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Abstract: In this paper Time-stamp Stochastic Assignment Problems are studied. These problems occur in places where
an incoming request or task has to be connected to a resource immediately. A definition and framework for
these problems is given, in which the different Time-stamp Stochastic Assignment Problems can be cate-
gorised. An explicit notation is introduced to distinguish the different categories. Several solution methods for
Time-stamp Stochastic Assignment Problems are listed and their advantages and disadvantages are discussed.

1 INTRODUCTION

A problem that often occurs in manufacturing and lo-
gistics is assigning resources (machines, stock, em-
ployees, etc.) to tasks whose arrival time or time order
of the occurrence is uncertain. When the task appears,
an immediate choice has to be made which resource to
assign to that task, no queues or buffers are allowed.
The assignment restricts future assignments to up-
coming tasks whose arrival times and types of which
are unknown. This type of real-time assignment of
scarce resources to an ongoing stream of stochasti-
cally appearing tasks defines a so-called Stochastic
Assignment Problem (SAP). Areas of application are:

• Maintenance or upgrade of networks

• Mechanic work (electricity, printers, coffee ma-
chines)

• Real-time assigning of customers to (multi-
skilled) servants

• Real-time assignment of tasks to machines

• Assignment of available kidneys to patients on a
waiting list

Finding optimal or near optimal solutions to an SAP
can be hard in practical applications. Planners may
have a good feeling for short term effects of their
decisions, however the often complex long term ef-
fects are hard to grasp for a human mind. Indeed, the
hard part of optimal decision making in an SAP is to
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properly take into account how current assignments
influence the opportunity set for the assignment of re-
sources to uncertain future tasks appearing. Sophisti-
cated mathematical tools might therefore be useful to
help making more efficient real-time assignment deci-
sions. These have to take into account the probability
distribution of future demands on available resources.

A distinction between two types of Stochastic As-
signment Problems is the following:

• Sequential Stochastic Assignment Problem
(SSAP): For these problems only the order of
events matter, not their exact times.

• Time-stamp Stochastic Assignment Problem
(TSAP): For these problems the event times
are an essential part of the specification of the
problem instance.

For Sequential Stochastic Assignment Problems
the exact event times are not important, but only the
order of occurrence of events. One can think of pa-
tients on a waiting list for kidneys, where the kidneys
sequentially become available. The assignment de-
pends on the patient and kidney type. The assignment
of a kidney to a patient is made immediately upon
arrival of the kidney and an assigned kidney never
re-enters the pool of available kidneys. Under these
assumptions, exact times are irrelevant.

In the early study of (Derman et al., 1972), the Se-
quential Stochastic Allocation Model is introduced,
which is used to solve a Sequential Stochastic Assign-
ment Problem. This model will be called the DLR
(named after Derman, Lieberman and Ross) model in
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the remainder of this section. The model addresses
the assignment of n available men (resources) to per-
form n jobs. The jobs arrive in a sequential order and
the job types are independent and distributed identi-
cally. The objective is to find an allocation between
the men and the jobs that maximises the total reward.
An assignment of the jobs to the available men is done
by creating intervals based on the distribution func-
tion of the type of the incoming jobs. The type of
the new incoming job falls in a certain interval and
is assigned to the corresponding man. After each as-
signment the intervals are recalculated. In (Derman
et al., 1975) the DLR model is used for an investment
problem.

Next, (Albright, 1974) investigates different ar-
rival distributions and discount functions for the DLR
model. In (Baharian Khoshkhou, 2014) practical vari-
ations and extensions of the DLR model are given. It
introduces the TSSAP, a target-dependent SSAP un-
der the threshold criterion, which attempts to min-
imise the probability of the total reward failing to
achieve a specified target value. A practical applica-
tion of the DLR model is the Aviation Security Prob-
lem described in (Nikolaev et al., 2007) and (McLay
et al., 2009). In the second stage of their sequen-
tial stochastic security design problem (SSSDP) they
model a policy of screening passengers that arrive at
a security station.

Another well known SSAP is the kidney alloca-
tion problem. This is described using the DLR model
by (David and Yechiali, 1995) and (Su and Zenios,
2005). A match has to be made between available or-
gans (e.g., a kidney) that will arrive sequentially and
the transplant patients on the waiting list. The type of
the patients are known, the type of the kidney is re-
vealed upon arrival. The reward of assigning a kidney
to a particular patient depends on both the type of the
kidney and the type of the patient.

The other category is the Time-stamp SAP, where
time plays an important role. The planning of nurses
in maternity care by (Phillipson, 2015) is an exam-
ple in this category. Here a maternity care agency
(MCA) has to plan nurses to help the mother when
a baby is born. The challenge is to assign the right
nurse to each upcoming demand, while taking into
account what the impact is for future decisions, un-
der uncertainty. To illustrate the difference between a
sequential and time-stamp problem we compare this
problem with the kidney allocation problem. In the
maternity care problem time plays an important role.
Here a time interval of a day is used. The delivery
dates follow a probability distribution based on days
and the mother needs care during the first 10 days af-
ter birth. Then the resource (here nurse) re-enters the

pool or resources.

Other examples are the planning of known elec-
tive patients and unexpected emergency patients to
Surgery Rooms (SRs) as done in (Lamiri et al., 2009)
and assigning nurses to patients under stochastic sce-
narios as discussed in (Punnakitikashem et al., 2008).
Another example is the Online Ambulance Dispatch-
ing problem in, e.g., (Jagtenberg et al., 2015) and (Ji
et al., 2019), where it has to be decided which ambu-
lance to send when an incident occurs. (Jagtenberg
et al., 2015) look at a policy of sending an ambu-
lance, out of the subset of available ambulances, that
are within a target time of the incident. The core of
the Ambulance dispatching problem can be seen as
a Truckload Motor Carriers problem as discussed in
(Powell, 1996). It concerns the problem of assign-
ing drivers to pick up a load while the location and
magnitude of the demand is random. Other types
of TSAPs are weapon target assignment (Murphey,
2000), multi-robot task-allocation (Liu and Shell,
2011; Amato et al., 2015; Buckman et al., 2019),
and project portfolio management (Gutjahr and Re-
iter, 2010). Also the stochastic task assignment prob-
lems that are a special case of the dynamic vehicle
routing problem (DVRP) can fall under the Time-
stamp SAP, if no buffering occurs and the allocation
has to be done immediately on arrival. Examples here
are ride sharing (Simonetto et al., 2019), dial-and-
ride problems (Ho et al., 2018; Schilde et al., 2011)
and task assignment in spatial crowdsourcing services
(like Uber) (Chen et al., 2019; Cheng et al., 2017).

A slightly different type of problem is the
Stochastic Dynamic Generalised Assignment Prob-
lem (SDGAP) as described in (Kogan et al., 2005).
An example is the assignment problem in a copy cen-
tre at a university bookstore, having multiple ma-
chines of different types that can copy predefined
ranges of page sizes. Each machine can carry out only
one task at a time so the agent resource is equal to
one. The task resources are defined in the problem in-
stance. The SDGAP can be extended by dealing with
a multi-resource constraint. It differs from the gener-
alised assignment problem in that an agent consumes
not just one but a variety of resources in performing
the tasks assigned to him, as shown in (Gavish and
Pirkul, 1991). An extension to this Multi Resource
problem occurs when the resources are not being indi-
vidually capacitated per agent but collectively for all
agents, as can be found in (Toktas et al., 2004). As de-
scribed by (Albareda-Sambola et al., 2006) Stochastic
Generalised Assignment Problems can also be mod-
elled with a two stage recourse model. In stage 1 a
planning is made without stochastic information. In
stage 2 resources are reassigned to jobs when tasks
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come in stochastically and incur penalty costs for cer-
tain reassignments.

In this paper we will focus on Time-stamp
Stochastic Assignment Problems. From the brief lit-
erature review we notice that SAPs can have many
different forms, but a general representation for var-
ious problems is lacking. To find out what solution
method to apply, it is useful to have a categorised
framework that contains the different types of prob-
lems.

In the remainder of this paper we first give a more
precise description of the TSAP. Then in Section 3
we zoom in on one of those two forms and propose a
framework for TSAP. Next, in literature used solution
methods are presented in Section 4. We finish with
some conclusions.

2 DEFINITION OF TSAP

The Time-stamp Stochastic Assignment Problem is a
stochastic assignment problem in which time is im-
portant. Because of this, not only the incoming se-
quence of demands is important but also the time
lapse between two incoming demand items. Next to
the time of arrival the demand type can also be known
or unknown. TSAPs can have a new incoming de-
mand item while one or multiple previous demand
items are still being processed and are still active in
the problem, i.e., parallel processing of demand items.
The serving time and/or arrival time of the items could
be stochastic and unknown. A good prediction of the
arrival time of incoming demand items and serving
time of serving items is desirable. Because stochas-
tic assignment problems have a very broad scope we
redefine TSAPs as used in this paper. A Time-stamp
Stochastic Assignment Problem as elaborated in this
paper has the following definition. Let demand items
i be items with different types oi, which can be known
beforehand or revealed on arrival with a stochastic ar-
rival time τi and let serving items j be items with
different known types q j with a deterministic serv-
ing time si j (with i a demand item), where at least
one type of serving item has finite availability. Then
a Time-stamp Stochastic Assignment Problem is an
assignment starting at t = 0 and ending at t = T of
demand items to serving items.

The following assumptions are made:
Assumption 1. Finite time horizon 0≤ t ≤ T

Although this may not be entirely realistic we as-
sume that demand items arriving after T have negligi-
ble influence on the optimal allocation at t = 0.
Assumption 2. Assignments can not be retaken.

Choices made in the past cannot be undone. How-
ever after having completed its task, the serving item
may return in the pool of available serving items if
this is allowed in the problem. This re-entering pro-
cess is described in section 3.1.4.
Assumption 3. At least one serving item needs to be
available to serve an incoming demand.

The assignment of demand items to serving items
will be hard if there are insufficient serving items
to fulfil the demand. The demand will get stacked
and has to wait until serving items become available.
When this happens the serving items need to be as-
signed to the demand items. This comes down to a
queueing system and as mentioned in the introduction
this is outside the scope of this study and that is why
the following collateral assumption is made.

Assumption 4. Infinite serving items are available at
a penalty cost.

In a stochastic assignment problem the main prob-
lem is to make an assignment such that it is optimal in
the future; using/assigning a serving item now should
be optimal afterwards. If a serving item is assigned, it
can not be used during its serving time. A newly arriv-
ing demand item, that would have been a better match
with an already assigned serving item, may result in
a suboptimal solution. An important requirement for
the stochastic assignment problem is that the cardi-
nality of at least one of the types of serving items is
finite. If this is not the case, and the number of avail-
able serving items per type are infinite the problem is
trivial and for each demand item the best correspond-
ing type of serving item can be chosen. This is trans-
lated in the following:

Assumption 5. The cardinality of at least one of the
types of serving items is finite.

A change in serving time has a minor influence on
the assignment problem. In a TSAP there is a low oc-
cupancy of serving items and there are no queues, de-
terministic serving times is a fair assumption. This is
why we assume the serving time of the serving items
are known and predefined in the problem instance.
Assumption 6. The serving time is deterministic.

Another important aspect concerns the possibility
of a match between a specific type of serving item and
a specific type of demand item. Let M be a binary ma-
trix with rows corresponding to the different types of
serving items and the columns corresponding to the
different types of demand items, where Mi j = 1 if de-
mand item type j can be served by serving item type
i. Matrix M should satisfy:
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Assumption 7. Each column and row of M should
contain at least one 1.

The demand item type should at least be able to
be served by one of the serving item types. On the
opposite each serving item type should at least be able
to serve one of the demand item types.

Assumption 8. ∑ j Mi j ≥ 2, for at least one i

If this is not the case each type of serving item
only has one possible type of demand item to serve
and the problem becomes trivial.

3 A CLASSIFICATION
FRAMEWORK

In this section, we derive a generic framework to clas-
sify TSAP applications in a uniform way. We intro-
duce an explicit notation to distinguish the different
categories. This not only allows us to classify TSAPs
unambiguously, but it also makes clear which char-
acteristics are common, where two problems look to-
tally different at first.

The framework consists of four building blocks:

1. Demand arrival time;

2. Demand type;

3. Resource type;

4. Serving item feature.

Each block has a number of different options; in the
framework a specific TSAP is characterised by listing
the values these options take within each of the four
blocks.

First we discuss the different options observed in
practical TSAPs for each of the four building blocks.
Subsequently we introduce notation for these options
and present the framework.

3.1 Framework Elements

In this section a detailed description is given of the
four components that define the framework. The dif-
ferent options that can occur within these components
are defined.

3.1.1 Demand Arrival Time

A TSAP consists of tasks, jobs, orders or other de-
mand items. Demand items arrive sequentially and
need to be assigned immediately to a serving item.
The arrival process is deterministic when the arrival
times are known beforehand. Deterministic arrival

times are scarce in TSAP applications but we do ad-
dress them in our framework. If the arrivals are un-
known or uncertain we have a stochastic arrival pro-
cess. In this case we need an arrival distribution and
its corresponding parameters (neglecting non para-
metric statistics). The distribution and its parameters
can be based on theory or estimated from historical
data. Ideally parameters could be updated during the
process by using Bayesian methods of parameter es-
timation, see, e.g., (Zellner, 1996).

3.1.2 Demand Type

The demand item type can either be known before-
hand or can be unknown or uncertain, in which case
it is treated as stochastic.

3.1.3 Resource Type

In a classical assignment problem an assignment is a
one-on-one assignment between a demand item and a
serving item. Based on the type of the demand item
and the type of the serving item an optimal allocation
is made. Another common assignment problem is
the generalised assignment problem. The difference
with the classical assignment problem is that the de-
mand item needs a specific number of resources and
the serving item has a specific number of resources
to contribute. If, for example, a demand item needs
8 pieces to be served, serving item a can provide 5
and serving item b the other 3. This is called an as-
signment problem with single item resource. It is also
possible the demand items need different items to be
served. As an example a demand item needs 8 blue
pieces and 6 red pieces, serving item a can provide 4
blue pieces and 4 red pieces and serving item b pro-
vides the other 4 blue pieces and 2 red pieces. This
is called a assignment problem with multi-item re-
source. In these generalised assignment problems the
serving items can individually or collectively be ca-
pacitated. In the latter example it could be the case
that serving item a is capacitated to only supply a
maximum of 4 red and 4 blue pieces. It could also
be that the serving items are collectively capacitated
meaning that all serving items together can supply a
capacitated number of resources of a specific type. In
our previous example this can mean that both serving
item a and b together have 8 blue pieces to supply.
Although both a or b could supply 8 blue pieces, a
combination is still possible.

3.1.4 Serving Item Feature

In a classic assignment problem a serving item can be
used once, and after the assignment it is no longer
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available for further assignments. Another serv-
ing item feature that is often part of a Time-stamp
Stochastic Assignment Problem is that after serving,
the serving item returns in the pool of ready to use
serving items and is again ready to be allocated to
a demand item. In these problems the serving time
plays an important role. In a few problems a serv-
ing item can switch to the new incoming demand item
while already serving another demand item as in the
maternity care problem, another serving item should
then take over from the switched serving item.

3.2 Classification Scheme

In this section a classification framework is provided
TSAPs. The basis of the framework is taken from
the classification scheme of (Graham et al., 1979)
for scheduling problems. The framework established
in this paper uses the characteristics as the building
blocks defined in the previous sections. Given an ap-
plication of a TSAP the components of the modelling
system specify the problem in the framework. To in-
dicate the qualitative characteristics of a Time-stamp
Stochastic Assignment Problem we propose a four-
position framework of the form α | β | γ | δ. The cor-
responding options are given below:

Demand Arrival Time Distribution. Options for α

are:
• det for deterministic arrival time

• stoch for stochastic arrival time
Demand Type Distribution. Options for β are:
• det for deterministic demand type

• stoch for stochastic demand type
Resource Specification. Options for γ are:
• one for one on one allocation

• si-in for single item and individually capacitated

• si-co for single item and collectively capacitated

• mu-in for multi item and individually capacitated

• mu-co for multi item and collectively capacitated
Serving Item Feature. Options for ε are:
• once for when a serving item can only be used

once

• reass for serving items being re-assignable again
after service

• swit for when a serving item can switch to another
demand item during service

Part of the TSAP literature studied and summarised
earlier can be framed in the four position scheme as
in Table 1.

4 SOLUTION METHODS

In this section several solution methods for TSAPs
are elaborated and their advantages and disadvantages
are discussed. First we introduce the meaning of on-
line and offline optimisation and their relevance to the
study of TSAPs.

4.1 Optimisation Paradigms

In the field of operations research a well-known and
commonly used distinction is made between offline
and online optimisation. In offline optimisation all
relevant information is known when solving the opti-
misation problem involved, i.e. there is no uncertainty
about any input data relevant to the problem. In on-
line optimisation the input data come in sequentially;
decisions have to be taken while part of the relevant
information is still lacking, since it will only become
available after the decision has been made. So in on-
line optimisation uncertainty about (part of) the rele-
vant parameters of the optimisation problem is essen-
tial. Only ex post, when all information has become
available, the truly optimal solution can be computed
offline. This solution forms a bound for the online so-
lution, based on the incomplete information available
when the decision had to be taken.

To account for the missing information, online
optimisation is based on an assessment of the pos-
sible future outcomes of the missing items. Actual
outcomes might deviate from these imputed expected
outcomes, rendering the online optimisation solution
sub optimal ex post. Indeed, only in the unlikely case
that all future realisations of the missing input items
happen to coincide with the imputed expectations, the
online solution will match the offline solution.

TSAP is a good example of an online optimisation
problem. The associated ex post offline optimisation
solution serves as a benchmark to check how well dif-
ferent solution methods of the TSAP perform.

4.2 Online Solution Methods

The literature review (summarised earlier) made clear
that a lot of different methods have been used in find-
ing a solution for TSAPs. Because of the different
characteristics of TSAPs involved different solution
methods were suitable for solving these problems. In
this section an overview is given of the most com-
mon solution methods used. We start with (two stage)
stochastic programming followed by Markov chain
optimisation. Then a simulation method is explained
and finally a description is given of rule based deci-
sion making.
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Table 1: Classification of different TSAP applications.

Reference α β γ δ

Project portfolio (Gutjahr and Reiter, 2010) det stoch si-in once
Maternity care (Phillipson, 2015) stoch det one reass/swit
Job Shop Scheduling (Weber, 1982) stoch det one reass
Truckload Motor Carriers (Powell, 1996) stoch det one reass
Airport Gate Assignment (Yan and Tang, 2007) stoch det one reass
Pre-media printing (Kogan et al., 2005) stoch det mu-in reass
Container Shipping (Braekers et al., 2011) stoch det si-in once
Container Shipping (Kooiman et al., 2016) stoch det si-in once
Call Center (Tica et al., 2011) stoch stoch one reass
Surgery Planning (Lamiri et al., 2009) stoch stoch one reass
Ambulance dispatching (Jagtenberg et al., 2015) stoch stoch one reass
Nurse Assignment (Punnakitikashem et al., 2008) stoch stoch one reass
Location based mobile advertising stoch stoch one once
(Spentzouris and Koutsopoulos, 2017)
Bin Packing (Coffman et al., 1980) stoch stoch si-in once

4.2.1 (Two Stage) Stochastic Programming

Mathematical programming with uncertain data in the
objective function or constraints is called stochastic
programming. The uncertainty is usually translated
into a probability distribution on the parameters. The
uncertainty can in practice be characterised by a pre-
cisely defined probability distribution or just a few
scenarios (possible outcomes of the data with cor-
responding probability). An obvious way of deal-
ing with this problem is using a recourse model, as
in (Kools and Phillipson, 2016) and (Leenman and
Phillipson, 2015). The recourse model requires that
a decision is made now such that it optimises the ex-
pected objective value of the consequences of that de-
cision. As an example we take x to be a vector of
decisions that we must take now, and y(ω) is a vector
of (later) decisions that correspond to the reactions
to the decisions of x or the consequences of x. This
way we can model a problem with the following Two
Stage formulation.

The optimisation problem is:

max f (x)+E[G(y(ω),ω)], (1)

subject to

qi(x)≤ 0, i = 1, ...,m, (2)

h j(x,y(ω))≤ 0 for ω ∈Ω j = 1, ...,k, (3)

x ∈ X ,y ∈ Y. (4)

The constraints (3) are the links between the decisions
x for the first stage and the decisions y(ω) in the sec-
ond stage. It is required that all constraints hold for
each possible ω ∈ Ω. The model can be extended
in numerous ways, e.g. by making it a multistage
problem, in effect make one decision now, wait till
new data is observed, and make a next decision. The

implementation of a recourse model is already com-
plicated for two stages, but the method described by
(Haneveld et al., 2006) can be used to solve the opti-
misation problem.

In stochastic programming used for TSAPs, the
optimisation solution is based on a probability aver-
age to deal with the uncertainty. Because a high num-
ber of demand items become observable one by one
in a TSAP, a large number of decisions need to be
made. This requires multistage programming with
a large number of stages, which is even more com-
plex to solve than the two-stage case. Because of
this characteristic of TSAPs, stochastic programming
does not work well. Stochastic programming is more
apt for stochastics with infrequent decision making
rather than frequent decision making as in TSAPs.
An advantage of stochastic programming is that af-
ter each stage a future allocation or planning is made.
Although in the future there may be a deviation from
the planning, it could be useful as an indication of fu-
ture assignments.

4.2.2 Markov Chain Optimisation

A commonly used way of tackling uncertainty in op-
erations research problems is using Markov Chains
and Markov Decision Processes. Markov Chains are
widely used in queueing theory, what is a form of a
TSAP, but due to earlier mentioned characteristics is
outside the scope of this study. In a Markov chain all
states of the problem/system are considered and their
corresponding transition probabilities. With known
mathematics an optimal allocation of demand and
serving items can be obtained, see (Tijms, 2003). The
downside of Markov chains is the computational bur-
den of the process. If there is a rather large number of
demand items and/or serving items and there is a rea-
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sonable large time window, then the number of states
can get very large as this grows exponentially in these
parameters. Here Machine Learning is used as solu-
tion method more and more, see for examples (Rahili
et al., 2018; Spentzouris and Koutsopoulos, 2017).

4.2.3 Simulation

By repeatedly simulating the uncertain factors differ-
ent scenarios are considered. When the decision is
based on these simulations a robust choice can be
made. With the following steps, derived from the sim-
ulation method used in (Phillipson, 2015), a simula-
tion algorithm for a TSAP can be designed for making
an online assignment between a demand item and one
of the available serving items.
• Step 1. Observe demand item i.

• Step 2. Consider each serving item j available that
is able to serve demand item i.

• Step 3. For each considered serving item j draw
a set of dates (and types) for all future demand
items within the time horizon, based on the corre-
sponding distribution.

• Step 4. For each draw find the impact of assign-
ing serving item j to demand item i by assigning
the remaining simulated demand items to the re-
maining serving items, the impact is translated in
a score for serving item j.

• Step 5. Repeat step 3 and 4 a predefined number
of times for each considered serving item j.

• Step 6. The demand item i is assigned to the serv-
ing item j with the best average score.

With this method possible scenarios of yet to come
demand items are considered. For each draw of fu-
ture demand items the problem becomes an offline
optimisation problem and a(n) (near) optimal assign-
ment can be made. Repeating the simulation a large
number of times results in a large set of possible sce-
narios being examined and a robust assignment can
be made. Because the simulation is repeated multiple
times a fast but accurate offline assignment method is
needed. The simulation algorithm is a good solution
method for TSAPs as it recalculates the current situ-
ation each time a demand item becomes observable.
This simulation approach can be seen as a part of a
Digital Twin environment for the system (Boschert
and Rosen, 2016).

4.2.4 Rule based Decision Making

An easy to use but rather simple solution method is
using a decision rule. With this rule the uncertainty in
future events is neglected and a decision is made upon

the current state of the problem. To assign an incom-
ing demand item a rule is used based on the character-
istics of this demand item, the available serving items
and assignments made in the past. This method ne-
glects uncertain information about future demands all
together and is likely to be sub-optimal therefor. It
can be implemented fairly easily and this is why it is
used often in practice. It can be used as a benchmark
to assess the gain in performance when using more
sophisticated solution methods. Note the also more
complex (greedy) heuristic approaches that are only
based on the current, known, situation, can be placed
under this category of rule based solutions.

5 SUMMARY AND
CONCLUSIONS

The topic of Stochastic Assignment Problems is ad-
dressed in this paper with the intention of defining and
classifying SAPs and examining its solution methods.

From the literature review we concluded that there
exist a lot of different applications of SAPs but
that there is no good representation of the problem
characteristics. First we introduced the Time-stamp
Stochastic Assignment Problem.Starting from a liter-
ature review of Stochastic Assignment Problem we
have developed a comprehensive and versatile frame-
work for classifying Time-stamp Stochastic Assign-
ment Problems by assessing four characteristics of the
problem at hand: demand type distribution, demand
arrival time distribution, resource specification and
serving item feature. The framework distinguishes
the different types of TSAPs and their applications in
a clear cut way by typing them with an explicit nota-
tion.

As to the available solution methods, four meth-
ods were identified: (two stage) stochastic program-
ming, Markov chain optimisation, simulation, and
rule based decision making. Which of these solution
methods is advisable depends strongly on the char-
acteristics of TSAPs involved. We concluded that
Markov chain methods are only feasible when the
number of states is small, whereas simulation meth-
ods seem to work rather well even in large problem
instances, provided there is useful stochastic informa-
tion about future events to be exploited.
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