that mean_ ߙ	   for the 
prefrontal, mid-frontal and right frontal source 
clusters in the ADHD group were significantly lower 
than that of the control group for both durations (p-
values < 0.02). Moreover, mean_݂ሺߙሻ  for the right 
occipital cluster in individuals with ADHD was 
significantly higher than that for control subjects (p-
value < 0.019). Multifractal spectrum width in the 
prefrontal cluster also displayed a significant 
difference between two groups with the lower value 
for the ADHD group than controls. 
 
 
 
 
 
 

(c)(b) 

0.35
0.4

0.45
0.5

0.55
0.6

0.65
0.7

0.75
0.8

R_ADHD Tp_ADHD R_Control Tp_Control

mean_α

mean_f(α)

(a) 

Source-based Multifractal Detrended Fluctuation Analysis for Discrimination of ADHD Children in a Time Reproduction Paradigm

43



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4: a) 7 IC source clusters including two occipital, one occipital-temporal, three frontal, and one prefrontal cluster.  b) 
Averaged multifractal spectrums of each source cluster for each group (ADHD vs. control) during two interval reproduction 
(short vs. long). 

3.3 Classification Results for the Both 
Channel-based and Source-based 
Features 

The multifractal features ability to distinguish 
between two groups was furthermore evaluated 
by passing them to the SVM classifier. For 
both the channel-based and the source-based 
measures, SVM with three types of kernel 
functions (linear, polynomial, and radial basis 
functions (RBF)) were tested. Here, the results 
for the RBFSVM are mentioned as it yielded 
better results. Using the holdout cross-
validation method, 80% of the data were used 
to train the classifiers; the other 20% were kept 
for testing and the results were reported as an 
average accuracy after 20 repetitions.  
Channel-based Classification- In favor of data 
reduction, the 76 channel-based multifractal features 
(19 electrode * 4 features) were reduced to the 15 
principle components using the principle component 
analysis preserving 90% of the signal variance. 
Afterward, these principal components were fed into 
the SVM classifier. Table 1 summarizes the results 
of applying multifractal features to the SVM. Using 
channel-based multifractal features showed 73.5% 
and 77.78% accuracy during rest and time 
reproduction, respectively. This outcome revealed an 
increase in the accuracy of the classification of two 
groups applying the time reproduction paradigm.  

Source-based Classification- as reflected by the 
group discrepancy results in section C, mean_ ߙ	  , 
and mean_ 	݂ሺߙሻ   parameters yielded significant 
differences across the two groups. Hence, these two 
features were chosen for the classification with the 
SVM. Considering the ICA algorithm, some subjects 
might not have an IC in a cluster. In this case, the 
nearest dipole to the central dipole of that cluster 
was identified and the above mentioned multifractal 
features from the corresponding IC were considered 
as the features of that cluster for that subject. 
Fourteen features (7 clusters * 2 features) for each 
subject were passed to the SVM classifier with the 
holdout cross-validation method described above. 
The results have been reported in Table 1. The 
mean_ ߙ  and the mean_ ݂ሺߙሻ  presented high 
accuracy values of 86.67% and 81.67%, 
respectively. It is in accordance with the previous 
results in section C that mean_ ߙ showed the most 
distinguishing feature between the two groups. 

4 DISCUSSION 

In the current study, we used multifractal properties 
to describe the dynamics of brain electrical activity 
during two different brain states, the eyes-open rest 
and the time reproduction condition. Furthermore, 
multifractal features were assessed in the channel-
based as well as the source-based level to discover 

(a) 

(b) 
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group discrepancies between ADHD and age-
matched control participants. We found evidence of 
multifractal structures as well as the presence of 
both types of multifractality in the EEG signals. This 
confirmed the presence of the scale-invariant 
structure in the brain activity as stated in the 
previous studies (Ihlen, 2012; Zorick & Mandelkern, 
2013). Interestingly, the channel-based assessment 
revealed that the shape of the multifractal spectrum 
exhibited a significant alteration from rest to the 
time reproduction condition. According to our 
statistical results, in transition from the rest to time 
reproduction, the width of the multifractal spectrum 
increased and its height decreased significantly for 
both groups. This indicates that switching from rest 
state to the time reproduction state increased the 
degree of multifractality of the EEG signals in both 
groups. As represented in Figure 2(b-c), this trend 
has been seen in almost all studied scalp electrode 
sites.  

The rise of the width of the singularity spectrum 
during the time reproduction demonstrates an 
increase of the non-uniformity and the complexity of 
the signal and, hence, a climb in the degree of the 
multifractality. An increase in brain complexity can 
be regarded to be a measure for the brain reaching 
an active state (Maity et al., 2015). According to the 
MF-DFA, this increase is due to the rise in the 
values of the q-order singularity exponents, hence 
increase in the weak variations of the signal (h > 0 
for q < 0) since at large variations (q<0) signals 
behavior become more monofractal (Kantelhardt et 
al., 2002). This can be interpreted in the light of 
more beta activity during time perception. Beta 
oscillations have been reported to correlate with time 
perception (Ghaderi et al., 2018; Kononowicz & 
Rijn, 2015). 

Similarly, a decline in the q-order singularity 
dimension variation and mean ( ݂݀ሺߙሻ  and 
mean_ ݂ሺߙሻ  ) reflected a higher degree of 
multifractality for EEG time series during time 
reproduction. This outcome confirmed the previous 
studies arguing the applicability of the scale-
invariant or multifractal structures to reflect changes 
in the brain states (Dick, Svyatogor, Ishinova, & 
Nozdrachev, 2012; Dutta et al., 2014; Figliola et al., 
2007; Ma et al., 2006; Maity et al., 2015; Natarajan 

et al., 2004; Weiss et al., 2011, 2009; Zorick & 
Mandelkern, 2013). Maity et al. (2015) reported a 
considerable increase in alpha and theta multifractal 
spectrum width and hence complexity of these 
particular brain waves when subjects listen to the 
Tanpura drone. Although channel-based multifractal 
features provide significant measures for 
distinguishing between the rest and the time 
reproduction brain states, they showed weak results 
for differentiating the two groups. Among the 
multifractal properties, just the mean q-order 
singularity exponent displayed near significant lower 
values for ADHD subjects compared with controls. 
In both conditions the mean_	ߙ , hence the degree of 
multifractality of EEG signals for ADHD group was 
lower than that for healthy control subjects.  

It is well known that EEG has a limited spatial 
resolution and the channel-level analysis can only 
provide limited information about the cortical 
regions involved in the generation and the 
perturbation of these cortical regions activity 
(Makeig, Bell, Jung, & Sejnowski, 1996). One 
possible solution for improving the spatial resolution 
of EEG is to perform source analysis by means of 
source localization methods. To our knowledge, this 
is the first time that MF-DFA is performed on the 
source ICs of the EEG signals. Our main hypothesis 
was that children with ADHD would exhibit distinct 
multifractal structure during both EEG recording 
conditions and this pattern is more distinguishable in 
the source-based analysis. Our source-based 
multifractal analysis in the time reproduction task 
revealed significant differences between two groups 
reaching better spatial resolution. As stated in the 
results section, the prefrontal, mid-frontal and right 
frontal clusters displayed a significantly different 
multifractal spectrum shape for both short and long 
duration reproduction conditions for both groups. To 
be more precise, the multifractal spectrum of 
individuals with ADHD exhibited a leftward shift 
which reflects lower degree of multifractality, 
consequently, less complexity and more uniformity 
of ICs in these individuals compared to the control 
subjects. The central tendency of the multifractal 
spectrum is closely related to the monofractal Hurst 
exponent. 
 

Table 1: Classification accuracy for the channel-based and the source-based multifractal features. 

Features 
The channel-based 

features  

The source-based features 

Mean-  ሻߙMean_݂ሺ ߙ
Rest 73.5% ----- ----- 

Time reproduction 77.78% 86.67% 81.67% 
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The central tendency between 0.5-1 reflects a time 
series with long-range correlations and below 0.5 
would be an index of anti-correlated structure 
(Kantelhardt et al., 2002). Therefore the leftward 
shift in the multifractal spectrum of participants with 
ADHD indicates less long-range correlations in their 
EEG signals. This suggests that IC time series in 
participants with ADHD in prefrontal, mid-frontal, 
and right frontal regions are more uniform and 
regular than in the control group. Similarly, it might 
be because of fewer small and large variations on the 
time series in these areas. These results are in line 
with the previous studies reporting reduced 
activation in the right dorsolateral prefrontal cortex 
(DLPFC) and supplementary motor area (SMA) in 
individuals with ADHD during a time discrimination 
task (Rubia et al., 2009; Smith, Taylor, Brammer, 
Halari, & Rubia, 2008). Correspondingly, in our 
previous study, the higher amplitude of the mid-
frontal P300 evoked by the onset of the encoding 
phase of time reproduction for ADHD individuals 
has been linked to inappropriate and insufficient 
allocation of attentional resources for the encoding 
of the target interval (Khoshnoud et al. 2017).  

Both groups of features were separately 
exploited for the classification with SVM. While the 
best accuracy for the 4 channel-based multifractal 
features was during time reproduction condition 
with 77.78%, the source-based mean_α displayed a 
significantly higher accuracy with 86.67%. Using 
the source-based multifractal features not only 
increased the accuracy rate but also reduced the 
number of features from 76 (19 * 4) to 14 (7 * 2) for 
each participant. Our results confirmed our main 
hypothesis by showing greater distinguishability of 
the source-based multifractal features. Nevertheless, 
the present study has some limitations that should be 
considered. First and foremost is that this study 
utilized a clinical EEG recording system with 19 
electrodes, which resulted in a limited set of ICs and 
therefore restricted source clusters. We believed that 
using high-resolution EEG signals will lead to more 
accurate source localization and subsequently more 
ICs which would lead to better classification 
accuracy. The second shortcoming of this work is 
the small sample size (15 ADHD and 19 controls) 
which might be the main source of low statistical 
power for discrepancies between the two groups. 

5 CONCLUSIONS 

This study conducted a multifractal detrended 
fluctuation analysis on the neural activities of the 

brain in individuals with ADHD and age-matched 
healthy children during the eyes-open rest and time 
reproduction conditions. It was found that 
multifractality could quantify the fluctuation 
dynamics from two different pathological EEGs 
taken at these two conditions. The results showed 
that the sensor-level and the source-level 
multifractal features provide different information 
about the brain state. According to the results, in 
transition from the rest to the time reproduction, the 
degree of multifractality of the EEG signals for both 
groups displayed a significant increase indicating 
more complex and non-uniform activity during time 
reproduction. Also, the prefrontal, mid-frontal and 
right frontal clusters displayed significantly different 
multifractal spectrum shapes for both groups. 
Independent components in these clusters for 
participants with ADHD exhibited less long-range 
correlations suggesting reduced activation in these 
source regions. 
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