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Abstract: A Convolutional Neural Network (CNN) is sometimes confronted with objects of changing appearance ( new
instances) that exceed its generalization capability. This requires the CNN to incorporate new knowledge, i.e.,
to learn incrementally. In this paper, we are concerned with this problem in the context of assisted living. We
propose using the feature space that results from the training dataset to automatically label problematic images
that could not be properly recognized by the CNN. The idea is to exploit the extra information in the feature
space for a semi-supervised labeling and to employ problematic images to improve the CNN’s classification
model. Among other benefits, the resulting semi-supervised incremental learning process allows improving
the classification accuracy of new instances by 40% as illustrated by extensive experiments.

1 INTRODUCTION

Convolutional Neural Networks (CNNs) are used for
all kinds of object recognition/classification based on
images. The basic idea is that CNNs learn how to
distinguish objects of interest from labeled images.
Although the ultimate goal of object classification is
to identify any possible object of any possible cate-
gory or class, for real-world applications, it is usu-
ally not feasible to generate a sufficient number of la-
beled images. Popular datasets such as MS COCO
and ILSVRC (Lin et al., 2014; Russakovsky et al.,
2015) contain 80 and 1000 classes respectively and,
hence, are not sufficient to describe all possible ob-
jects (Han et al., 2018).

On the other hand, most applications are not con-
cerned with detecting all kinds of objects, but only a
small subset of them related to their tasks/objectives.
For example, applications in the automotive domain
are typically focused on recognizing vehicles, traf-
fic signs, pedestrians, cyclists, etc., while other ob-
jects like those carried by pedestrians are not relevant.
Similarly, assisted living applications are concerned
with daily-life objects like mugs, chairs, tables, etc.,
while recognizing cars or traffic signs is out of scope.

This restriction to few object classes allows opti-
mizing CNNs for a specific task. However, a real-life
environment still undergoes continuous change. As
a result, CNNs need to incorporate new knowledge,
i.e., implement lifelong/incremental learning (Käding

et al., 2017; Parisi et al., 2019), which is a challeng-
ing endeavor bearing the risk of catastrophic forget-
ting (Goodfellow et al., 2013), i.e., losing the ability
to recognize known objects.
Contributions. In this work, we are concerned with
the above problem in assisted living applications. The
user in this context makes repeated use of the same
objects, i.e., the same mug, the same chair, etc., which
are thus easy to recognize with a CNN. On the other
hand, daily-life objects are often replaced by new
ones that, although belonging to the same class, can
have a very different appearance, i.e., new instances.
This sometimes exceeds the CNN’s capability of gen-
eralizing, which stops detecting these images reliably.

We propose a technique that combines semi-
supervised labeling and incremental learning to ap-
proach a personalized assisted living system, capa-
ble of adapting to new instances introduced by the
user at any point in time. To this end, an acquisi-
tion function selects and stores problematic images
that could not be classified with a satisfactory level of
confidence. We then make use of the feature space
generated from the training dataset to label these im-
ages without human intervention. Since the feature
space contains more information than the CNN’s clas-
sification model, it allows reliably classifying new in-
stances with only a small amount of label noise. Fi-
nally, the labeled problematic images are incorporated
into the CNN’s classification model by fine-tuning.
Structure of the Paper. This paper is organized as
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follows. Section 2 introduces the state of the art,
whereas the proposed approach is described in Sec. 3.
Section 4 then evaluates the proposed approach and
Sec. 5 concludes the paper.

2 RELATED WORK

There is an increasing interest in techniques such as
lifelong/incremental learning and semi-supervised la-
beling, which aim to alleviate CNNs’ dependency
on huge amounts of labeled data. While incremen-
tal learning focuses on the capability to successively
learn from small amounts of data, semi-supervised la-
beling looks for methods to replace the usually expen-
sive and time-consuming labeling of datasets.

An overview of incremental learning techniques
is presented by Parisi et al. (Parisi et al., 2019). One
challenge of incremental learning is to avoid catas-
trophic forgetting (McCloskey and Cohen, 1989).
That refers to the problem of new learning interfering
with old learning when the network is trained gradu-
ally. An evaluation of catastrophic forgetting on mod-
ern neural networks was presented by Goodfellow et
al. in (Goodfellow et al., 2013). Further, new metrics
and benchmarks for measuring catastrophic forgetting
are introduced by Kemker et al. (Kemker et al., 2018).

Although retraining from scratch can prevent
catastrophic forgetting from happening, this is very
inefficient. Approaches to mitigate catastrophic for-
getting are typically based on rehearsal, architecture
and/or regularization strategies. Rehearsal methods
interleave old data with new data to fine-tune the net-
work (Rebuffi et al., 2017). In (Hayes et al., 2018),
Hayes et al. study full rehearsal (i.e., involving all
old data) in deep neural networks. In this work, we
also use a mix of old and new data, however, similar
to (Käding et al., 2017) we only use a small percent-
age of old data, i.e., partial rehearsal. Architecture
methods use different aspects of the network’s struc-
ture to reduce catastrophic forgetting (Rusu et al.,
2016; Lomonaco and Maltoni, 2017). Further, regu-
larization strategies (Li and Hoiem, 2018; Kirkpatrick
et al., 2017) focus on the loss function, which is
modified to retain old data, while incorporating new
one. These alleviate catastrophic forgetting by limit-
ing how much neural weights can change. Basic reg-
ularization techniques include weight sparsification,
dropout and early stopping. Further works combine
regularization with architecture methods (Maltoni and
Lomonaco, 2019), as well as with rehearsal methods
(Rebuffi et al., 2017). In this paper, we opt to combine
partial rehearsal with early stopping, since this better
suits our application an provides good results.

In (Käding et al., 2017), Käding et al. conclude
that incremental learning can be directly achieved by
continuous fine-tuning. Our paper is in line with this
work, however, in contrast to (Käding et al., 2017),
the new data added during each incremental learning
step may belong to different classes reflecting the na-
ture of assisted living applications.

The concept of active learning (Gal et al., 2017)
also allows counteracting CNNs’ dependency on la-
beled data. Active learning implies first training a
model with a relatively small amount of data and only
letting an oracle — often a human expert — label fur-
ther data to retrain the model, if they are selected by
an acquisition function. This process is then repeated
with the training set increasing in size over time. As
already mentioned, we propose replacing the oracle
by a semi-supervised process, which labels the se-
lected data using the feature space generated from the
training dataset.

With respect to semi-supervised labeling, Lee
(Dong-Hyun Lee, 2013) proposed assigning pseudo-
labels to unlabeled data selecting the class with the
highest predicted probability. In (Enguehard et al.,
2019), Enguehard et al. present a semi-supervised
method based on embedded clustering, whereas Ras-
mus et al. propose combining a Ladder network with
supervised learning in (Rasmus et al., 2015).

3 SYSTEM DESCRIPTION

As shown in Fig. 1, our system can be divided in
three processes: classification, semi-supervised label-
ing and incremental learning. The classification pro-
cess is based on a trained CNN and performs the main
task of the system. It takes an image and assigns it a
class according to a computed confidence value. Dur-
ing this process an acquisition function selects those
images with unsatisfactory classification results (i.e.,
with confidence value lower than a given threshold)
and forwards them, together with their feature vec-
tors, to the semi-supervised labeling process.

The semi-supervised labeling process then tags
these images according to a pre-stored feature space.
This feature space is generated from the training data
and then successively updated during the incremental
learning process. The resulting labels together with
their images are incorporated into the CNN’s classi-
fication model by fine-tuning during the incremental
learning process. Finally, the new labeled images are
further added to the training dataset, their feature vec-
tors are added to the feature space and the classifica-
tion model is updated.

Note that copies of the classification model, the
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training dataset and its corresponding feature space
need to be stored for the semi-supervised labeling
and the incremental learning processes. However, this
data is only required offline and does not affect per-
formance, albeit increasing memory demand. In the
following sections we describe each process in detail.

3.1 Classification Process

The classification process is responsible for identi-
fying objects displayed on the input images. This
process is the only one that runs online and is vis-
ible to the user. The classification is performed by
a pre-trained CNN. In this work, we use the well-
established ResNet50 (He et al., 2016), which not
only acts as a classification network, but also as fea-
ture extractor. ResNet50 can be described as a fea-
ture extractor followed by a fully connected Softmax
layer, where the first one generates feature vectors and
the second one classifies them.

Let C = {cn}with 1≤ n≤N be the set of N object
classes considered by the system. The training dataset
used to generate the first model M0 is denoted by T0 =
{(xi, li) | li ∈ C , 1 ≤ i ≤ |T0|}, where xi is an image
and li its corresponding label.

Once the first model M0 is generated, T0 is passed
through the network in order to obtain its feature
space. ResNet50 generates for each image xi a feature
vector fi := f (xi) of 2048 elements (He et al., 2016).
The set of all feature vectors from T0 together with
their corresponding labels li is denoted F0 = {(fi, li)}
and constitutes our first feature space. Finally, T0 and
F0 are stored to be used during the semi-supervised
labeling and incremental learning processes.

During the classification process, ResNet50 gen-
erates a feature vector f j for each input image x j.
This vector is then passed to the final fully con-
nected Softmax layer, which returns a vector p j =

[p1
j , · · · , pN

j ], where pn
j denotes the probability of x j

to belong to class cn. Finally, x j is classified ac-
cording to the greatest probability p̂ j ∈ p j, where
p̂ j := max{p1

j , · · · , pN
j }. This means that x j is as-

signed to the class cn, for which p̂ j = pn
j holds.

The value of p̂ j, called confidence value, gives an
idea of how sure the classification model is about the
class assigned to the image x j. Therefore, when an
image x j is classified with a confidence value below a
certain threshold t, we conclude that the model is not
sufficiently sure about the nature of the imaged object
and its classification is considered invalid.

Images that are classified with a low confidence
value constitute a valuable source of knowledge for
the system. These contain information about objects
of interest, which is not considered in the current

classification model Mq, with q ∈ N0. In order to
learn from these images later, an acquisition function
fa(p̂ j, t) is defined based on the confidence value and
a given threshold:

fa(p̂ j, t)

{
(x j, f j) selected if p̂ j < t,
(x j, f j) discarded else.

(1)

The selected images x j together with their feature
vectors f j are then passed to the labeling process.

3.2 Labeling Process

The images selected by fa(p̂ j, t) contain objects
whose class could not be satisfactorily identified.
That is, either objects belong to a new class not in-
cluded in C , or they belong to a known class, but are
not properly represented by the images in the current
training dataset Tq. In this paper we focus on the lat-
ter, since this is the most common case in the applica-
tion of interest.

As mentioned before, ResNet50 is constituted by
a feature extractor followed by a Softmax layer (He
et al., 2016). During training, both, the feature ex-
tractor and the Softmax layer adapt their weights it-
eratively according to a training dataset and a loss
function. At the end of training, all weights inside
the feature extractor and the Softmax layer are fixed,
determining how to compute the features and how to
assign them a class. This means that the information
about how to separate classes inside a feature space
Fq is summarized in the weights of the Softmax layer.

The Softmax layer does not memorize the com-
plete feature space, on the contrary, it learns a rep-
resentation of it, which should be sufficiently precise
to distinguish between classes and, at the same time,
general enough not to overfit. This results in an ef-
ficient classification method, but it also implies loss
of information. In particular, this loss of informa-
tion affects those images, that are underrepresented in
the training dataset. In many cases, although the fea-
ture space representation learned by the Softmax layer
does not describe these images correctly, the complete
feature space still does. As a consequence, the feature
space is suitable for labeling problematic images in a
semi-supervised fashion, as mentioned above.

As discussed later in Section 4.1, for images that
are well represented in the training dataset, the classi-
fication results achieved by using the complete fea-
ture space do not significantly differ from those of
the Softmax layer. That is, the representation of the
feature space by the Softmax layer is as good as the
complete feature space itself. However, if we consider
problematic images selected by fa(p̂ j, t), the classifi-
cation accuracy improves drastically when using the
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Figure 1: Proposed semi-supervised incremental learning system for assisted living application.

complete feature space. On the other hand, classify-
ing on the feature space is computationally expensive
and unsuitable for online applications. As a result,
ResNet50 should still be used for online classifica-
tions, while the feature space is used offline and only
for images where the Softmax layer has failed.

As mentioned above, images selected by fa(p̂ j, t)
are not properly represented in the current training set
Tq. Hence, the idea is to use these images for a later
training. To this end, a semi-supervised labeling pro-
cess generates a label l′j — also called pseudo-label
(Dong-Hyun Lee, 2013) — for each such image x j
based on the whole feature space.

In order to calculate distances inside the feature
space, each feature is normalized using L2 and de-
noted by f′j. For each class cn ∈ C , M anchor points
an

m, with 1≤ n≤ N and 1≤ m≤M, are generated by
k-means clustering on the normalized feature space
F ′q . The probability of f′j to belong to class cn is cal-
culated using soft voting:

p′nj =
∑

M
m=1 e−γ‖f′j−an

m‖22

∑
N
z=1

(
∑

M
m=1 e−γ‖f′j−az

m‖22
) , (2)

where γ is the parameter controlling the softness of
the label assignment, i.e., how much influence each
anchor point has according to its distance from f′j (Cui
et al., 2016). Finally, the class cn with the highest con-
fidence value is assigned to the label l′j = cn⇔ p̂′j =
p′nj = max(p′1j , · · · , p′Nj ), where p̂′j denotes the confi-
dence values obtained by classifying in the complete
feature space, as opposed to the confident value p̂ j ob-
tained from the Softmax layer. The labeling process

forms a set S containing each selected image x j, its
assigned label l′j and its feature vector f′j:

S = {(x j, l′j, f
′
j),∀x j | p̂ j < t}. (3)

Once the set S reaches a given size |S |, it is passed to
the incremental learning process.

3.3 Incremental Learning Process

As stated above, images that could not be decided dur-
ing the classification process are separated by the ac-
quisition function fa(p̂ j, t) and labeled by the semi-
supervised labeling process leading to S as per (3).
When S becomes sufficiently large, it is incorporated
into the classification model by our incremental learn-
ing process.

Since not all N classes may be represented with a
similar number of examples in S or some classes may
not be represented at all, fine-tuning can potentially
lead to overfitting and catastrophic forgetting (Good-
fellow et al., 2013; Käding et al., 2017). To avoid this,
S is balanced with images from Tq. In particular, ran-
dom images of each class from Tq are appended to
S until reaching a minimum number of Q images per
class. This results in a balanced set S ′ used to fine-
tune the Softmax layer. This is performed offline us-
ing a copy of the current classification model Mq.

This process allows evolving from Mq to Mq+1,
which already considers problematic images in S. By
incorporating images and labels from S into the train-
ing dataset Tq, this latter evolves to Tq+1 and its size
grows from |Tq| to |Tq|+ |S |. The feature space is
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also updated from Fq to Fq+1 by adding the features
vectors f′j ∈ S . Finally, S is emptied and the current
Mq is replaced by the new one Mq+1.

4 EXPERIMENTS AND RESULTS

As already mentioned, the results reported in this
work are based on Resnet50 (He et al., 2016), which
has been pre-trainned with ImageNet (Deng et al.,
2009). To test and validate our system, a dataset with
four different classes (N = 4): mug, bottle, bowl and
chair was generated. To this end, we have extracted
all RoIs (Region of Interest) from the Open Images
Dataset (Krasin et al., 2017) that are labeled with
one of the mentioned classes and have an area of at
least 16,384 pixels. As a result, we obtain a dataset
of 19,207 images. This set is then separated in two
disjoint sets: the training dataset T0 and a validation
dataset V , where |T0|= 15,366, |V |= 3841.

The training dataset T0 is used to fine-tune the
Softmax layer. The training is performed using a
batch size of 128, the Stochastic Gradient Descent op-
timizer, a learning rate of 0.0005, a momentum of 0.9,
a maximum of 100 epochs and early-stopping. After
training the resulting model M0 is used to generate
the feature space F0.

Then the model M0 is tested on all images x j ∈V .
The acquisition function fa(p̂ j, t) — see again (1) —
is used to divide V in two disjoint subsets: Vk =
{(x j, l j) ∈ V | p̂ j ≥ t} and Vu = {(x j, l j) ∈ V | p̂ j <
t}. A threshold value of t = 0.9 for classification con-
fidence leads to |Vk|= 3054 and |Vu|= 787.

The classification of the images in Vk is consid-
ered correct (p̂ j ≥ 0.9) and we conclude that the sys-
tem cannot learn more from them. On the other hand,
Vu is formed by the images x j that could not be classi-
fied with sufficient confidence. Clearly, these images
contain information that the current model does not
know and, hence, can be used to improve the system.

4.1 Classifying and Labeling on the
Feature Space

In this section, we evaluate the efficiency of the fea-
ture space to classify images and specially to label
problematic images. First, we use Vk to validate the
feature space as a classifier by comparing its perfor-
mance with that of the Softmax layer. This experi-
ment is based on the feature space F0 (obtained from
the original training dataset T0), where we consider
k = 10, M = 10 and λ = 1.5 in (2), and the cor-
responding model M0. As shown in Fig. 2a, M0

achieves an accuracy of 0.9, whereas F0 reaches a
slightly better accuracy of 0.94 as per Fig. 2b. This
similar performance results from the fact that M0 is
already efficient at describing the images in Vk and,
hence, using F0 does not considerably improve the
classification accuracy.

To evaluate the feature space as a semi-supervised
labeler, we now use Vu. Vu contains problematic im-
ages selected by the acquisition function for t = 0.9.
This time, the Softmax layer yields a low accuracy of
only 0.54 as shown in Fig. 2c. On the contrary, a clas-
sification using the complete feature space increases
the accuracy to 0.85 as shown in Fig. 2d.
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Figure 2: Confusion matrices: (a) and (b) Softmax layer
and feature space classification on Vk, (c) and (d) Softmax
layer and feature space classification on Vu.

This result confirms our hypothesis from Sec.3.2
and validates using the complete feature space for
labeling problematic images. As in any semi-
supervised method, there is some label noise, which is
about 15% in our experiments. In the next section, we
evaluate the incremental learning process with respect
to robustness against label noise.

4.2 Incremental Learning

To evaluate the incremental learning process, we split
the set of problematic images Vu by randomly select-
ing pictures into two disjoint sets: Vlearn and Vtest ,
with |Vlearn| = 472 (i.e., around 3

5 of the images in
Vu) and |Vtest |= 315 (i.e., |Vtest |= |Vu|− |Vlearn|).

Vlearn is employed to investigate different S as de-
fined in (3) with 0 < |S | ≤ |Vlearn|, while Vtest and Vk
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are used to evaluate results. Testing on Vtest allows
us to evaluate how much the system improves after
learning from S , i.e., how good it starts recognizing
problematic images. On the other hand, testing on Vk
helps evaluating how much the systems worsens af-
ter learning from S , i.e., whether it stops recognizing
some known images.

To avoid catastrophic forgetting, the Softmax
layer must be fine-tuned with a well-balanced image
set. To this end, similar to (Käding et al., 2017), we fix
the number of images for each class to be equal to Q.
That is, we enforced |S n|= Q for each class cn, where
S n = {x j | l′j = cn}, S n⊂ S and Q>max∀n(|S n|) hold.
The Q−|S n| additional images necessary to balance
each class in S are randomly selected from Tq. This
is also valid for classes that may not be represented in
S (S n = /0), where all Q images are extracted from Tq.
Finding an Optimum Size for S . To investigate
how the size of S affects the classification accuracy,
we generate a sequence of sets by randomly select-
ing b images from Vlearn. The generated b|Vlean|/bc
sets are then successively used to fine-tune the Soft-
max layer. The resulting classification models from
M0 (before starting with incremental learning) to
Mb|Vlean|/bc (after fine-tuning with all images in Vlearn)
are tested on Vtest and Vk.

We vary b from 5 to 95 in steps of 15, which re-
sults in |S |= {5,20,35,50,65,80,95}. Since we ran-
domly select images from Vlearn to form S and from
Tq to balance S , every run of this experiment leads to
slightly different results. Hence, to reduce random-
ization effects, Fig. 3a and Fig. 3b show the average
result over three independent runs of the experiment.

Figure 3a shows that the network is able to learn
already from |S | = 5 onward considering Q = 100.
A small |S | allows us to update of the classification
model faster, since less problematic images need to be
collected for an update. In addition, since the updated
classification model is expected to perform better, less
images will be considered as problematic next time,
which reduces the number of iterations. For these rea-
sons, we select |S | = 5 for the next experiments. For
|S| < 5, results start worsening, since S does not pro-
vide enough new information anymore.

Note that, for a fixed Q, the larger the size of S the
lower the percentage of known images in the balanced
S . As we can see in Fig. 3b, for |S | ≥ 65, the classifi-
cation accuracy decreases as Q = 100 is to small and
we start overfitting for the images in S . However, at
the end of the learning process, when all images of
Vlearn have been incorporated, the difference in accu-
racy is lower than 2% for all values of |S |.
Finding an Optimum Q. In the previous experiment,
we have fixed Q to 100 in order to study different val-
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Figure 3: Incremental learning process for |S | =
{5,20,35,50,65,80,95} and Q = 100.

ues of |S |. However, the optimum Q depends on the
value of |S |. Figure 4 shows the influence of different
values of Q on the classification accuracy for |S |= 5.
Each point of this plot represents the average accu-
racy reached by M1 (i.e., after the first incremental
learning step) for 3 independent runs of the experi-
ment when varying Q from 10 bis 100. The accuracy
for M0 on Vtest and Vk (see Fig. 3a and 3b) is of 0.574
and 0.902 respectively. Consequently, as shown in
Fig. 4, M1 starts outperforming M0 from Q≥ 20 on-
ward.

Finally Fig. 5 shows the average classification ac-
curacy on Vtest for 3 independent experiments along
the whole learning process considering |S | = 5 and
Q = {20,50,100}. The accuracy achieved at the end
of the incremental learning process is almost the same
for all three values of Q, where Q = 100 shows the
best results for |S | = 5. Same conclusions are ob-
tained by testing on Vk.
Analyzing Classification Confidence. As mentioned
above, after each incremental learning step, the num-
ber of images classified with confidence values that
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{20,50,100} tested on Vtest .
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Figure 6: |P | number of images in Vtest classified with p̂ j <
0.9 for each model Mq where 0≤ q≤ d|Vtest |/|S |e.

are below 0.9 decreases. This latter results in reduc-
ing the number of incremental learning iterations. To
visualize this effect, Fig. 6 shows the number of im-
ages |P | in Vtest that are classified with a confidence
p̂ j < 0.9 after every update of the classification model
(with |S |= 5 and Q= 100), i.e., P = {x j ∈Vtest | p̂ j <
0.9}. Again, we repeat this experiment 3 times and
average results. It is remarkable that the number of
problematic images already falls from 315 to 39 af-
ter the first update. In other words, selecting larger S
delays any update of the model ending up collecting
images with redundant information.
Evaluation of Label Noise. As discussed in Sec. 4.1,
the proposed semi-supervised labeling has an error
rate of approximately 15% leading to wrong labels.
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Figure 7: Incremental learning process for |S |= 5, Q = 100
with and without label noise tested on Vtest .

Figure 7 illustrates how this label noise impacts in-
cremental learning by plotting the classification re-
sults on Vtest with and without label noise. We again
repeated this experiment 3 times with |S | = 5 and
Q = 100 concluding that this amount of label noise
has a negligible impact on accuracy along the incre-
mental learning process. Same results are obtained by
testing on Vk.

5 CONCLUSIONS AND FUTURE
WORK

In this paper, we proposed an approach for a CNN-
based semi-supervised incremental learning that effi-
ciently handles new instances. Our approach lever-
ages the feature space generated from the training
dataset of the CNN to automatically label problem-
atic images. Even though there is some label noise
(around 15%), we show that classification results con-
siderably improve when updating the CNN’s classifi-
cation model with the information contained in these
images. To avoid catastrophic forgetting we proposed
a combination of partial rehearsal and early stopping.

Our results indicate an improvement of around
40% more correctly detected new instances with re-
spect to the case of no incremental learning. More-
over, there is also an improvement of 4% in the classi-
fication accuracy of known images. That is, by learn-
ing from problematic images, the CNN is also able
to correct false classification results, that were not
detected by the acquisition function because of their
high confidence values. Finally, as future work, we
plan to extend our system to the case where new ob-
ject classes need to be learned.
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