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Abstract: One of the most important aspects to be considered in the production lines of sanitaries is the optimization in 
the use of critical resources such as kilns (industrial furnaces) due to the complexity of their management 
(they are turned on twice a year) and the costs incurred. The manufacturing processes of products within these 
kilns require that the capacity be maximized by trying to reduce downtime. In this sense, Artificial Intelligence 
provides bioinspired and evolutionary optimization algorithms which can handle these complex variable 
scenarios, the memetic algorithms being one of the main means for task scheduling. In present investigation, 
and based on previous works of the authors, a memetic algorithm is presented for optimization in the loading 
of kilns starting from a real production line. 

1 INTRODUCTION 

The never-ending competition among the companies 
from the ceramic and sanitary ware manufacturing 
industry has prompted these companies to seek to 
improve their quality and efficiency in the production 
process, so as to increase their revenues and minimize 
losses (Porras, 2018). The use of computer solutions 
is a fine example of this quest. However, although 
these focus on several aspects such as staff 
management, storage, sales records and so on, there 
is still a gap in the optimization of the manufacturing 
process stages. 

This is the case of the firing stage that takes the 
longest and lacks a strategy for an optimum selection 
of pieces to be loaded into the kiln. As a result a 
bottleneck occurs in the process. The variety of 
models to be manufactured, number of pieces, colors 
as well as demand, weight and volume constraints (of 
kiln cars and kilns) makes pieces selection a 
challenge (Leon, Cueva, Tupia & Paiva Dias, 2019). 

This problem does not only emerge in the sanitary 
ware manufacturing industry but also in others fields 
where products composed of several parts are 
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manufactured and assembled. That is why several 
researches have been conducted to develop 
algorithm-based solutions that generate good results 
within reasonable times. 

The most commonly used type of algorithms in 
these cases are metaheuristic ones. Within this 
category the genetic algorithm is the preferred one 
because of its simplicity. However, recent researches 
have shown that memetic algorithms produce positive 
solutions in a lower number of evaluations but with 
better quality. 

This paper has taken into account the 
aforementioned and puts forward the design and the 
implementation of a memetic algorithm that 
generates a selection of pieces prioritizing those that 
take advantage of the capacity of the kilns and kiln 
cars weight and volume, considering the demand of 
product sets. This algorithm was then calibrated to 
improve it and, finally, was compared to a genetic 
algorithm to determinate which was the best suited to 
tackle this type of problem. 

The memetic algorithm (MA) was chosen because 
of its advantages like exploitation of problem-
knowledge (Moscato & Cotta, 2003) and improved 
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procedures for local search, which lead to a faster 
convergence and a statistically better solution (Wrona 
& Pawełczyk, 2013). In addition, it’s easy to 
implement and more efficent and efective than 
traditional evolutionary algorithms (Zhang, Sun, & 
Wang, 2009). And the genetic algorithm its used to 
compared it to the MA because it’s one of the most 
used algorithms to solve combinatorial optimization 
problems due to its robust nature and how easy it is to 
implement (Zhang, Sun, & Wang, 2009). 

This paper is organized in the following manner: 
Section 2 addresses the issues and their impact on the 
industry; Section 3 displays the problem state-of-the-
art; Section 4 introduces the proposed algorithm and 
finally Section 5 deals with the numeric 
experimentation this algorithm went through. In the 
end, the project conclusions will be introduced. 

2 PROBLEM DESCRIPTION  

2.1 Current Situation 

The sanitary ware manufacturing sector is 
characterized by a wide variety of products offered in 
different models, colors and sizes (Regalado, Maroto, 
Ruiz, & García del Río, 2011). Items may be 
composed of one or more pieces. Products of the 
same model and color pooled into sets are sold. 

That is why – and because of the increase of data 
volume required to manage the value change – the 
sanitary ware manufacturing industry has 
increasingly used computer solutions aligned to the 
industry´s characteristics (Ceramic Industry, 2015). 
Nevertheless, many of them are not focused on the 
optimization of the production process itself. 

This process has several stages, including firing, 
which lasts the longest (Diaz, 2004). Within this 
stage, the selection of pieces is the most important 
step, which is quite complex since there are several 
factors to be considered such as demand, variety of 
models to be manufactured, number of pieces 
comprised, colors, products sets as well as weight and 
volume constraints in kiln cars and kilns. 

Kilns used in sanitary ware manufacturing are 
rectilinear channels oriented to continuous 
production (Gómez Gutiérrez, C., 2010) where kiln 
cars are introduced. These cars have plates or shelves 
where pieces are put so that they don’t stick together 
(Rhodes, 2004). In this paper, these specific places 
where pieces are put are called compartments. 

The lack of a strategy for an optimum selection of 
pieces causes a bottleneck. And this bottleneck is the 

problem to be solved (Monzon, Cueva, Tupia & 
Bruzza, 2019). 

2.2 Impact on the Sanitary Ware 
Manufacturing Industry 

The lack of a selection strategy results in choosing 
pieces of only one model or color as well as the 
production delay of other models. 

Under other circumstances, pieces of different 
models and colors are chosen but do not form any set, 
thus delaying subsequent stages of assembly and 
packaging. This also causes delayed production, 
affecting selling and as a result only a few complete 
models are in storage but with a huge amount of 
incomplete sets and loose pieces as well. As a 
consequence, clients are not timely serviced and 
supply takes too long, sells are lost, and in addition 
fines for delays, higher storage cost and 
underutilization of the production capacity occur 
(Savsar & Abdulmalek, 2008). 

3 BRIEF SUMMARY OF  
STATE-OF-THE-ART 

The current issue regarding the selection of pieces 
stage is of a combinatorial optimization type, known 
as the knapsack problem, which is highly complex 
and is considered as NP-difficult (Fuentes, Vélez, 
Moreno, Martínez & Sánchez, 2015). The knapsack 
problem consists of selecting a set of items that meet 
the constraints and generate the greatest benefit 
(Dorta, León, Rodríguez & Rojas, 2003). 

Other industries, such as foundries and factories 
that produce a vast array of products composed of 
several parts to be later assembled, also pose similar 
difficulties (Tupia, Cueva & Guanira, 2017). This is 
the cause for researches have been conducted that 
although they do not exactly cover the same problem, 
they intend to solve similar problems (Koblasa, 
Vavrousek, & Manlig, 2017) (Baiqing, Haixing, 
Shaobu, Yifei, & Fei, 2016). The solutions proposal 
they put forward is the use of metaheuristics that have 
the advantage to be not specific to a problem but 
provide good solutions within a reasonable time 
(Blum & Roli, 2003). 

Among the proposed metaheuristics, the most 
commonly used method with the best results is the 
genetic algorithm (Liu, Pan & Chai, 2015) (Duda & 
Stawowy, 2013). This algorithm was developed by 
Holland and is inspired in Charles Darwin’s theory of 
evolution (Holland, 1992); among its advantages are 
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simplicity, global perspective and intrinsic processing 
(Deb, 2004). 

This method has been used to solve similar 
problems. For example, Liu, Pan & Chai put forward 
a specialized genetic algorithm (SGA) for the 
grouping of work orders, taking into account factors 
such as deadline, priority and demand (Liu, Pan & 
Chai, 2015). Wang, Ma, Luo & Qin introduced a new 
HGA-OVNS metaheuristics, which is the 
hybridization of the genetic algorithm, the Variable 
Neighborhood Search (VNS) and the Optimization 
Based Learning (OBL) to deal with the production 
planning problem in an assembly plant (Wang, Ma, 
Luo & Qin, 2016). Duda & Stawowy developed a 
genetic algorithm to optimize the selection of alloys 
and products to be manufactured in a foundry (Duda 
& Stawowy, 2013). In all the researches mentioned, 
the genetic algorithm was compared to other 
algorithms and even with commercial software. The 
outcome was that the genetic algorithm showed a 
better performance and generated better quality 
solutions. 

Another algorithm successfully used in similar 
issues is the memetic one, which combines Local 
Search with genetic operators (Alba & Dorronsoro, 
2005), balancing the exploration skills of 
evolutionary algorithms with the exploitation skills of 
the local search (Krasnogor & Smith). That is why, a 
lower number of evaluations is required to find top 
quality optima and solutions (Baesler & Palma, 
2014). 

4 PROPOSED ALGORITHMS 

4.1 Data Structure 

A structure is required that specifies which pieces will 
be loaded into the kiln. Each of the pieces will be 
placed in a different compartment, and there may be 
several pieces of the same type in the selected group. 

Therefore, the solution’s structure has been 
defined as a 2-dimensional matrix (compartment x 
kiln car). See Figure 1. 

 

Figure 1: Solution data structure. 

Each row is identified with a specific 
compartment: the first row contains all the pieces that 

will be placed in compartment 1; the second row, the 
compartment 2 and so on. In the case of the columns, 
each column represents a kiln car: column 1 
represents the kiln car 1; column 2, kiln car 2 and so 
on. 

The value within each of the cells is the code of 
the piece that will go in a specific compartment and 
in a specific kiln car. For example: in Figure 1, value 
y represents a piece with code y that has been placed 
in the compartment 3 in the first kiln car. The value 0 
has been placed in empty compartments. 

4.2 Proposed Memetic Algorithm 

The pseudocode of the memetic algorithm is the 
following: 

 

Figure 2: Memetic Algorithm. 

This algorithm takes as the initial parameter the 
population generated by a GRASP algorithm and it 
extracts the best solution (currentBest) from this 
population. 

Then, it generates a new population (newPop) 
through the application of crossover operators, 
mutation and local search in the current population 
(pop). 

Afterwards, it unifies the previous population 
with the new one to obtain another population with 
the best solution from both, and seeks the best 
solution of this population for any improvement with 
respect to the previous generation; if no improvement 
is seen, the gNoImprovement counter will be 
increased. 
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Finally, the algorithm checks if the no 
improvement generation limit is reached. If so, the 
conclusion is that the population degenerated (i.e., it 
comes to a standstill in a local optimun) so that it will 
be restored. 

This process will be repeated until complying with 
any of the stop conditions: reaching the maximun 
number of generations or exceeding the deadline. 

4.3 Brief Discussion of the Algorithm 

The operators used in the memetic algortihm are 
below: 

Selection operator: it chooses individuals to be 
affected by the recombination operator and chooses 
the solutions the local search will be applied to. For 
the selection the roulette method is used, allocating 
each solution a circular sector of the roulette 
proportional to its fitness value in such a manner that 
when spinning it the best solutions will have a higher 
likelihood. The roulette implemented has a binary 
search and in the worst case scenario it will require 
O(log n) comparisons to find the selected value 
(Lipowski & Lipowska, 2012). 

Recombination operator: used to make up a new 
population. It uses individuals chosen by the selection 
operator and takes the crossover rate as its parameter, 
which determines the number of times to be applied. 
To carry out the operation the uniform recombination 
will be applied, thus generating a random number 
between 0 and 1 for each element that is part of the 
solution. If this number is lower than pc, the element of 
the first father is then allocated to the first son and that 
of the second father to the second son, otherwise the 
allocation will be reversed (Magalhaes-Mendes, 2013). 

Mutation operator: it slightly modifies a solution; 
using a mutation rate and a randomly generated value 
from 0 to 1; if the generated value is lower than the 
rate (mutationRate), the operator will be applied. The 
mutation will replace an item assigned by another one 
that fits in the same compartment. 

Local search operator: it uses the k-opt heuristics 
that replaces k elements present in the current 
solution with others that are not part thereof. Based 
on the Ishibuchi, Tanigaki, et al. research, this search 
will be conducted each gLs iteration, and will be 
applied to a reduced number of individuals from the 
population (determined by probLs variable) and will 
only visit nLs neighbors (Ishibuchi, et. al, 2013).  

4.3.1 Generation of a New Population  

Figure 3 shows the pseudocode of the function that 
generates a new population. 

 

Figure 3: Generate new population. 

4.3.2 Updating of Population  

Once the new population (newPop) is generated, this 
will be unified by the current (pop) one, selecting the 
best elements of both populations to form a group 
composed of the same number of individuals as the 
current population. 

The addition strategy is chosen because it is fast, 
does not require a population of a high number of 
offspring and ensures that values of the target 
function do not get worse (Datoussaid, Verlinden & 
Conti, 2002). 

4.3.3 Restoration of Population  

A small percentage is preserved with the best 
solutions of the current population and the remainder 
is disposed. To complete the population, new 
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solutions are generated through the GRASP 
algorithm, these will be mutated before they are 
added up to the population.  

4.4 Mathematical Model  

The target function chooses the selection of pieces 
that maximize demand satisfaction, kiln volume and 
kiln car weigh capacity use. The target function is: 
 

	ݔܽܯ ቈቆ
ܹ ∗ ∑ ܸ௪

ே
ୀଵ

݈ܸ݈݊݅ܭݔܽܯ
ቇ ൈ ܸܥ

ௐ

௪ୀଵ

 ቆ
∑ ܲ௪
ே
ୀଵ

ܹݎܽܥݔܽܯ
ቇ ൈ ܹܥ

	൬
ܵܲ ൈ ܦܥ

ݎ݅ݎܲܥݔܽܯ
൰ 

(1)

 
where: 

 
ܵܲ 

ൌܥ௬



௬ୀଵ

 

	ൈ ቐܣ ௬ܲ ൈ  ݈݁ݒ݈݁ ൬
௬ݏݏ݅݉ െ ݉
ݏݏ݅ܯݔܽ݉

൰

ିଵ

ୀ

ቑ 

(2)

 
ܣ ௬ܲ ൌ ܣܵ ௦ܲ	, 

	∀ܺ௬ௗ ൈ ܺௗ௦ ൌ 1, ݕ	∀ ∈ ܻ, 	ݏ	∀ ∈ ܵ  
(3)

 

ܣܵ ௦ܲ ൌ
∑ ܺ௦ ൈ ܥܴ ൈ ܦܦ ൈ ܥ ܲ

ୀ

∑ ܺ௦ ൈ ܥܴ
ୀ

 (4)

 

௬݊ ൌ ݉݅݊ ൬  ܺ௪௬

ே

ୀଵ

ௐ

௪ୀଵ
௬൰ (5)ݏݏ݅݉,

 
ݏݏ݅ܯݔܽ݉ ൌ :௬ݏݏ൛݉݅ݔܽ݉ ݕ ൌ 1. . ܰൟ (6)

 

ሻݔሺ݈݁ݒ݈݁ ൌ ൜
ܽ  1, ܾ  0
ܽ, ܾ ൌ 0 	, 

ܽ ൈ 10  ܾ ൌ ݔ ൈ 100 
(7)

 
Equation 2, defines sum of selected pieces 

considering penalties (m). Equation 3, establishes the 
average priority of piece y is equal to the average 
priority of the set it belongs to, which is the average 
priority of requests and considers the amount 
requested, the proximity of delivery and the customer 
priority level (as defined in Equation 4). Equation 5, 
constraints the number of pieces y considered in the 
sum in SP to the necessary amount to satisfy the 
demand. Equation 7 defines a function that returns an 

integer value between 0 to 10 according to demand 
pending to be satisfied. 

Table 1: Variables definition. 

CV, CW, 
CD 

Coefficients that add up 1 and represent 
the importance of volume factor, weight 
and demand.  

MaxKilnVol Maximum kiln volume.  
MaxCarW Maximum weight supported by kiln car. 
MaxCPrior Maximum value of the addition of 

priorities of pieces that can be loaded 
into a kiln car.  

Wi, Hi, Di Compartment i’s dimensions (width, 
height and depth) 

W Number of kiln cars  
N Number of compartments in kiln car. 
Y Number of different types of pieces. 
S Number of different types of sets. 
P Amount of orders. 

Viw Volume of piece placed in the 
compartment i of kiln car w.  

Piw Weight of piece placed in the 
compartment i in kiln car w. 

Wiw, Hiw, 
Diw 

Width, height and depth of piece placed 
in the compartment i in kiln car w. 

Cy It is 0 if no piece of type y has been 
loaded. Otherwise, it is 1.  

APy Average priority of piece y.  
SAPs Average priority of requested set s.  
Xyd It is 1 if piece y belongs to product d. 

Otherwise, it is 0 
Xds It is 1 if product d belongs to set s. 

Otherwise, it is 0 
Xps It is 1 if order p is a set s’s order. 

Otherwise, it is 0 
Xiwy It is 1 if piece y is placed in compartment 

i in kiln car w. Otherwise, it is 0 
RCp Amount requested in order p. 
DDp Level of proximity of delivery date p. 

Integer value between 1 to 5, with 5 
being the closest one. 

CPp Customer priority level of order p. 
Integer value between 1 to 3, with 3 
being the most important. 

npy Amount of pieces of y-type taken into 
account in the sum of priorities. 

missy Amount of pieces y pending to be kilned 
in order to fulfil the orders. 

maxMiss Maximum missing amount per piece 
type. 

 
Solutions generated must comply with the 

following restrictions: 
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Equations 8 and 9 constrain the weight to be borne 

by a car and the total volume to be loaded into the 
kiln.  Equations 10, 11 and 12 indicate that the piece 
must fit in the compartment it is placed. Equation 13 
ensures that up to one piece is placed in each 
compartment. Equation 14 checks that the amount of 
pieces y allocated to the compartments do not exceed 
the initial number of pieces y pending to be kilned. 

The only constrains not considered in this paper 
are baking time required per piece and color 
combinations per selected group, which consist of not 
allowing in a selection certain combination of colours 
because the resulting pieces might not end up with the 
expected colours. These constraints could be added in 
future works. 

5 NUMERIC 
EXPERIMENTATION  

The developed algorithm was compared to a genetic 
algorithm, which takes as its starting point the same 
initial population as the memetic one and uses the 
same roulette method with binary search as selection 
operator, as well as: crossover method, crossover rate 
and stop conditions. With a slightly different 
application of the mutation process where the number 
of solutions to be mutated is a fixed proportion of the 
population and the solutions selected are chosen with 
the roulette method. 

Before comparing them, the memetic (MA) and 
genetic algorithms (GA) were calibrated in order to 
get better results. In this process, real data about kiln, 
kiln cars and products was used as well as 40 orders 
lists that were generated randomly. Using each 
combination of the parameter values, the algorithms 
were applied to each of the order lists 40 times and 
the average fitness for each combination was 
calculated. As a result, the parameters were set on the 
following values: 

Table 2: Parameters values. 

Stage Parameter MA GA 
Crossover Crossover Rate 65% 65% 

Crossover probability 70% 70% 
Mutation Mutation rate 6% 7% 

Local search Generation interval 
(gLs) 

1 

 
Application rate 

(probLS) 
5% 

Neighbors visited 
(nLs) 

100 

Restoration / 
Depuration 

Percentage preserved 7% 10% 
Alpha 0.4  

 
The purpose of the comparison was to determine 

which of them was the best suited for this type of 
problems.  

The data used in the comparison was extracted 
from the results of 40 tests conducted with different 
datasets. Each test was repeated 10 times for each 
algorithm and based on this data the average value of 
the algorithms’ performance was calculated.  

Every test included the same type of sets, products 
and pieces, changing only the orders’ files. We can 
see fitness results on figure 4: 

 

Figure 4: Fitness test results. 

After conducting the ANOVA test, it was 
determined that the difference between the two 
algorithms was not significant, so that it was 
concluded that both provide solutions of the same 
quality level. 

In addition, other tests were run changing the 
amount of generations and the time to analyze the 
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behavior of the algorithm in two aspects (showed on 
table 3 and 4 respectively): 
 How long do algorithms take to reach the 99% 

of their optimum value? 

Table 3: Average comparison values. 

 Memetic Genetic 
Min Max Min Max 

Generations 54.33 69.17 180.39 208.65 
Time 

(seconds) 
29.40 32.37 105.29 121.26 

 
 How long does the genetic algorithm require to 

reach the same performance than the memetic 
one?  

Table 4: Average comparison values. 

 Min Max 
Generations 249.20 459.89 

Seconds 176.22 312.99 

 

Figure 5: Behavior comparison by generations. 

  

Figure 6: Behavior comparison by execution time. 

6 CONCLUSIONS 

A memetic algorithm was proposed as a method to 
solve the selection of pieces issue in the firing stage 
of the sanitary ware production. This algorithm was 

chosen because of its similarities to the genetic one – 
the most commonly used method for this type of 
problems – and because it shows the same exploration 
skills but a higher capacity of exploitation when 
incorporating the local search. 

After calibrating these algorithms to improve the 
solutions generated, it was determined that the 
difference between the solutions obtained for the 
algorithm was not significant, so that we can conclude 
that both provide solutions of the same quality level. 

Additionally, it was found that the memetic 
algorithm takes a smaller number of generations to 
reach 99% of the optimum value while it requires a 
shorter execution time than the genetic one. For this 
reason, this method should be recommended to 
sectors and industries where obtaining a good 
solution in a short amount of time is vital. 

In conclusion, this research offers a valid solution 
for the pieces selection into the problem at sanitary 
ware manufacturing industry. This solution is fast and 
it’s adapted to the industry necessities and can be 
applied in other fields where products composed of 
several parts are manufactured and assembled. In 
addition, this research takes into account multiple 
factors related to demand such as client’s priority, 
delivery dates and required amounts of products 
while many others only consider a subset of this ones. 
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