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Abstract: Person identification is usually based on video signals, DNAsamples or fingerprints. In this study, we want to
show the effectiveness of other physiological signals for person identification. For this purpose, we evaluate
different settings with the SenseEmotion Database. The data set was initially collected for research purposes
in the fields of emotion and pain intensity recognition. However, we use the multi-modality of this database to
evaluate the effectiveness of different physiological signals, such as the heart activity or skin conductance, for
person identification purposes. It is almost impossible forhuman beings to identify persons by evaluating a
set of different fingerprints. Machine learning methods usually outperform humans in both, operation time
as well as accuracy, in those tasks. In our study, we show thatbasic pattern recognition models can be
used to identify human beings based on physiological signals. However, our outcomes show that person
identification based on physiological signals must be treated with caution. Specifically, our results indicate
that it is essential to include physiological signals from different recording sessions, to ensure generalisation
ability of the classification model, for the person identification task.

1 INTRODUCTION

Person identification is an everyday phenomenon.
The human brain is trained to easily recognise peo-
ple on audiovisual basis. Old science fiction movies
showed security mechanisms, such as retinal scans, as
novel ideas (e.g. in Demolition Man1, in 1993). For
many years, fingerprints have been used in criminol-
ogy. Nowadays, person identification based on finger-
prints is a basic feature of many smartphones.
It is common to use video signals for person identifi-
cation purposes. However, the trained machine learn-
ing model has to be able to overcome different cir-
cumstances, such as different lighting conditions, per-
sons’ movements and others, such as changing glasses
for contact lenses.
Therefore, we want to evaluate the task of person
identification by considering physiological signals.
The measurement of physiological signals, such as
the heart rate or muscle activity, is not affected by the
aforementioned circumstances, which affect models
trained on video signals.
However, one needs adequate sensors in order to

1https://www.imdb.com/title/tt0106697/?ref=fn al tt 1

record physiological data. Moreover, those sensors
have to be attached to the human body. Besides, there
are other factors affecting biopotentials, such as an
individual’s physiological state (e.g. sleeping vs. per-
forming sports activities). However, those factors are
not present in the data set, which we are using in the
current study.
The remainder of this study is organised as follows.
In Section 2, we motivate our idea for choosing the
SenseEmotion Database, specifically for person iden-
tification purposes, which was initially recorded for
the research in the fields of emotion recognition and
pain intensity classification. Section 3 provides a de-
scription of the SenseEmotion Database. Section 4 is
an overview of all experimental settings that are ap-
plied in this study. In Section 5, we state and discuss
our outcomes on person identification based on phys-
iological signals, with comparison to the outcomes
based on video signals. We change our evaluation
protocol in Section 6, to show the shortcomings of
physiological signals based person identification (PS-
bPI). Based on those outcomes, we provide a guide
for the data recording and classification model design,
for the PSbPI task. Finally, in Section 7, we conclude
this study.
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2 MOTIVATION & RELATED
WORK

As we will shortly explain in Section 3, the
SenseEmotion Database was initially collected for
emotion recognition and pain intensity classification
purposes. In previous studies based on that data
set (see Sec. 3.2), we found that the pain intensity
classification task is highly affected by individual
characteristics of the data. Particularly, the leave-
one-participant-out pain intensity classification task is
challenging. By changing the task to person identi-
fication, we are able to analyse the effectiveness of
EDA and RSP signals, in such scenarios. Moreover,
in our main experiments, in Section 6, we will anal-
yse the effects of including different recording ses-
sions, in person identification tasks. In particular, we
will focus on the real application scenario, in which a
whole recording session is not seen during the train-
ing phase. Thereby, we will analyse the classification
performance based on physiological signals in com-
parison to non-physiological signals.
To apply a person identification task without any de-
pendency on experienced pain, we focus on the sam-
ples resulting from the pain-free stimuli of 32◦C.
These samples are intended to represent the partic-
ipants’ pain-free states. Anyway, it has to be men-
tioned that during those phases were emotional stim-
uli (negative, neutral and positive). The data subsets
(recordings for the left and right forearms, respec-
tively), which we analyse in this study consist of 1200
samples each (30 samples per participant).
There exist different works in the literature, for per-
son identification based on biopotentials. Chan et
al. introduced the wavelet distance (WDIST) mea-
sure for ECG based person identification (Chan et al.,
2008). Their WDIST measure outperformed the so-
calledpercent residual differenceand thecorrelation
coefficientmeasures in an evaluation of a set of 50
subjects. Thereby, each subject participated in three
recording sessions in a non-clinical setting, in which
the participants simply held two electrodes using their
thumbs and index fingers.
Suresh et al. provided the first EMG based person
identification approach evaluated on a set of 49 sub-
jects (Suresh et al., 2011). The subjects participated
in three recording sessions, in which they performed
wrist motions of 10 seconds, several times each. The
authors evaluated the so-calledvector quantization
(Linde et al., 1980) andGaussian mixture model
(GMM) approaches (Dempster et al., 1977) leading
to the preference of GMM models.
In the late nineties, Poulus et al. published several
studies related to EEG based person identification

(Poulos et al., 1999; Poulos et al., 1999b; Poulos
et al., 1999a), being the first to apply parametric spec-
tral analysis of the EEG signals. In their works,
Poulus et al. used a subset of a data set containing
continuous EEG recordings of 79 individuals of three
minutes each, for different analyses of the so-called
alpha rhythm spectral band. In (Poulos et al., 1999),
the authors followed a non-parametric approach for
feature augmentation by extractingspectral values
from the Fast Fourier Transform (FFT) of the EEG
signal. The classification was undertaken by Ko-
honen’s Linear Vector Quantizer (LVQ) (Kohonen,
1989). In (Poulos et al., 1999b), the authors used the
LVQ classifier in combination with a parametric spec-
tral analysis by fitting a linear all-pole (AR) model to
the EEG spectrum. The coefficients of the AR model
were used as features. In (Poulos et al., 1999a), the
authors followed the aforementioned parametric ap-
proach in combination with a different classifier, us-
ing so-calledcharacteristic convex polygonmodels
(O’Rourke et al., 1982).

3 SENSEEMOTION DATABASE

The SenseEmotion Database (SEDB) was collected
at Ulm University for research purposes in the field
of emotion and pain (intensity) recognition (Velana
et al., 2016). Forty-five healthy subjects participated
in the experiments. Due to missing or erroneous data,
five participants were excluded from the data set. The
current study is based on the recordings specific to the
remaining 40 participants (20 female and 20 male).

3.1 Data Set Description

Pain was induced in form of heat by a Medoc ther-
mode2, which was placed at the participant’s forearm.
The pain-free temperature was set to 32◦C for each
participant.

Heat Stimuli Sequences.After an individual cal-
ibration phase, which led to three equidistant pain
temperature levels, each of the participants was stim-
ulated thirty times with each of the four tempera-
ture levels (pain-free, pain, intermediate and tolerance
level). The order of the pain stimuli was randomised.
Each of the pain levels was held for four seconds. Af-
ter each pain stimulation, each participant was stimu-
lated with the pain-free level with a random duration
length of eight to twelve seconds. The experiments
were conducted twice. Once, the heat elicitation ther-
mode was attached to the participant’s left forearm,

2https://medoc-web.com/products/pathway/
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Figure 1: An example for a participant’s sequence of differ-
ent stimuli. In this study, we focus on theT0-related stimuli.

and once it was attached to the participant’s right fore-
arm. Therefore, the SEDB consists of two subsets,
which we will simply denote byleft subsetandright
subset, according to the placement of the thermode.
Note that for each participant, the data specific to each
forearm were recorded on different days, i.e. during
two different sessions. This is especially important
for the main outcome of this study, as later discussed
in Sections 6 and 7.

Figure 1 illustrates an example for a participant’s
heat stimuli sequence. The recorded signals can be
categorised into the following three groups, which we
simply callmodalities.

Biopotentials (BIO). The recordings of the phys-
iological modality consists of four channels, i.e. elec-
trocardiogram (ECG), electrodermal activity (EDA),
electromyogram (EMG) and respiration (RSP). ECG
measures heart activity. From the ECG signal, one
can extract different kind of information, such as the
heart beat interval or the heart rate. EDA measures
the skin conductance. The EDA sensors were placed
at the index and ring fingers. EMG measures muscle
activity. In the experiments, the activity of the trapez-
ius muscle (located in the upper back area of the hu-
man body) was recorded. An elastic belt system was
used to record the breathing activity (respiration).

Videos(VID). A synchronised camera system was
installed to record the participants from three differ-
ent angles. Between each of the three cameras and
the participants was a distance of approximately one
meter. One frontal camera was placed towards the
participants, and two cameras were placed in an angle
of approximately 45◦ to the left and right side, respec-
tively (see Figure 2).

Audio Signals (AUD). Similar to the videos, the
audio signals were recorded synchronously through
three different sources. A digital wireless headset mi-
crophone, a directional microphone and the Microsoft
Kinect v2 integrated microphone, recorded the sig-
nals.
Figure 3 shows the experimental settings, including
examples of extracted facial areas, which were used
to compute video features. For more details concern-
ing the SEDB, we refer the reader to (Velana et al.,

2016).
Feature Extraction. Feature extraction is beyond

the scope of this study. Therefore, we refer the reader
to one of our latest works (Thiam et al., 2019b), for
complete details on the extraction and normalisation
of features. The video features were extracted from
windows of length 6.5 sec, for each sample. For the
video signals, we extracted three types of features, i.e.
geometric features (GEO), head pose features (HPO)
and local binary patterns from three orthogonal planes
(LBP-TOP). We will denote the LBP-TOP features
simply by LBP, for better readability of our tables.
Note that all video features were extracted solely from
the participants’ faces (see Figure 3, bottom). The
audio and physiological features were extracted from
the same windows but of length 4.5 sec, for each sam-
ple. This was especially important for the samples
specific to the temperature levelsT1, T2 andT3, which
we do not consider here. After applying different sig-
nal detrending and smoothing techniques to reduce
noise and artefacts in the physiological signals, differ-
ent statistical descriptors, such asmean, standard de-
viation, extreme values, were extracted, amongst oth-
ers, from the temporal domain. From the frequency
domain, additional features, including amongst oth-
ers,bandwidth, centralandmean frequency, were ex-
tracted. From the audio signals, different low-level,
as well as, high-level descriptors have been extracted.
Commonly used audio low-level descriptors areMel
Frequency Cepstral Coefficients(MFCCs) (Davis and
Mermelstein, 1980) and features computed by apply-
ing the Relative Spectral Perceptual Linear Predic-
tive Coding(RASTA-PLP) (Hermansky et al., 1992),
which is an extension ofPerceptual Linear Predic-
tive (PLP) analysis (Hermansky, 1990). Table 1 sum-
marises the feature dimensions for all available chan-
nels. Biopotentials are defined by 307 features in to-
tal, followed by 980 and 3126 audio and video fea-
tures, respectively. In (Thiam et al., 2019a), we pro-
pose using deep neural networks for autonomous fea-
ture learning based on ECG, EDA and EMG signals,
on a similar data set.
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Figure 2: Sketch of the synchronised camera system setup.
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Figure 3: Top: Experimental settings. Each participant
remained seated with both forearms resting on a desk,
throughout the recording sessions.Bottom: Examples of
extracted facial area used to compute video features.

Table 1: Number of extracted features grouped by biopo-
tentials and video/audio features. GEO, HPO and LBP are
features extracted from video signals, based solely on each
participant’s face and orientation of the head.

BIO ECG EDA EMG RSP
115 72 61 59

VID/AUD GEO HPO LBP AUD
714 252 2160 980

3.2 Related Work on the SEDB

Based on the collected data, Kessler et al. show the
effectiveness of including camera photoplethysmog-
raphy for pain recognition (Kessler et al., 2017a;
Kessler et al., 2017b). Thiam et al. analyse the
combination of audio and video channels (Thiam
et al., 2017), as well as different multi-modal data fu-
sion approaches, including biopotentials (Thiam and
Schwenker, 2017), for pain intensity recognition. Dif-
ferent decision tree based classification ensembles are
evaluated in (Bellmann et al., 2018). In one of our lat-
est studies on the SEDB (Bellmann et al., 2019), we
introduce an unsupervised data transformation, which
improves the accuracy of nearest neighbour classi-
fiers.
From the mentioned previous works, we can con-
clude that pain intensity recognition works well on
the SEDB for a late fusion architecture (Snoek et al.,
2005) with random forests (Breiman, 2001), which
are combined by a pseudo-inverse aggregation layer
(Penrose, 1955; Schwenker et al., 2006).

4 EXPERIMENTAL SETTINGS

This section gives a short overview of the experimen-
tal settings, which we apply throughout this work.

4.1 Definitions of Different Tasks

In this study, we consider two different person iden-
tification tasks. Those tasks, as well as the applied
cross validation approach and the choice of a signifi-
cance test, are explained in the following.

Binary Classification Task. In the binary classifi-
cation task, we consider two participants at once. We
refer to this task as thepairwise task. This scenario
is unrealistic andsimple. Its purpose is primarily to
show that it is valid using the SEDB for person iden-
tification analyses (Poor classification performance in
combination with this task would question the current
study).

Multi-class Task. In the multi-class task, we con-
sider all of the participants at once.

Cross Validation. For both tasks, we ap-
ply a leave-one-sample-out (LOSO) cross validation.
Therefore, in the pairwise task, we apply the LOSO
cross validation for each possible pair of participants
(participant 1 vs. participant 2, participant 1 vs. par-
ticipant 3, etc.). The final results are then aver-
aged by the number of possible participant pairs, i.e.
40·39/2= 780.

Significance Tests. In this work, we apply
the two-sided Wilcoxon signed-rank test (Wilcoxon,
1945) to test for significant differences in accuracy, at
a significance level ofp= 0.05.

4.2 Classifiers & Performance Measure

In this study, we choose one single type of classifi-
cation models and one single performance measure.
Note that the focus of this study is to emphasise the
importance of providing several recording sessions
during the data acquisition, which is the first phase
of each pattern recognition task.

Classification Models.For both of our classifica-
tion tasks, we first use one single decision tree (DT)
classifier (Breiman et al., 1984) applying the built-in
implementation in MATLAB3, with default parame-
ter settings without optimisation. The Gini index is
used as impurity measure. There is no threshold for
the maximum tree depth and no pruning of the deci-
sion tree. The reasons for the choice of one single
DT are twofold. Being aweakclassifier, we suppose
that applying one single DT will lead to significantly
different classification performance values across the
recorded modalities and channels. In that way, we can
sort out some of the modalities and channels, based
on initial experiments, as shown later in Section 5.
On the other hand, achieving promising classification
performance values by the use of one single DT in our

3https://www.mathworks.com/products/matlab.html
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initial experiments justifies choosing random forests
as strong classification models, in our main experi-
ments, in Section 6.

Performance Measure.Both of our defined tasks
constitute equally distributed classification tasks. In
combination with the LOSO cross validation, we
measure the performance by the ratio of the number
of correct classified samples to the total number of
samples, i.e.

accuracy=
|{x∈ X : t(x) = l(x)}|

|X|
.

TherebyX ⊂ R
d,d ∈ N, denotes the current data set.

The true label ofx is denoted byl(x) (participant ID).
Moreover, byt(x) we denote the output of the deci-
sion tree/random forestt (which is trained onX\{x},
in the LOSO cross validation). Solely for the pairwise
task, we provide additional values for the standard de-
viation, arising from the different accuracies across all
possible pairs of participants.

5 RESULTS FOR EACH SUBSET

In this section, we provide the results for both set-
tings, i.e. the pairwise and the multi-class setting.
First, we evaluate the performance specific to each
modality and channel. Subsequently, we evaluate the
performance specific to a bio-visual combination.

5.1 Evaluation of Modalities

First, we evaluate the performance of each modality,
i.e. BIO, VID and AUD. Table 2 depicts the results for

Table 2: Pairwise Task. Averaged accuracies and standard
deviations in %. The best performing modality is under-
lined. Chance level accuracy is at 50%. BIO outperforms
the other modalities significantly, according to a two-sided
Wilcoxon signed-rank test withp= 0.05.

Modality Left Subset Right Subset
BIO 98.91±1.91 99.29±1.40
VID 97.76±2.37 97.71±2.63
AUD 83.10±8.73 83.72±8.36

Table 3: Multi-Class Task. LOSO accuracies in %. The best
performing modality is underlined. Chance level accuracy
is at 2.5%. BIO outperforms the other modalities signifi-
cantly, according to a two-sided Wilcoxon signed-rank test
with p= 0.05.

Modality Left Subset Right Subset
BIO 97.46 98.21
VID 87.02 82.81
AUD 35.03 35.50

the pairwise setting, whereas Table 3 states the results
for the multi-class setting.
The accuracy values from Table 2 are higher than
those ones stated in Table 3. The pairwise setting con-
stitutes a binary classification task, whereas the multi-
class setting constitutes a 40-class classification task.
AUD is the worst performing modality, significantly
worse than the other modalities. This is exactly what
we expected, since there were no verbal interactions
during the experiments. The only available audio sig-
nals are moaning or (heavy) breathing noises. For
both tasks, the biopotentials lead to the best results.

5.2 Evaluation of Channels

In this section, we evaluate the performance of each
single channel. Table 4 states the results for the pair-
wise task.
Channels EMG, ECG and RSP lead to high perfor-
mance values, with RSP being the best performing
channel. EDA is the worst performing physiological
channel. The best performing video channel is LBP.
Video channels GEO and HPO perform even worse
than the audio channel (see Table 2). Therefore, for
the video modality, only the LBP features are con-
sidered for the rest of this study. Table 5 depicts the
channel results for the multi-class task.
The video features (LBP) are significantly outper-

Table 4: Pairwise Task. Averaged accuracies and standard
deviations in %. The best performing channel is underlined.
Chance level accuracy is at 50%. The horizontal line sepa-
rates physiological features from video-based features.

Channel Left Subset Right Subset
EMG 98.50±2.04 98.60±2.02
ECG 98.64±1.98 99.04±1.59
RSP 98.91±1.82 99.24±1.46
EDA 97.53±2.72 97.63±2.74
GEO 79.11±10.5 79.54±10.6
HPO 77.23±10.5 78.66±11.0
LBP 97.76±2.37 97.75±2.56

Table 5: Multi-Class Task. LOSO accuracies in %. The
best performing channel is underlined. The horizontal line
separates physiological features from video-based features.
Each of the physiological channels outperforms the LBP
channel significantly, according to a two-sided Wilcoxon
signed-rank test withp= 0.05.

Channel Left Subset Right Subset
EMG 98.13 97.53
ECG 97.54 98.30
RSP 96.69 98.04
EDA 96.44 96.77
LBP 87.87 84.68

Person Identification based on Physiological Signals: Conditions and Risks

377



formed by the physiological channels. While RSP
seems to perform best for the binary task, EMG leads
to the best results for the left data subset, whereas
ECG leads to the best results for the right data sub-
set. EDA stays the worst performing biosignal, for
the multi-class task. Thermal stimuli make the EDA
sensor more unreliable, due to sweating, since EDA
measures skin conductance. We consider recordings
specific to heat stimuli with 32◦C, in this work. How-
ever, each of those stimuli was directly following a
heat stimulus with a higher temperature (see Sec. 3).
Heat implies participant’s perspiration, which directly
affects the EDA signals and hence complicates the
task of person identification.

5.3 Evaluation of Combined Modalities

In this part, we combine all physiological channels
with the best video channel, i.e. LBP. Table 6 shows
the results for both tasks, the pairwise and the multi-
class tasks.
From Table 6, we can conclude that combining the
biopotentials with video signals leads at most to
the same performance, which is based solely on the
biopotentials. Therefore, the performance based on
the physiological channels is not improved by the ad-
dition of video signals, especially in the multi-class
task (see Table 6, bottom part).

5.4 Discussion of initial Experiments

The physiological signal based accuracy values,
which are reported in Tables 2, 3, 4, 5 and 6 seem
to be surprisingly good, since we used only one DT
as classification model. However, we applied the
LOSO evaluation protocol, which provides an opti-
mistic classification performance approximation. It is
most likely that the biopotentials significantly outper-
form the video based classification due to the number
of extracted features. While the physiological chan-
nels consist of 307 features (115 ECG, 72 EDA, 61
EMG, 59 RSP) in total, the LBP-TOP channel has a
dimensionality of 2160. Therefore, an unpruned DT
is more likely to overfit the data specific to the video
based channel, during the training phase.

Table 6: Averaged/LOSO accuracies in %. The horizontal
line separates the pairwise task (top) from the multi-class
task (bottom). The standard deviation values for the pair-
wise task are left out, for better readability.

Modality Left Subset Right Subset
BIO 98.91 99.29

BIO-LBP 98.91 99.29
BIO 97.46 98.21

BIO-LBP 94.15 95.50

6 RESULTS ON MIXED SUBSETS

In the previous section, we considered the two subsets
of the SEDB as two separate data sets. Since exactly
the same subjects participated in the data acquisition
experiments, we now use both subsets at once, within
the following two settings. We train our classification
model on the left subset and test it on the right subset,
and vice versa.

6.1 Evaluation of the multi-Class Task

In this section, we do not apply any cross validation.
The accumulated accuracy values arise from one sin-
gle testing iteration. Moreover, instead of using one
single decision tree, we now use random forests with
300, 500 and 1000 decision trees, respectively. Table
7 states the results with the left subset defined as the
training data, and the right subset defined as the test
data. In contrast, Table 8 depicts the results with the
right subset as the training data, and the left subset as
the test data.

6.2 Discussion

The results, which are stated in Tables 5, 7 and 8, as
well as results stemming from the same experimental
settings (training on the left subset and testing on the
right subset, and vice versa) specific to the pain inten-
sity classification task, lead to the following conclu-
sions.

Table 7: Accuracies in %. Training data: left subset. Test
data: right subset. The best performing channel is under-
lined. Chance level accuracy is at 2.5%. The horizontal line
separates physiological features from video-based features.
L: Number of decision trees in the random forest ensemble.

Channel L = 300 L = 500 L = 1000
EMG 9.96 10.55 9.79
ECG 15.66 15.15 16.43
RSP 7.83 8.51 8.26
EDA 5.53 7.40 6.21
LBP 97.19 96.94 97.36

Table 8: Accuracies in %. Training data: right subset. Test
data: left subset. The best performing channel is under-
lined. Chance level accuracy is at 2.5%. The horizontal line
separates physiological features from video-based features.
L: Number of decision trees in the random forest ensemble.

Channel L = 300 L = 500 L = 1000
EMG 10.18 11.45 11.03
ECG 14.84 15.44 15.18
RSP 7.29 8.91 8.40
EDA 5.60 5.60 6.02
LBP 99.07 99.24 99.15
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Pain Intensity Classification. In one of our pre-
vious works, we applied the sametransfer of the
SEDB subsets for the pain intensity classification task
(Thiam et al., 2019b), i.e. we used the left subset as
the training set and the right subset as the test set, and
vice versa. The results in the aforementioned study
show that there was no significant difference in per-
formance compared to the task, in which each of the
SEDB data subsets was analysed separately (Note that
we do not provide accuracy values here, because we
illustrated the results for the transfer task in our pre-
vious work solely as box plots).
Moreover, all afore-mentioned related works on the
SEDB show that the best signal for pain intensity
recognition is the EDA channel. On the other hand,
our study shows that EDA is the worst performing
physiological channel, worse than ECG, EMG and
RSP, for the person identification task. This is, most
likely due to the fact that, the participants were stim-
ulated with a heat thermode, which is of course an
expected cause for perspiration, leading to less reli-
able EDA data for the person identification task.

LBP Features based Person Identification.The
results, which are stated in Tables 7 and 8 show that
LBP-TOP features perform well in person identifica-
tion tasks based on video sequences. The accuracies
lie all above 96% in a setting with forty participants,
when applying random forests instead of one single
decision tree.

Biopotentials-based Person Identification.The
results, which are depicted in Tables 7 and 8 show that
the transfer for the person identification task based
on physiological channels is not straightforward. The
performance drops dramatically. The accuracy values
range approximately between two times chance level
(EDA) and six times chance level (ECG), reaching a
maximum of only 16.43% (see Table 7, right column).
What does that mean for physiological signals based
person identification (PSbPI): does it or does it not
work? If we had concluded this paper right after
Section 5, we would certainly say that it works well.
However, our results in the current section show that
one has to be careful when drawing conclusions. The
participants are well identified within one record-
ing session. However, when different recording ses-
sions are involved, the performance drops dramati-
cally. The performance is affected by the psychologi-
cal and physiological state of each participant during
the session.
Therefore, in the PSbPI task, one should record dif-
ferent sessions for each participant and evaluate the
sessions transfer performance to get a realistic gener-
alisation estimation. To design a strong classification
model, which is not overfitted to one single record-

ing session, one should train the classification model
on all available recording sessions. This is especially
important when one has to identify participants from
new (unseen) recording sessions.

7 CONCLUSION

The results of our work show that person identifica-
tion based on physiological signals, i.e. electrocar-
diogram (ECG), electrodermal activity (EDA), elec-
tromyogram (EMG) and respiration (RSP), can out-
perform person recognition based on audio and video
signals. This is especially the case when first, the data
is recorded within one session, and second, aweak
classification model is designed (we used one single
decision tree in that part of the experiments).
In addition, our findings show that including data
samples from different recordings constitutes a chal-
lenging task for physiological signals based person
identification. We considered the task, in which only
data specific to one of the recording sessions was
known and used, to train the classification model.
While the classification models performed well in
combination with the extracted video features, we
noted a dramatic drop in classification performance
for all physiological channels.
This is an interesting observation, which leads to the
main conclusion of this study. In order to build a re-
liable classification model, which is trained on physi-
ological signals for the person identification task, one
has to record different sessions for each participant.
In general, to be able to provide appropriate research
analyses of physiological signals, independently from
the classification task (pain level or emotion recogni-
tion, person identification, etc.), one should include
several recording sessions for each test subject. In
real-world applications, the designed model should be
trained on all available recording sessions, to learn as
much as possible of each participant’s variety of psy-
chological and physiological states.
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