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Abstract: This paper describes a method that generates in-between frames of two videos of a musical instrument being
played. While image generation achieves a successful outcome in recent years, there is ample scope for
improvement in video generation. The keys to improving the quality of video generation are the high resolution
and temporal coherence of videos. We solved these requirements by using not only visual information but also
aural information. The critical point of our method is using two-dimensional pose features to generate high-
resolution in-between frames from the input audio. We constructed a deep neural network with a recurrent
structure for inferring pose features from the input audio and an encoder-decoder network for padding and
generating video frames using pose features. Our method, moreover, adopted a fusion approach of generating,
padding, and retrieving video frames to improve the output video. Pose features played an essential role in
both end-to-end training with a differentiable property and combining a generating, padding, and retrieving
approach. We conducted a user study and confirmed that the proposed method is effective in generating
interpolated videos.

1 INTRODUCTION

Composing music, like any creative work, is a con-
tinuous process of trial and error to pursue the de-
sired music. Like Wolfgang Amadeus Mozart, who
is a famous composer, said that “Music should never
be painful to the ear but should flatter and charm
it, and thereby always remain music,” crafted mu-
sic should be well-thought-out and enticing. We
have expanded the Generative Theory of Tonal Mu-
sic (GTTM) (Lerdahl and Jackendoff, 1996) to deep-
GTTM (Hamanaka et al., 2016) (Hamanaka et al.,
2017) that enabled a time-span tree of a melody to be
automatically acquired based on the GTTM. Besides,
we developed an interactive music system called the
“Melody Slot Machine (Hamanaka et al., 2019),”
which is an interactive music system that provides
an experience of manipulating and controlling a mu-
sic performance to musical novices. The melodies
used in the system are divided into multiple segments,
and each segment has multiple variations of melodies,
from intense ones with many notes to calm ones with
few notes, so that users can explore the melody they
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Figure 1: Interpolated Video as the result of the interpola-
tion between Video A and Video B. To fill in the gaps be-
tween the two videos, we replace the end frames of the first
video and the start frames of the second video with inter-
polated frames. The length of interpolation is changed by
pose similarity between the two videos.

want. We prepared an AR display showing a per-
former so that the result of the operation can be vi-
sually understood as well as aurally.

While the strong background of the music the-
ory and the adequate quality of generated music, the
video, which is accompanied to the music, lowers the
satisfaction of playing the system. This is because
merely joining an audio recording with a video does
not produce a pleasant result. In the case of a dis-
continuous audio signal, to remove some noises (e.g.,
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clip noises, crackle noise) will improve the quality of
sounds reasonably. Editing the joint parts of videos,
however, is still challenging. The main problems lie
in video resolution and temporal coherence. To im-
prove the experience of the interaction, we addressed
these problems by generating frames and interpolat-
ing videos using aural information via human pose
features.

In this study, we propose an audio-guided video
interpolation method for videos of a musical instru-
ment being played. We adopted two-dimensional
pose features as the intermediate representation that
bridges aural and visual information in our work-
flow for efficient and effective video interpolation.
The subjective evaluation shows that our interpolated
videos appear as natural as an original video and sat-
isfy the participants. Our primary contributions are
the following:

• A new method of using audio to generate an inter-
polated video.

• A novel algorithm that adopts two-dimensional
pose features to make in-between frames natural
from the viewpoint of resolution and temporal co-
herence of videos.

2 RELATED WORK

2.1 Audio-driven Animation

Facial Animation. Several studies succeeded in in-
ferring facial animation from speech audio. Suwa-
janakorn et al. synthesized lip synchronized videos
using a recurrent neural network that learns the mouth
shapes from raw audio features (Suwajanakorn et al.,
2017). Karras et al. proposed a deep neural net-
work that learns 3D vertex coordinates of a face
model with its expression from raw audio (Karras
et al., 2017). They applied the formant analysis to
input speech audio to extract audio features. Visemes
are also useful to estimate the facial animation from
speech (Zhou et al., 2018). Cudeiro et al. used re-
vised DeepSpeech (Hannun et al., 2014) features and
implemented animator controls that preserve identity-
dependent facial shape and pose (Cudeiro et al.,
2019).
Motion Synthesis. Synthesizing motion from in-
put audio has been the subject of various research.
Fan et al. and Ofli et al. synthesized dance motion
from music using a statistical and example-based ap-
proach (Fan et al., 2012) (Ofli et al., 2012). Shliz-
erman et al. generated the motion of playing an in-
strument using a Long Short-Term Memory (LSTM)

network (Shlizerman et al., 2018).

2.2 Video and Image Processing

Video Interpolation. Recently, interpolation for a
short interval between two subsequent frames in high
resolution has been successfully performed using
deep learning (Niklaus et al., 2017) (Niklaus and Liu,
2018) (Meyer et al., 2018) (Jiang et al., 2018). These
methods help create high frame rate videos from ordi-
nary ones. However, they are not useful in interpolat-
ing a long interval of frames because of the low corre-
spondence between the frames that often leads to low-
fidelity of generated videos. Chen et al. and Xu et
al. introduced a bidirectional predictive network for
generating in-between frames for an extended inter-
val (Chen et al., 2017) (Xu et al., 2018). Bidi-
rectional constraint propagation, which ensures the
spatial-temporal coherence between frames, succeeds
in generating plausible videos. Denton et al. pro-
posed a video generation model with a learned prior
that represents the latent variable of the future video
frames (Denton and Fergus, 2018). Li et al. suggested
a deep neural network with three-dimensional convo-
lutions, which guarantee the spatial-temporal coher-
ence among frames, for generating in-between frames
directly in the pixel domain (Li et al., 2019). Wang et
al. presented a skip-frame training strategy that en-
hances the inference model to learn the time counter
implicitly (Wang et al., 2019). These methods, how-
ever, still lacked in terms of video resolution (the gen-
erated video resolution was 64 [px] × 64 [px]).
Conditional Image Generation. Conditional im-
age generation is the task of generating new images
from a dataset by setting specific conditions. In this
task, a generative adversarial network (GAN) can im-
prove the fidelity of the generated images. Wang et
al. and Brock et al. proposed GANs that gener-
ated high-fidelity images from sparse labels and an-
notations (Wang et al., 2018b) (Brock et al., 2019).
Wang et al. expanded an image-to-image synthe-
sis approach to video-to-video one using the gener-
ative adversarial learning framework with a Spatio-
temporal adversarial objective function (Wang et al.,
2018a). Pumarola et al. implemented facial anima-
tion from a single image-conditioning scheme based
on action-units annotations (Pumarola et al., 2018).

We propose a fusion approach of video frame
generation, padding, and retrieval to achieve long-
interval interpolation and produce in-between frames
with high resolution.
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Figure 2: Overview of our proposal. (left) Training: Our model estimates pose features from the input audio and generates a
video from pose stick figures. To fill in the gap between the pose features and the pose stick figures, we propose a differentiable
line drawing from the points. This technique enables a deep neural network to train the model by end-to-end learning. (right)
Testing: We adopt a combined approach to generate an interpolated video. The trained model is used for the pose features
estimation from the audio and video frame generation from the pose stick figure in the interpolation section.

3 METHOD

Our goal is to interpolate two target performance
videos using audio features. To tackle this challenge,
we divided our workflow into three stages for the
training: (i) audio feature extraction from the input
audio, (ii) pose estimation from the audio feature,
and (iii) video interpolation between the target videos
by generating in-between frames. Our framework is
trained in an end-to-end manner. Using the trained
model, we introduce a novel algorithm that interpo-
lates the two target videos with high resolution. The
significant point is that our method combines gener-
ating, retrieving, and padding methods to produce a
seamless and natural video.

3.1 Mel Frequency Cepstral
Coefficients

Mel Frequency Cepstral Coefficient (MFCC) is one
of the most popular methods to extract audio features
from a signal waveform. MFCC is widely used for not
only speech analysis but also music analysis (Foote,
1997) (Logan and Chu, 2000) (Logan et al., 2000). In
this paper, we used 20-dimensions of MFCC calcu-

lated from the input audio. The parameters to calcu-
late MFCCs are: the sampling rate is 44.1 [kHz], the
window size is 2,048, the hop size (window overlaps)
is 512, and the type of a window is the hann window.
The hann window is described by the following equa-
tion:

w(x) = 0.5−0.5cos2πx, if 0≤ x≤ 1. (1)
To fit the number of elements to frame per second
of videos, a linear interpolation (Lerp) is applied
to MFCCs. Finally, we obtained 20-dimensions of
MFCC per video frame.

3.2 Pose Features from MFCCs

Let MP : m→ z be the function that learns a map-
ping from MFCCs m ∈ RT×20 to pose features z ∈
RT×25×2, where the T is the length of the input
MFCCs, and the pose features z were described as 25
joint positions (50 dimensions) on each video frame.
For the sequence-to-sequence transfer, we developed
a deep neural network with a recurrent structure using
three layers of the bidirectional Gated Recurrent Unit
(BiGRU) (Chung et al., 2014) to learn pose features z
from the MFCCs m. We also added two weights shar-
ing fully connected layers to all BiGRU outputs. Fig.
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Figure 3: The architecture of our network for pose estima-
tion from MFCCs. The mi is the i-th frame of MFCCs (in-
put) and the zi is the i-th frame of estimated pose features
(output).

3 shows the schematic architecture of our network.
The objective function Lpose to train our network is
following:

Lpose =
1
T

T

∑
i
‖zi−MP(mi)‖2 (2)

The network parameters that we used were the fol-
lowings: the input length of MFCCs T was set at 50,
and the hidden state dimension of BiGRU was set at
512. Fully connected layers consisted of two layers,
in which hidden states of layers were 1024 and 512
dimensions, respectively. We used the Adam opti-
mizer (Kingma and Ba, 2014) to train the network.
The learning rate was 2.5e-4, β1 was 0.9, β2 was
0.999, and ε was 1.0e-8.

3.3 Stick Figure from Pose Features

To apply an image-to-image transfer method, which
enables a deep neural network to generate a natural
image from a sparse annotation, pose features have to
be rendered to an image. Let SP : z→ s be the func-
tion that maps from pose features z to stick figure s.
We introduced a differentiable line drawing to realize
end-to-end learning from audio to images. Let A and
B be joint positions. Problem setting involves draw-
ing line segment AB between points A and B. Let I0 be
the image matrix where all pixels have the value one.
To draw a line, we calculated the distance d between
any point P and line AB using the following:

d =
|(B−A)× (P−A)|

‖B−A‖
. (3)

We then obtain line AB using the following:

AB = I0×
(

1+
d2

ν

)(− ν+1
2 )

. (4)

In this paper, we used ν = 1. To cut off line AB at
points A and B, we calculated the angle θ between line
segments AB and AQ for any point Q, and the angle θ′

between line segments BA and BQ′ for any point Q′

using the followings:

cosθ =
(B−A) · (Q−A)
‖B−A‖‖Q−A‖

, (5)

cosθ
′ =

(A−B) · (Q′−B)
‖A−B‖‖Q′−B‖

. (6)

We finally obtained line segment AB, which is ren-
dered on image I0 with differentiable properties, using
the following:

AB

= AB×
(

1+ e−αcosθ

)−1
×
(

1+ e−αcosθ′
)−1

. (7)

Fig. 4 shows a concrete example of Eq. (7). We used
α= 5 to make line segment AB sharp. A differentiable
line drawing with colors was used to render the stick
figure s from pose features z, as shown in Fig. 5.

3.4 Video Generation

We employed (Wang et al., 2018b) for the image-to-
image transfer. In this study, the input image was the
stick figure s ∈ R3×H×W , which was rendered from
pose features z (Section 3.3), and the output was a nat-
ural image of a person x ∈ R3×H×W , where the H,W
are the height and width of an image, respectively. Let
G : s→ x be the generator, and D be the discrimina-
tor. The objective functions for training the network
are followings:

Limage

= min
G

(
max

Dk

3

∑
k=1

LGAN(G,Dk)+λ

3

∑
k=1

LFM(G,Dk)

)
,

(8)

LGAN(G,D)

= E(s,x)[logD(s,x)]+Es[log(1−D(s,G(s))], (9)

LFM(G,Dk)

= E(s,x)

L

∑
i=1

1
Ei
[‖D(i)

k (s,x)−D(i)
k (s,G(s))‖1], (10)

where λ is the weight, D(i)
k is the i-th layer feature

extractor of multi-scale discriminator Dk, L is the to-
tal number of layers, and Ei indicates the number of
elements in each layer. The network was fine-tuned
with the target videos of a musical instrument being
played. We used the Adam optimizer (Kingma and
Ba, 2014) to fine-tune the network. The learning rate
was 2.0e-4, β1 was 0.9, β2 was 0.999, and ε was 1.0e-
8.
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Figure 4: An example of a differentiable line drawing. Let A = (50,50) and B = (150,150) be points. (a) shows line segment
AB which we want to calculate. (b) shows line AB calculated by Eq. (4). (c) and (d) indicate endpoints of line AB calculated
by the second and third term on the right hand of the Eq. (7), respectively.

Figure 5: (right) An original image. (left) An example of
the stick figure. We used these images as the pair data to
train the network which learns the image-to-image transfer.

3.5 Video Interpolation

We proposed a novel algorithm that combined ap-
proaches to generating, padding, and retrieving im-
ages for interpolating the target videos with high res-
olution while testing. Algorithm. 1 shows the order
of processing. Pose similarity Sp between two target
videos is calculated using the Object Keypoint Simi-
larity (OKS) (Ruggero Ronchi and Perona, 2017) for
several end frames of the first video and start frames
of the second video, and defined as following:

Sp =
F

∑
i

wiOKSi

/ F

∑
i

1, (11)

where F is the window size, w is the weight. We
used F = 10 for the experiments, and w∈R10 follows
the Gaussian distribution. The interpolation length
Lp depends on pose similarity Sp. The higher the
pose similarity is, the shorter the interpolation length
is. The interpolation length is empirically defined in
three lengths (9, 13, and 17 frames) by sorting pose
similarity. Then, we connected the sequence of pose
features in the target videos and that of generated ones
by Lerp.

To generate natural images, we adopted both the
frame padding method (Niklaus et al., 2017) and

the image-to-image transfer method (Wang et al.,
2018b). We retrieved images from personal perfor-
mance videos, where the sequence of original pose
features was highly matched to that of generated ones.
On the other hand, we used the image-to-image trans-
fer method (Wang et al., 2018b), where the sequence
of generated pose features was not included in the per-
formance videos. To fill the gaps in the original and
retrieved/generated images, we applied video frame
padding method (Niklaus et al., 2017) to them, and
connected the frames seamlessly.

Algorithm 1: Pseudo code for video interpolation (Fig. 2:
bottom). While testing, Original Pose features Zpose ∈
RDATA×25×2, Original Images X ∈ RDATA×3×H×W , which
were used in the training, were utilized for video interpola-
tion. DATA denotes the size of a dataset.
Input: Audio segment A
Output: in-between frames X′ ∈ RF×C×H×W

Calculate MFCCs m ∈RF×20 from Audio segment
A (Section 3.1)
Calculate pose features RF×25×2 3 z ⇐ MP(m)
(Section 3.2)
Calculate pose similarity Sp (Section 3.5)
Determine the length of the interpolation length Lp
(Section 3.5)
Calculate Lerp of pose features z (Section 3.5)
Randomly sample pose features z′⊂ z (Section 3.5)
if |Zpose 3 zpose− z′ ∈ z′|< threshold then

Retrieve frame X′ 3 x′⇐ X(zpose) (Section 3.5)
else

Generate frame X′ 3 x′⇐G(SP(z)) (Wang et al.,
2018b) (Section 3.3, 3.4)

end if
for z′′ ⊂ z\ z′ do

Pad frames X′ 3 x′ ⇐ Padding(X,X′) (Niklaus
et al., 2017) (Section 3.5)

end for
in-between frames X′
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4 DATA PREPROCESSING

For the experiments, we prepared personal perfor-
mance videos (audio sampling rate: 44100 [Hz],
video definition: full HD, frame rate: 30 [frames/s]).
The scores played by the performer were generated by
the melody morphing (Hamanaka et al., 2017) of two
different scores (Horn Concerto No. 1/Mozart and
La Gioconda: Dance of the Hours/Ponchielli). We
prepared eleven scores, including two original scores
and nine morphed scores, for the experiments. Fig. 6
shows a part of scores that we used in the experiments.
Videos are trimmed around the target performer and
re-sized to 480 [px] × 480 [px]. The length of the
videos was 374 [sec] in total. We then calculated 20
dimensions of MFCCs from the audio corresponding
to each video frame. To obtain pose features from the
recorded videos, we applied 2D pose estimation (Cao
et al., 2019) to all frames and removed noisy estima-
tions by the following equation:

Zt =
∑
(u−1)/2
i=−(u−1)/2 Zt+iCt+i

∑
(u−1)/2
i=−(u−1)/2 Ct+i

, (12)

where Z is the pose feature, C is the confidence of the
CNN (Cao et al., 2019) output, t is the t-th frame of
the video and u is the window size.

5 EVALUATION

We evaluated whether the change in the melody and
the video were seamless in the Melody Slot Ma-
chine (Hamanaka et al., 2019). We asked the partici-
pants to answer three questions after watching a video
using a seven-point Likert scale (1: strongly disagree;
7: strongly agree) as follows.

Q1: “Did you feel that the melody was as natural as
the original melody?”

Q2: “Did you feel that the video was matched to the
melody?”

Q3: “Did you feel that the video was as natural as
the original video?”

The participants were twelve young adults (age: 21–
25), and four of them had experienced playing an
instrument. We compared two conditions for the
melody (original melody and the melody with the
transition of melody morphing level (Hamanaka et al.,
2017)) and five conditions for the video (original
video, our method, merely combined video, (Niklaus
et al., 2017), and (Wang et al., 2018b)) using a
Wilcoxon signed-rank test (Wilcoxon, 1992) with 1%
and 5% levels of significance. Tests 1–4 were selected

from videos that had a difference in pose similarity
(Test 1 was a video that interpolated two videos with
a high degree of pose similarity, and Test 4 interpo-
lated two videos with a low one). Fig. 7 shows that
all of the melodies in the four tests were natural re-
gardless of the difference conditions. Fig. 8 shows
that the quality of the video depended on the joint
parts of the videos. There was a mismatch between
melody and video when the video was interpolated
or combined. Fig. 8 indicates that improving video
interpolation, which is matched to the melody, is im-
portant for user experience. Our method is superior to
any other method in most cases. Fig. 9 shows that our
method makes the produced a video appear more nat-
ural compared to those produced using other methods.
Our method was effective in Test 2 and Test 3 because
there are significant differences between our method
and the others. In particular, in Test 2, the original
video and the one produced with our method show no
significant differences.

Fig. 10 and Fig. 11 show a comparison of (a)
two target videos, (b) our method, (c) (Wang et al.,
2018b) and (d) (Niklaus et al., 2017). In Fig. 10
(c) and Fig. 11 (c), the generated images become
blurred on the mallet. The blur is caused by the lack
of annotations. To avoid this problem, specific anno-
tations on the instruments will be required. In Fig.
10 (d), the generated faces are corrupted, and in Fig.
11 (d), the generated bodies are corrupted because the
method (Niklaus et al., 2017) was not adequate for
interpolating the target videos with significant differ-
ence in the frames. This stems from the limitations of
the short-interval interpolation method. On the other
hand, our method, which uses a fusion approach of
generating, padding and retrieving images, as shown
in Fig. 10 (b) and Fig. 11 (b), generates a seamless
and series of natural video frames. We show some
results in Fig. 12.

6 METHOD LIMITATION

Our method is suitable for videos that include a clear
target with a high correspondence to audio. Then, it is
not adequate to apply our method to the videos with-
out any target. Moreover, it is challenging to gener-
ate in-between frames in the case of mute, constant
sounds, and repeated sounds, which are the audio
without any character. In addition, the quality of the
interpolation is low when the pose similarity is quite
different between the two videos. By the request of
the “Melody Slot Machine (Hamanaka et al., 2019),”
the interpolation length was restricted up to 20 frames
because the switching process of the videos will not
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Figure 6: A part of the scores prepared for the experiments. The top score is the beginning part of the melody of Horn
Concerto No. 1/Mozart, and the bottom score is the one of La Gioconda: Dance of the Hours/Ponchielli. The middle scores
are the ones of morphed melodies of them generated by (Hamanaka et al., 2017).

Figure 7: The subjective evaluation score for Q1.

Figure 8: The subjective evaluation score for Q2.

Figure 9: The subjective evaluation score for Q3.

make it in time. It is possible to generate in-between
frames when the pose similarity is low, but the inter-
polated video appears strange.

7 CONCLUSION

We proposed a novel framework of video frame inter-
polation using audio to improve the interaction expe-
rience in the “Melody Slot Machine (Hamanaka et al.,
2019),” which enables the enjoyment of manipulating
music. Our method could produce the interpolating
video with a long interval of frames and high resolu-
tion. We confirmed that our interpolated videos ap-
pear as seamless and natural as an original video, and
satisfy the participants. We are planning to improve
the quality of the interpolation when pose similarity
is quite different between the two videos.
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Figure 10: Comparison of (a) two target videos, (b) our method, (c) Wang et al. (Wang et al., 2018b) and (d) Niklaus et al.
(Niklaus et al., 2017). The broken line denotes the boundary of between the two target videos.

Figure 11: Another comparison of (a) two target videos, (b) our method, (c) Wang et al. (Wang et al., 2018b) and (d)
Niklaus et al. (Niklaus et al., 2017). The broken line denotes the boundary of between the two target videos.

Figure 12: Results of our method. Our method succeeded in generating in-between frames with audio-guide.
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