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Abstract: Connected Dominating Set (CDS) and Set Cover (SC) are classical optimization problems that have been
widely studied in both theory and practice, as many variants and in different settings, motivated by appli-
cations in wireless and social networks. In this paper, we consider the online setting, in which the input
sequence arrives in portions over time and the so-called online algorithm needs to react to each portion. On-
line algorithms are measured using the notion of competitive analysis. An online algorithm A is said to have
competitive ratio r, where r is the worst-case ratio, over all possible instances of a given minimization prob-
lem, of the solution constructed by A to the solution constructed by an offline optimal algorithm that knows
the entire input sequence in advance. Online Connected Dominating Set (OCDS) (Hamann et al., 2018) is an
online variant of CDS that is currently solved by a randomized online algorithm with optimal competitive ra-
tio. We present in this paper the first deterministic online algorithm for OCDS, with optimal competitive ratio.
We further introduce generalizations of OCDS, in the leasing model (Meyerson, 2005) and in the multiple hop
model (Coelho et al., 2017), and design deterministic online algorithms for each of these generalizations. We
also propose the first deterministic online algorithm for the leasing variant of SC (Abshoff et al., 2016), that is
currently solved by a randomized online algorithm.

1 INTRODUCTION

Dominating Set problems, where the goal is to find
a minimum subgraph of a given (undirected) graph
such that each node is either in the subgraph or has
an adjacent node in it, form a fundamental class of
optimization problems that have received significant
attention in the last decades. The Connected Dom-
inating Set problem (CDS) - which asks for a min-
imum such subgraph that is connected - is one of
the most well-studied problems in this class (Du and
Wan, 2013) with a wide range of applications in
wireless networks (Yu et al., 2013) and social net-
works (Daliri Khomami et al., 2018; Barman et al.,
2018; Halawi et al., 2018; Wagner et al., 2017).
CDS is known to be N P -complete even in planar
graphs (Garey and Johnson, 1979) and admits an
O(ln∆)-approximation for general graphs, where ∆ is
the maximum node degree of the input graph (Guha
and Khuller, 1998). The latter is the best possible
unless N P ⊆ DT IME(nlog logn) (Feige, 1998; Lund
and Yannakakis, 1994). Motivated by applications
in modern robotic warehouses (D’Andrea, 2012), an

online variant of CDS, the Online Connected Domi-
nating Set problem (OCDS), has been introduced by
Hamann et al. (Hamann et al., 2018) - the input to the
so-called online algorithm is an undirected connected
graph G = (V,E), and a sequence of subsets of V ar-
riving over time. OCDS asks to construct a subset S
of V inducing a connected subgraph in G, such that
for each subset Dt of V arriving at time t, each node
of Dt must be either in S or have an adjacent node in
S at time t. The goal is to minimize the cardinality of
S. Online algorithms are evaluated using the notion of
competitive analysis, in which the performance of the
online algorithm is measured against the optimal of-
fline solution. Given an input sequence σ - let CA(σ)
and COPT (σ) be the cost of an online algorithm A and
an optimal offline algorithm, respectively. A is said to
be c-competitive (or have competitive ratio c) if there
exists a constant α such that CA(σ)≤ c ·COPT (σ)+α

for all input sequences σ. Hamann et al. (Hamann
et al., 2018) proposed an online randomized algorithm
for OCDS, with an asymptotically optimal O(log2 n)-
competitive ratio, where n is the number of nodes.

In this paper, we give the first deterministic
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algorithm for OCDS, with asymptotically optimal
O(log2 n)-competitive ratio. Moreover, motivated
by influence spreading applications in social net-
works (Berman and Coulston, 1997; Daliri Khomami
et al., 2018), in which a small group of people (in-
fluential people) is selected to spread information to
the rest of the group (dominated people), we study
the online variant of the r-hop Connected Dominat-
ing Set problem, where r is a positive integer that
denotes the maximum allowable distance (number of
edges or hops) between the influential node and the
dominated node. Only offline model for r-hop con-
nected dominating sets has been known (Coelho et al.,
2017). In our online model, groups of people to be
dominated are revealed over time and need to be influ-
enced, rather than all at once as in the offline model.

Many classical optimization problems, includ-
ing Set Cover (Abshoff et al., 2016), Facility Lo-
cation (Nagarajan and Williamson, 2013; Markar-
ian and Meyer auf der Heide, 2019), and Steiner
Tree (Meyerson, 2005; Bienkowski et al., 2017), have
been studied in the online leasing model (Meyerson,
2005) and its extensions (Feldkord et al., 2017), in
which rather than being bought, resources are leased
for different time duration with costs respecting econ-
omy of scale, where a long expensive lease costs less
per unit time. In this paper, we give the first determin-
istic online algorithm for the Online Set Cover Leas-
ing problem (OCSL), the leasing variant of Set Cover
(SC). Given a universe U and a collection S of sub-
sets of U, SC asks to find a minimum number of sub-
sets C ⊆ S whose union is U. Abshoff et al. (Abshoff
et al., 2016) gave the first online algorithm for OCSL,
which was randomized. Furthermore, we introduce
the leasing variants of Connected Dominating Set and
r-hop Connected Dominating Set and give a deter-
ministic algorithm for each. All of our algorithms in
this paper are online, deterministic, and evaluated us-
ing the standard competitive analysis. Our results are
summarized as follows.

• We propose the first deterministic algorithm for
the Online Connected Dominating Set problem
(OCDS), with asymptotically optimal competi-
tive ratio of O(log2 n), where n is the number
of nodes (Section 3). The currently best result
for OCDS is a randomized algorithm by Hamann
et al. (Hamann et al., 2018), with asymptotically
optimal O(log2 n)-competitive ratio.

• We introduce the Online r-hop Connected Domi-
nating Set problem (r-hop OCDS), and give a de-
terministic O(2r · log3 n)-competitive algorithm,
where n is the number of nodes (Section 4). r-
hop OCDS has been studied in the offline setting -
Coelho et al. (Coelho et al., 2017) gave inapprox-

imability results for the problem in some special
graph classes.

• We propose the first deterministic algorithm for
the Online Set Cover Leasing problem (OSCL),
with O(logσ log(mL + 2m σ

l1
))-competitive ratio,

where m is the number of subsets, L is the num-
ber of lease types, σ is the longest lease length,
and l1 is the shortest lease length (Section 5). The
currently best result for OSCL is a randomized al-
gorithm by Abshoff et al. (Abshoff et al., 2016),
with O(logσ log(mL))-competitive ratio.

• We introduce the Online Connected Dominating
Set Leasing problem (OCDSL), and give a de-
terministic O

(
(σ+1) · logσ log(nL +2n σ

l1
)+L ·

logn
)

-competitive algorithm, where n is the num-
ber of nodes, L is the number of lease types, σ is
the longest lease length, and l1 is the shortest lease
length (Section 6).

• We introduce the Online r-hop Connected Dom-
inating Set Leasing problem (r-hop OCDSL),
and give a deterministic O

(
L(1 + σ(2r −

1)) logσ log(nL + 2n σ

l1
) logn

)
-competitive algo-

rithm, where n is the number of nodes, L is
the number of lease types, σ is the longest lease
length, and l1 is the shortest lease length (Section
7).

2 RELATED WORK

Online Connected Dominating Sets and Online
Set Cover. While there are many works that ad-
dress Connected Dominating Set problems and other
related problems in the offline setting (Guha and
Khuller, 1998; Yu et al., 2013; Haraty et al., 2015;
Haraty et al., 2016), only few consider the online set-
ting. Boyar et al. (Boyar et al., 2016) studied an on-
line variant of the Connected Dominating Set prob-
lem (CDS), in which the input graph is unknown in
advance, and restricted to a tree, a unit disk graph, or
a bounded degree graph. Each step a node is either
inserted or deleted and the goal is to maintain a con-
nected dominating set of minimum cardinality. Boyar
et al. showed that a simple greedy approach attains a
(1+ 1

OP T )-competitive ratio in trees - where OP T is
the cost of the optimal offline solution, an (8 + ε)-
competitive ratio in unit disk graphs - for arbitrary
small ε > 0, and b-competitive ratio in b-bounded de-
gree graphs. Recently, Hamann et al. (Hamann et al.,
2018) introduced the Online Connected Dominating
Set problem (OCDS), an online variant of CDS, in
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which the graph is known in advance, and proposed
an O(log2 n)-competitive randomized algorithm for
OCDS in general graphs, where n is the number of
nodes. Their work was motivated by applications
in modern robotic warehouses, in which geometric
graphs were used to model the topology of a ware-
house. Alon et al. (Alon et al., 2003) gave a deter-
ministic O(logm logn)-competitive algorithm and an
Ω(logm logn/(log logm+ log logn)) lower bound for
the online variant of the Set Cover problem, where
m is the number of sets and n is the number of ele-
ments. Korman (Korman, 2005) then improved the
lower bound to Ω(logm logn). For the unweighted
case where costs are uniform, Alon et al. (Alon et al.,
2003) gave an O(logn logd) competitive ratio, which
was later improved by Buchbinder et al. (Buchbinder
and Naor, 2005) to O(log(n/Opt) logd), where Opt
is the optimal offline solution and d is the maximum
number of sets an element belongs to.

Leasing Variants. Meyerson (Meyerson, 2005)
gave deterministic O(L)-competitive and randomized
O(logL)-competitive algorithms along with match-
ing lower bounds for the Parking Permit problem.
He also introduced the leasing variant of the Steiner
Forest problem, for which he proposed a random-
ized O(logn logL) competitive algorithm, where n is
the number of nodes, and L is the number of lease
types. Nagarajan and Williamson (Nagarajan and
Williamson, 2013) gave an O(L · logn)-competitive
algorithm for the leasing variant of the Facility Lo-
cation problem, where n is the number of clients.
Abshoff et al. (Abshoff et al., 2016) gave an online
randomized algorithm for the leasing variant of Set
Cover, with O(log(mL) logσ)-competitive ratio and
improved previous results for other online variants
of Set Cover. Bienkowski et al. (Bienkowski et al.,
2017) proposed a deterministic algorithm that has an
O(L logk)-competitive ratio for the leasing variant of
Steiner Tree, where k is the number of terminals.

3 ONLINE CONNECTED
DOMINATING SET (OCDS)

Definition. Given a connected graph G=(V,E) and
a sequence of disjoint subsets of V arriving over time.
A subset S of V serves as a connected dominating set
of a given subset D of V if every node in D is either
in S or has an adjacent node in S, and the subgraph
induced by S is connected in G. Each step, a subset
of V arrives and needs to be served by a connected
dominating set of G. OCDS asks to grow a connected
dominating set of minimum number of nodes.

Preliminaries. A dominating set of a subset D is a
subset DS of nodes such that each node in D is either
in DS or has an adjacent node in DS. DS is minimal
if no proper subset of DS is a dominating set of D. A
minimal dominating set can be constructed online us-
ing the online deterministic algorithm by Alon et al.
for the Online Set Cover problem (OSC) (Alon et al.,
2003), the online variant of the classical Set Cover
problem. A Set Cover instance is formed by making
each node an element, and corresponding each node
to a set that contains the node itself, along with its
adjacent nodes. Alon et al. (Alon et al., 2003) gave
a deterministic O(logm logn)-competitive algorithm
for OSC, where m is the number of sets and n is the
number of elements.

A Steiner tree of a subset D is a tree con-
necting each node in D to a given root s. A
Steiner tree can be constructed online using the
online deterministic O(logn)-competitive algo-
rithm by Berman et al. (Berman and Coulston,
1997). The Steiner tree problem studied by
Berman et al. (Berman and Coulston, 1997) is for
edge-weighted graphs and the algorithmic cost is
measured by adding the costs of all edges outputted
by the online algorithm. Our model in this paper
assumes no weights on the nodes, and hence the
competitive ratio given by Berman et al. for edge-
weighted graphs carries over to our graph model in
this paper. To see this, assume we are given a graph
G with a weight of 1 on all edges and all nodes, and a
set of terminals that need to be connected. Let Opte
be the cost of an optimal Steiner tree T measured
by counting the edges in T . Let Optn be the cost of
an optimal Steiner tree T ′ measured by counting the
nodes in T ′. We have that Opte = Optn + 1. The
proof is straightforward, by contradiction. Assume
Opte > Optn + 1. We can construct a tree which
has an edge cost lower than that of T : the tree T ′

with edge cost Optn + 1, and this contradicts the
fact that T is an optimal Steiner tree. Now assume
Opte < Optn +1. We can construct a tree which has a
node cost lower than that of T ′: the tree T with node
cost Opte− 1, and this contradicts the fact that T ′ is
an optimal Steiner tree. This would not have been
the case had there been non-uniform weights on the
nodes since the node-weighted variant of the Steiner
tree problem generalizes the edge-weighted variant
by replacing each edge by a node with the corre-
sponding edge cost. Moreover, the node-weighted
variant of the Steiner tree problem generalizes the
Online Set Cover problem which has a lower bound
of Ω(logm logn) (Korman, 2005) on its competitive
ratio.
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Algorithm. The algorithm assigns, at the first time
step, any of the nodes purchased by the algorithm, as
a root node s. At time step t:

Input: G = (V,E), subset Dt of V
Output: A connected dominating set CDSt of Dt

1. Find a minimal dominating set DSt of Dt .

2. Assign to each node in DSt a connecting node,
that is any adjacent node from the set Dt . If t = 1,
assign any of the nodes in DSt as a root node s.

3. Find a Steiner tree that connects all connecting
nodes to s. Add all the nodes in this tree includ-
ing the nodes in DSt and their connecting nodes to
CDSt .

Competitive Analysis. OCDS has a lower bound of
Ω(log2 n), where n is the number of nodes, result-
ing from Korman’s lower bound of Ω(logm logn) for
OSC (Korman, 2005), where m is the number of sub-
sets and n is the number of elements.

Let Opt be the cost of an optimal solution OptI of
an instance I of OCDS. Let C1, C2, and C3 be the cost
of the algorithm in the three steps, respectively. The
first step of the algorithm constructs online a minimal
dominating set. Let OptDS be the cost of a minimum
dominating set of I. Note that OptI is a dominating
set of I. Hence, Alon et al.’s (Alon et al., 2003) de-
terministic algorithm yields: C1 ≤ log2 n ·OptDS ≤
log2 n ·Opt. The second step adds at most one node
for each node bought in the first step. Hence we have
that: C2≤C1. As for the third step, OptI is a Steiner
tree for the connecting nodes bought in the second
step, since all connecting nodes belong to the set of
nodes that need to be served and OptI serves as a con-
nected dominating set of these nodes. Let OptSt be
the cost of a minimum Steiner tree of these connect-
ing nodes. Since Berman et al.’s (Berman and Coul-
ston, 1997) algorithm has an O(logn)-competitive ra-
tio, we conclude that C3 ≤ logn ·OptSt ≤ logn ·Opt.
The total cost of the algorithm is then upper bounded
by: C1+C2+C3 = (2 · log2 n+ logn) ·Opt and the
theorem below follows.

Theorem 1. There is an asymptotically optimal
O(log2 n)-competitive deterministic algorithm for the
Online Connected Dominating Set problem, where n
is the number of nodes.

4 ONLINE r-hop CONNECTED
DOMINATING SET (r-hop
OCDS)

Definition. Given a connected graph G = (V,E), a
positive integer r, and a sequence of disjoint subsets
of V arriving over time. A subset S of V serves as
an r-hop connected dominating set of a given subset
D of V if for every node v in D, there is a vertex
u in S such that there are at most r hops (edges)
between v and u in G, and the subgraph induced
by S is connected in G. Each step, a subset of V
arrives and needs to be served by an r-hop connected
dominating set of G. r-hop OCDS asks to grow an
r-hop connected dominating set of minimum number
of nodes.

OCDS is equivalent to r-hop OCDS with r = 1.

Preliminaries. Given a graph G = (V,E) and a pos-
itive integer r. A subset DS of V is an r-hop domi-
nating set of a given subset D of V if for every node
v in D, there is a vertex u in DS such that there are
at most r hops between v and u in G. DS is mini-
mal if no proper subset of DS is an r-hop dominat-
ing set of D. We can transform an r-hop dominat-
ing set instance into a Set Cover instance by making
each node an element, and corresponding each node
to a set that contains the node itself, along with all
nodes that are at most r hops away from it. Hence, we
can construct a minimal r-hop dominating set by run-
ning the online deterministic algorithm by Alon et al.
for the Online Set Cover problem (OSC) (Alon et al.,
2003). A Steiner tree can be constructed online, as
in Section 3, using the online deterministic O(logn)-
competitive algorithm by Berman et al. (Berman and
Coulston, 1997).

Algorithm. The algorithm assigns, at the first time
step, any of the nodes purchased by the algorithm, as
a root node s. At time step t:

Input: G = (V,E), subset Dt of V
Output: An r-hop connected dominating set rCDSt
of Dt

1. Find a minimal r-hop dominating set rDSt of Dt .
If t = 1, assign any of the nodes in rDSt as a root
node s.

2. Find a Steiner tree that connects all nodes in rDSt
to s. Add all the nodes in this tree including the
nodes in rDSt to rCDSt .
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Competitive Analysis. The only lower bound for r-
hop OCDS is the one for OCDS, Ω(log2 n), where n
is the number of nodes. The proof of the competitive
analysis is ommited due to lack of space.

Theorem 2. There is a deterministic O(2r · log3 n)-
competitive algorithm for the Online r-hop Connected
Dominating Set problem, where n is the number of
nodes.

5 ONLINE SET COVER LEASING
(OSCL)

Definition. Given a universe U of elements (|U|=
n), a collection S of subsets of U (|S | = m), and a
set of L different lease types, each characterized by a
duration and cost. A subset can be leased using lease
type l for cost cl and remains active for dl time steps.
Each time step t, an element e ∈U arrives and there
needs to be a subset S ∈ S active at time t such that
e ∈ S. OSCL asks to minimize the total leasing costs.
We assume the following configuration on the leases.

Definition 1. (Lease Configuration) Leases of type l
only start at times t with t ≡ 0 mod dl , where dl is
the length of lease type l. Moreover, all lease lengths
are power of two.

This configuration has been similarly defined by
Meyerson for the Parking Permit problem (Meyerson,
2005), who showed that by assuming this configura-
tion, one loses only a constant factor in the compet-
itive ratio. A similar argument can be easily made
for OSCL, as was the case for all generalizations of
the Parking Permit problem (Abshoff et al., 2016;
Bienkowski et al., 2017; Nagarajan and Williamson,
2013).

Preliminaries. Our algorithm for OSCL is based
on running Alon et al.’s (Alon et al., 2003) deter-
ministic algorithm for the Online Set Cover prob-
lem (the weighted case), which constructs a frac-
tional solution that is rounded online into an inte-
gral deterministic solution. Alon et al.’s algorithm
has an O(logm logn)-competitive ratio and requires
the knowledge of the set cover instance to make it de-
terministic. What is unknown to the algorithm is the
order and subset of arriving elements. We will trans-
form an instance α of OSCL into an instance α′ of the
Online Set Cover problem and run Alon et al.’s deter-
ministic algorithm on α′. An instance of the Online
Set Cover problem consists of a universe of elements
and a collection of subsets of the universe - an element
of the universe arrives in each step. The algorithm

needs to purchase subsets such that each arriving ele-
ment is covered, upon its arrival, by one of these sub-
sets, while minimizing the total costs of subsets. The
algorithm may end up covering elements that never
arrive.

Algorithm. Suppose the algorithm is given a uni-
verse U of elements and a collection S of subsets of
U. If there is one lease type, of infinite lease length
(L = 1), we have exactly an instance of the Online
Set Cover problem and so Alon et al.’s (Alon et al.,
2003) deterministic algorithm would solve it. Other-
wise, we do the following - we represent each ele-
ment e ∈ U by n pairs, one for each of the at most
n potential time steps at which e can arrive. We let
pair (e, t) represent element e at time step t. We de-
note by N the collection of all these pairs. A subset
S ∈ S can be leased using lease type l for cost cl and
remains active for dl time steps. We represent subset
S of lease type l at time t as a triplet (S, l, t). We de-
note by M the collection of all these triplets. We now
construct an instance of the Online Set Cover prob-
lem with N and M being the collection of elements
and of subsets, respectively. Pair (e, t) can be covered
by triplet (S, l, t ′) if e ∈ S and t ∈ [t ′, t ′+ dl ]. When
an element arrives at time t, pair (e, t) is given as in-
put to the Online Set Cover instance for step t. Note
that each element e ∈ U arrives only once. An al-
gorithm for the Online Set Cover problem will ensure
that e′s corresponding pair at the time it arrives is cov-
ered. Moreover it will ignore (not necessarily cover)
all other pairs corresponding to the other time steps
and this is equivalent to having elements that never
arrive in an Online Set Cover instance. Hence, run-
ning Alon et al.’s (Alon et al., 2003) algorithm will
yield a feasible deterministic solution for OSCL.

Competitive Analysis. OSCL has a lower bound of
Ω(logm logn + L) resulting from the Ω(logm logn)
lower bound for OSC (Korman, 2005), where m is
the number of subsets and n is the number of ele-
ments, and the Ω(L) lower bound for the Parking Per-
mit problem (Meyerson, 2005), where L is the number
of lease types.

We fix any interval I of length σ and show that
the algorithm would be O(logσ log(mL + 2m σ

l1
))-

competitive if this interval were the entire input,
where l1 is the length of the shortest lease, σ is the
length of the longest lease, L is the number of lease
types, and m is the number of subsets. Since all
leases including the ones in the optimal solution end
at the end of I due to the lease configuration defined
earlier, this would imply that the algorithm has an
O(logσ log(mL+2m σ

l1
))-competitive ratio. Note that
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there are at most σ elements over I, since at most
one element arrives in each time step. The competi-
tive ratio O(log |M | log |N |) of the algorithm follows
directly by setting the number of elements and sub-
sets to |N | and |M |, respectively. Now, we have that
|N | = σ2 since there are σ2 pairs in total. Next, we
give an upper bound to |M | over I.

|M | ≤ m · (
L
∑
j=1

⌈
σ

l j

⌉
)

Since l js are increasing and powers of two, we con-
clude that the sum above can be upper bounded by the
sum of a geometric series with a ratio of 1/2.

L
∑
j=1

⌈
σ

l j

⌉
≤ L +σ

[
1
l1

(
1−(1/2)σ

1−1/2

)]
=

L +σ

[
2
l1

(
1− (1/2)L)]

Since L ≥ 1, we have:

L +σ

[
2
l1

(
1− (1/2)L)]≤ L + 2σ

l1
.

Therefore, |M | ≤m ·(L+ 2σ

l1
), and the theorem below

follows.

Theorem 3. There is a deterministic
O(logσ log(mL + 2m σ

l1
))-competitive algorithm

for the Online Set Cover Leasing problem, where m is
the number of subsets, L is the number of lease types,
σ is the longest lease length, and l1 is the shortest
lease length.

6 ONLINE CONNECTED
DOMINATING SET LEASING
(OCDSL)

Definition. Given a connected graph G = (V,E), a
sequence of disjoint subsets of V arriving over time,
and a set of L different lease types, each character-
ized by a duration and cost. A node can be leased
using lease type l for cost cl and remains active for
dl time steps. A subset S of nodes of V serves as a
connected dominating set of a given subset D of V if
every node in D is either in S or has an adjacent node
in S, and the subgraph induced by S is connected in
G. Each time step t, a subset of V arrives and needs
to be served by a connected dominating set of nodes
active at time t. OCDSL asks to grow a connected
dominating set with mininum leasing costs. OCDS is
equivalent to OCDSL with one lease type (L = 1) of
infinite length. Note that in both OCDS and OCDSL,
the algorithm ends up purchasing (leasing) nodes that
form one connected subgraph - the difference is that
in OCDSL, at a certain time step t, only the currently

active nodes needed to serve the nodes given at time
t, are connected by nodes active at time t, to at least
one of the previously leased nodes, thus maintaining
one single connected subgraph.

We assume the lease configuration introduced ear-
lier in Definition 1.

Algorithm. The algorithm assigns, at the first time
step, any of the nodes leased by the algorithm, as a
root node s. At time step t:

Input: G = (V,E), subset Dt of V
Output: A set of leased nodes that form a connected
dominating set of Dt

1. Lease a set DSt of nodes that form a minimal dom-
inating set of Dt .

2. Assign to each node in DSt a connecting node,
that is any adjacent node from the set Dt . Buy the
cheapest lease for each of these connecting nodes.
If t = 1, assign any of the nodes in DSt as a root
node s.

3. Lease a set of nodes that connect all connecting
nodes to s.

Algorithm Description. To find a set of leased
nodes that form a minimal dominating set of a subset
Dt , we run our deterministic algorithm for Online Set
Cover Leasing presented in Section 5. An Online
Set Cover Leasing instance is formed by making
each node an element, and corresponding each node
to a set that contains the node itself, along with its
adjacent nodes - sets are leased with L different lease
types. Our algorithm for Online Set Cover Leasing
has an O(logσ log(mL + 2m σ

l1
))-competitive ratio,

where m is the number of subsets, L is the number of
lease types, σ is the longest lease length, and l1 is the
shortest lease length.

To find a set of leased nodes that connect a sub-
set of nodes to s, we run the deterministic algorithm
for Online Steiner Tree Leasing problem (OSTL) by
Bienkowski et al. (Bienkowski et al., 2017), defined
as follows. Given a connected graph G = (V,E),
a root node s, a sequence of nodes of V (called
terminals) arriving over time, and a set of L different
lease types, each characterized by a duration and
cost. An edge can be leased using lease type l for cost
cl and remains active for dl time steps. Each step t, a
node arrives and needs to be connected to s through a
path of edges active at time t. OSTL asks to minimize
the total leasing costs. The algorithm by Bienkowski
et al. (Bienkowski et al., 2017) has an O(L logk)-
competitive ratio, where k is the number of terminals.
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The Online Steiner Tree Leasing problem studied
by Bienkowski et al. (Bienkowski et al., 2017) is
for edge-weighted graphs and the algorithmic cost
is measured by adding the leasing costs of the edges
and not the nodes. Our model in this paper assumes
no weights on the nodes, and hence the competitive
ratio given by Bienkowski et al. (Bienkowski et al.,
2017) for edge-weighted graphs carries over to our
graph model in this paper. This would not have
been the case had there been non-uniform weights
on the nodes since the node-weighted variant of the
Online Steiner Tree Leasing problem generalizes
the edge-weighted variant. Hence, whenever the
algorithm for Online Steiner Tree Leasing leases an
edge (u,v) at time t with lease type l, we lease both
u and v at the same time t with the same lease type l
and hence the cost will only double.

Competitive Analysis. Since OCDSL generalizes
OSCL, Ω(log2 n+ L) is a lower bound for OCDSL,
where n is the number of nodes and L is the number
of lease types. The proof of the competitive analysis
is ommited due to lack of space.

Theorem 4. There is a deterministic O
(
(σ + 1) ·

logσ log(nL + 2n σ

l1
) + L · logn

)
competitive algo-

rithm for the Online Connected Dominating Set Leas-
ing problem, where n is the number of nodes, L is the
number of lease types, σ is the longest lease length,
and l1 is the shortest lease length.

7 ONLINE r-hop CONNECTED
DOMINATING SET LEASING
(r-hop OCDSL)

Definition. Given a connected graph G = (V,E), a
positive integer r, a sequence of disjoint subsets of
V arriving over time, and a set of L different lease
types, each characterized by a duration and cost. A
node can be leased using lease type l for cost cl and
remains active for dl time steps. A subset S of nodes
of V serves as an r-hop connected dominating set of
a given subset D of V if for every node v in D, there
is a vertex u in S such that there are at most r hops
between v and u in G, and the subgraph induced by
S is connected in G. Each time step t, a subset of V
arrives and needs to be served by an r-hop connected
dominating set of nodes active at time t. r-hop
OCDSL asks to grow an r-hop connected dominating
set with minimum leasing costs.

OCDSL is equivalent to r-hop OCDSL for r = 1. We

assume the lease configuration introduced earlier in
Definition 1.

Algorithm. The algorithm assigns, at the first time
step, any of the nodes leased by the algorithm, as a
root node s. At time step t:

Input: G = (V,E) and subset Dt of V
Output: A set of leased nodes that form r-hop
connected dominating set of Dt

1. Lease a set rDSt of nodes that form a minimal r-
hop dominating set of Dt . If t = 1, assign any of
the nodes in rDSt as a root node s.

2. Lease a set of nodes that connect all nodes in rDSt
to s.

Algorithm Description. To find a set of leased
nodes that form a minimal r-hop dominating set of a
subset Dt , we run our deterministic algorithm for On-
line Set Cover Leasing presented in Section 5. An On-
line Set Cover Leasing instance is formed by making
each node an element, and corresponding each node
to a set that contains the node itself, along with all
nodes that are at most r hops away from it - sets are
leased with L different lease types. Our algorithm for
Online Set Cover Leasing has an O(logσ log(mL +
2m σ

l1
))-competitive ratio, where m is the number of

subsets, L is the number of lease types, σ is the
longest lease length, and l1 is the shortest lease length.
To find a set of leased nodes that connect a subset
of nodes to s, we run the deterministic O(L logk)-
competitive algorithm for Online Steiner Tree Leasing
problem (OSTL) by Bienkowski et al. (Bienkowski
et al., 2017), defined earlier.

Competitive Analysis. The only lower bound for r-
hop OCDSL is the one for OCDSL, Ω(log2 n + L),
where n is the number of nodes and L is the number
of lease types. The proof of the competitive analysis
is ommited due to lack of space.

Theorem 5. There is a deterministic O
(

L(1+σ(2r−

1)) logσ log(nL +2n σ

l1
) logn

)
-competitive algorithm

for the Online r-hop Connected Dominating Set Leas-
ing problem, where n is the number of nodes, L is the
number of lease types, σ is the longest lease length,
and l1 is the shortest lease length.
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