
Privacy-preserving Surveillance Methods using Homomorphic
Encryption

William Bowditch, Will Abramson, William J. Buchanan, Nikolaos Pitropakis and Adam J. Hall
Blockpass ID Lab, Edinburgh Napier University, Edinburgh, U.K.

Keywords: Cryptography, SEAL, Machine Learning, Homomorphic Encryption, FV (Fan and Vercauteren).

Abstract: Data analysis and machine learning methods often involve the processing of cleartext data, and where this
could breach the rights to privacy. Increasingly, we must use encryption to protect all states of the data: in-
transit, at-rest, and in-memory. While tunnelling and symmetric key encryption are often used to protect data
in-transit and at-rest, our major challenge is to protect data within memory, while still retaining its value. Ho-
momorphic encryption, thus, could have a major role in protecting the rights to privacy, while providing ways
to learn from captured data. Our work presents a novel use case and evaluation of the usage of homomorphic
encryption and machine learning for privacy respecting state surveillance.

1 INTRODUCTION

User privacy has always been a second priority be-
hind revenue for technology companies, and for valid
reasons; the revenue of these tech giants relies on
selling behavioural futures predicted from analyzing
vast quantities of data (Zuboff, 2015). Companies
like Facebook and Google digest raw data that need
to be normalized, sorted, and trained on in order to
produce effective machine learning models. While
this data can be protected with SSL tunnels on tran-
sit, it must be decrypted and stored in plain-text on
corporate servers in order to provide any value. A
parallel exists in civilian privacy and national secu-
rity; government agencies like the NSA rely on Inter-
net surveillance programs that search plain-text data
in order to detect threats of national security. On the
surface, free internet services and effective terrorism
countermeasures seem like a reasonable trade in ex-
change for one’s personal data. However, as is often
the case in information security, humans are the weak-
est link in the chain.

Unfettered access to personal data has facilitated
cases where this access has been abused by both gov-
ernment agencies and industry (Selyukh, 2019)(Pym-
nts, 2019). With these examples the predicament is
clear; we wish to provide data for these models such
that they continue to subsidize free internet services
and protect homeland security, but we do not trust the
human users that inevitably gain access to this data.
Fortunately, the cryptographic community has been
working on a solution for forty years but it was not
until recently that implementations became practical.

Figure 1: Homomorphic Encryption.

Homomorphic encryption is a cryptographic
scheme that allows one to perform arbitrary functions
on a ciphertext without the need to decrypt the ci-
phertext in advance. Furthermore, the decrypted ci-
phertext is equivalent to the output of the same arbi-
trary functions performed on the plain-text. Figure
1 illustrates this relationship. For example, fully ho-
momorphic encryption would allow users to send en-
crypted data to government agencies and technology
companies such that models can train and act on this
data without knowing or needing to store the plain-
text itself. A cryptographic scheme is partially ho-
momorphic (PHE) if it allows unlimited operations to
be performed but with one particular function, while a
scheme is somewhat homomorphic if it allows limited
operations of any arbitrary function.

Up until now, homomorphic encryption research
has been mainly focused on the development of new
methods and performance analysis. In order for it to
be adopted into the mainstream, we need strong use
cases. This paper thus presents a novel use case of
homomorphic encryption that utilises machine learn-
ing and applied into surveillance. It uses (scikit-
learn) and Python implementations of Pailler and FV
schemes, in order to create a homomorphic machine

240
Bowditch, W., Abramson, W., Buchanan, W., Pitropakis, N. and Hall, A.
Privacy-preserving Surveillance Methods using Homomorphic Encryption.
DOI: 10.5220/0008864902400248
In Proceedings of the 6th International Conference on Information Systems Security and Privacy (ICISSP 2020), pages 240-248
ISBN: 978-989-758-399-5; ISSN: 2184-4356
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

learning classification technique that allows model
owners to classify data without jeopardizing user pri-
vacy. The paper aims to provide a review of mod-
ern HE schemes for non-cryptography specialists, and
gives simple examples of the usage of homomorphic
encryption. Code samples are used in order to illus-
trate the application of the methods, and support read-
ability.

While the state-of-the-art homomorphic methods
proposed today are impractical for computationally
complex tasks like machine learning without substan-
tial delay (Laine et al., 2018), the schemes reviewed
below are capable of handling machine learning eval-
uation. We construct a hypothetical scenario, solved
with homomorphic encryption, such that a govern-
ment agency wishes to use machine learning in or-
der to identify pro-ISIS messages without (a) collect-
ing the messages of citizens and (b) allowing users
to reverse engineer the model. Our implementation
differs from previous approaches (Trask, 2019) be-
cause it utilizes the machine learning library scikit-
learn (Pedregosa et al., 2011), the Github repository
python-paillier (python-paillier, 2012), and a Python
port (pySEAL, 2017) of Microsoft SEAL 2.3 (Laine,
2017) in order to benchmark and evaluate the pa-
rameters of the cryptosystems proposed by Paillier
(python-paillier, 2012) and Fan Vercauteren (Fan and
Vercauteren, 2012).

2 BACKGROUND AND RELATED
WORK

The literature review will investigate fully homomor-
phic encryption schemes, starting with Craig Gen-
try’s 2009 seminal paper, which was the first paper
to describe a credible fully homomorphic encryption
scheme (Gentry et al., 2009), followed by Brakerski
and Vaikuntanathan’s work (Brakerski and Vaikun-
tanathan, 2014) as well as Junfeng Fan and Frederik’s
Vercauteren’s (VF) suggestion (Fan and Vercauteren,
2012), both approaches that build off of Gentry’s
work and are implemented by Microsoft in the C++
library SEAL (Laine, 2017). Melchor (Melchor et al.,
2018) evaluated HElib, SEAL and FV-NFLlib, and
found that SEAL V2.3 performed best for multiplica-
tive homomorphic encryption.

2.1 Gentry

Craig Gentry broke new ground in the field of
homomorphic encryption with his seminar paper,
”Fully Homomorphic Encryption Using Ideal Lat-
tices” (Gentry et al., 2009). Gentry’s method re-

lies on a somewhat homomorphic lattice-based crypto
scheme; the scheme is limited in the number of oper-
ations that can be performed on a ciphertext before
noise, a by-product of the probabilistic nature of the
scheme, grows so large such that the plain-text map-
ping is inaccurate. The monumental insight gained
from Gentry’s work was the concept of bootstrapping,
a technique that refreshes the noise of a ciphertext by
decrypting the ciphertext with a new key without re-
vealing the plain-text. While strictly following Gen-
try’s algorithm was unrealistic due to Big-O complex-
ity, his method was the foundation for practical im-
plementations such as HELib and SEAL, the latter of
which is utilized in Section 3.

2.1.1 Lattice based Cryptography

In linear algebra, a basis of a vector space is a set of
n independent vectors such that any coordinate point
on said space is a linear combination of these basis
vectors. The lattice of a vector space is the set of ba-
sic linear combinations with integer coefficients; for
example, all (x,y) points where x,y ∈ Z on a Eu-
clidean vector space make up the lattice. Ideal lat-
tices are, ”lattices corresponding to ideals in rings of
the form Z[x]/(f) for some irreducible polynomial of
degree n” (Wikipedia contributors, 2004). Ideal lat-
tices are essential to the semantic security of Gentry’s
FHE method due to the intractable nature of the clos-
est vector problem - given a vector v outside of any
lattice points, which lattice point is closest to v? The
closest vector problem forces one to perform lattice
basis reduction in order to be solved, but at the cost of
exponential time.

When the vector without error is known by a party,
this closest vector problem allows this party to ”hide”
an encoded message m1 with an error if the message
space is (mod p) for some integer p, the cipher space
is (mod q) for some integer q >> p, and the error is
divisible by p, allowing simple future removal of the
error. Consequently, the error is calculated by ran-
domly generating e from a uniform distribution and
multiplying e by p, thus ensuring this divisibility and
clean error removal. Furthermore, it is essential that
the chosen p is much less than q since all operations
in the scheme are performed (mod q) (Raynal,).

Due to the algebraic properties of vector addition
and multiplication, it is possible to calculate the sum
and product of two cipher-texts with the respective
sum and products of the error. When the error is re-
moved after the operation F(c1,c2), via decryption,
the output is equivalent is F(m1,m2). However, this
growth in the error is why lattice-based cryptogra-
phy is somewhat homomorphic; if the error grows too
large then the closest lattice vector during decryption

Privacy-preserving Surveillance Methods using Homomorphic Encryption

241

is no longer accurate. For example, on a Euclidean
space if the correct lattice vector is (1,1) but the error
is x = .3 and y = 0.6, then the decryption will incor-
rectly decrypt to (1,2).

2.1.2 Bootstrapping

The solution Craig Gentry proposes to counter noise
growth in lattice-based cryptography is a ”bootstrap-
ping” technique, thus transforming the scheme from
partially homomorphic to full homomorphic cryptog-
raphy. The technique is based on the intuitive notion
that the only way to remove noise is to decrypt the
cipher-text; therefore if the decryption operations are
performed with the private key k1 encrypted with a
new private key k2 as well as the ciphertext c1 en-
crypted with the new key k2, then the error is reduced
to the noise added by the homomorphic decryption
operation. Due to the circuit complexity of the de-
cryption operation, Gentry invents a squashing tech-
nique to the decryption function that in a sense pro-
vides a ”hint” to the decryption process for the evalu-
ator, but relies on the intractability of the subset sum
problem; given a set of integers find a non empty sub-
set with a sum of 0 (Gentry et al., 2009). The ma-
jority of homomorphic research in the past decade
has been built upon Gentry’s proposal, mainly focus-
ing on (1) reducing the homomorphic operation cost
of decryption and (2) reducing the resources neces-
sary to encrypt an already encrypted cipher-text. The
bootstrapping method, though, has been criticised for
its requirement to refresh noisy ciphertexts. Ducas
et al (Ducas and Micciancio, 2015) present a new
method (FHEW) and which homomorphically com-
putes simple bit operations. This reduces the over-
head to around half a second and is based on the
worst-case hardness of lattice problems.

2.2 Brakerski and Vaikuntanathan

In 2011, Zvika Brakersi and Vinod Vaikuntanathan
published a fully homomorphic encryption scheme
that improved on Gentry’s scheme in both effi-
ciency and simplicity (Brakerski and Vaikuntanathan,
2014). This paper introduces two key concepts: a re-
linearization technique that removes the need for in-
tractability assumptions regarding ideal lattices, and a
dimension-modulus technique that removes the need
for squashing and the above mentioned intractability
assumption of the subset sum problem.

2.2.1 Re-linearization

Braverski and Vaikuntanathan migrated the assump-
tion from ideal lattice cryptography to general lattices

by utilizing learning with errors, which states that
given a basis, a linear combination of the basis vector
with small error, and a lattice point, finding the lat-
ter vector from the former is computationally difficult.
Since ideal lattices are a relatively new field of study
in the mathematics community as opposed to gen-
eral lattices, Brakersi and Vaikuntanathan claim that
the community has, ”a much better understanding of
the complexity of lattice problems (thanks to [LLL82,
Ajt98, Mic00] and many others), compared to the cor-
responding problems on ideal lattices”(Brakerski and
Vaikuntanathan, 2014), thus providing more confi-
dence to this scheme’s semantic security. By using
learning with errors, a homomorphic multiplication
optimization called re-linearization can be performed,
which utilizes a new key to decrease the degree of
cipher-text. This optimization prevents noise from
growing exponentially during multiplication, replac-
ing the growth factor with a constant dependent on
the initial security parameter λ.

2.2.2 Dimension-modulus Reduction

As mentioned above, Gentry’s 2009 paper utilizes a
”squashing” technique in order to ensure that homo-
morphic operations were possible on the decryption
circuits by relying on the hardness of the subset sum
problem. Braverski and Vaikuntanathan demonstrate
that a learning with error homomorphic scheme with
a dimension-modulus reduction only requires a rela-
tively small decryption, thus making any squashing
of the decryption circuit unnecessary. Dimension-
modulus reduction is the process of converting a ci-
phertext with dimension n and cipher modulo q and
mapping this ciphertext with new parameters of di-
mension k where k << n and modulo log(p) where
p is the plain-text modulus. The semantic security of
this dimension-modulus reduction relies on the hard-
ness of learning with errors for dimension k modulo
log(p). Consequently, this reduction allows Braverski
and Vaikuntanathan’s scheme to be boot-strappable,
thus fully homomorphic, without assumptions beyond
the intractability of the learning with errors problem.

2.3 Fan Vercauteren Scheme

Jufeng Fan and Frederik Vercauteren’s ”Somewhat
Practical Fully Homomorphic Encryption” directly
builds off of Braverski’s learning with errors homo-
morphic scheme by introducing a ring variant of the
learning with error problem (Fan and Vercauteren,
2012). The 2012 paper optimizes Braverski’s re-
linearization with the aid of smaller re-linearization
keys, as well as a modulus switching trick in order to
simplify bootstrapping.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

242

2.3.1 Ring Learning with Errors

In mathematics, a ring R is a set with two binary op-
erations that allows generalization from normal arith-
metic to other frames like polynomials and functions.
Thus, a polynomial ring can be R = Z/ f (x) where
f (x) ∈ Z[x] is a monic irreducible polynomial of de-
gree d. Fan and Vercauteren utilize polynomial rings
in creating the hardness of their scheme: Definition 1
(Decision-RLWE):

For security parameter λ, let f (x) be a cyclo-
tomic polynomial ωm(x) with deg(f) = σ(m)
depending on λ and set R = Z[x]/(f (x)). Let
q = q(λ) ≥ 2 be an integer. For a random el-
ement s ∈ Rq and a distribution χ = χ(λ) over
R, denote with A(a) the distribution obtained
by choosing a uniformly random element a←
χ and outputting (a, [a ·s+e]q). The Decision-
RLWE problem is to distinguish between the
distribution Aq

s,χ and the uniform distribution
U(R2

q. (Fan and Vercauteren, 2012)

3 TERRORIST SURVEILLANCE
USE CASE

As mentioned the Introduction, internet technology
companies and government agencies each have an im-
perative that require data analytics. However, the re-
quirement for data analytics does not imply a need
for data collection; these organizations do not rel-
ish data silo maintenance, data breach countermea-
sures, and the damage control against inevitable in-
ternal employee misuse. Homomorphic cryptography
can diminish these vulnerabilities by separating the
data evaluators from the data owners. For example,
imagine a government agency who wishes to detect
messages related to terrorist activity exchanged on a
public network; we will refer to this agency as Big
Brother. But unlike Orwell’s dystopic counterpart,
our Big Brother has regulations in place that prevent
the collection of plain-text messages. Our Big Brother
requires probable cause before being granted a war-
rant for a citizen’s data, thus ensuring the honest citi-
zen’s data privacy. Big Brother’s necessity for surveil-
lance can be met by using a homomorphic scheme
akin to a metal detector in an airport. Rather than
forcing a body search of every passenger, airport se-
curity use metal detectors to single out the potentially
dangerous passengers. Furthermore, since dangerous
passengers cannot experiment with an airport metal
detector from home, the ability to reverse engineer or
trick the airport detector is severely limited.

In our implementation of homomorphic cryptog-
raphy, our metal detector is a homomorphically en-
crypted logistic regression model trained to detect
pro-ISIS tweets. In our hypothetical scenario, Big
Brother trained his model using pro-ISIS messages
collected from previous investigations and synthetic
ISIS-related data; in reality, the pro-ISIS (pro isis =
1) and ISIS-related data (pro isis = 0) was collected
from a Kaggle dataset (Tribe, 2016). After train-
ing, Big Brother encrypts the weights and y-intercept
of his model using either the Paillier scheme or Fan
Vercauterene scheme, and sends the encrypted model
with any necessary evaluation parameters to the mes-
saging devices of his citizens. A generalisation of this
is defined in Figure 2.

When an arbitrary citizen, who we will refer to
as Winston Smith, sends a message from his device
to his friend Julia, the message is evaluated by the
encrypted model resulting in an encrypted prediction
that is sent to Big Brother. Winston can not discern
the result nor purpose of the encrypted prediction, and
it is not possible for Winston to disable this feature.
While it is feasible that Big Brother supplemented the
encrypted model with an encrypted identity function
in order to obtain the plain-text message, an assump-
tion of our use case is that Big Brother has no de-
sire to collect user data due to aforementioned reg-
ulations and a general lack of trust in his own em-
ployees. Upon receiving the encrypted prediction,
Big Brother decrypts the prediction m with his pri-
vate key and inputs this value into the logistic function
p = 1

1=e−m and ignores any probability p below an
arbitrary threshold γ. However, a probability greater
than γ is equivalent to a beep in airport security and
can be used as probable cause for a warrant in order
to lawfully obtain Winston’s plain-text messages (as
well as more ground truth to improve the accuracy of
Big Brother’s model). Consequently, two major goals
have been achieved: lawful citizens of the state are en-
sured data privacy, and the state can protect national
security without collecting personal data nor reveal-
ing the source code of their surveillance to potential
criminals.

4 Methods

4.1 Logistic Regression

Logistic regression is a statistical technique used to
estimate the parameters of a binary model, binary in
that there are two possible outputs for the dependent
variable discerned from independent variables. The
estimated parameters, or weights, along with the y-

Privacy-preserving Surveillance Methods using Homomorphic Encryption

243

Figure 2: Homomorphic Surveillance.

intercept and logistic function allow us to calculate
the probability for either one of the dependent target
variables. A logistic model is trained using a max-
imum likelihood estimate and labeled data, with the
goal being to find the model parameters that most
minimize the training error. Logistic regression is a
fundamental machine learning method, and as such
is implemented in the open-source Python machine
learning library scikit-learn (Pedregosa et al., 2011).
Before submitting text data for training in natural lan-
guage processing, one must decide how they wish to
quantify the representation of text. For the sake of
simplicity, we will use a bag-of-words approach that
tokenizes each message into a vector where each in-
dex represents a distinct word from the ”vocabulary”
of the training set. Since there are 44,000 unique
words in our 37,000 message dataset, the training ma-
trix has 44,000 columns and 37,000 rows. We can re-
duce this sparse column vector to any size we choose
for the sake of optimization at the cost of increasing
hash collisions and accuracy; the number of features
used in our implementation is benchmarked in Sec-
tion 5.

4.2 Python Paillier

The Paillier implementation used in this paper is from
a publicly available Github repository owned by N1
Analytics (python-paillier, 2012). The initialization
of the scheme is trivial; the API key-pair generation
function is given a requested key size in bits and re-
turns a randomly generated public and private key
pair. The precision argument is used during the en-
cryption process for rounding floating point integers,
as the Paillier scheme only works on integer values.
When Big Brother uses his public key to encrypt the

model parameters, an EncryptedNumber object is in-
stantiated containing the ciphertext along with Big
Brother’s public key; no further information needs to
be provided to Winston in order to evaluate the cipher-
text.

4.3 PySEAL

The PySEAL library is a Python port of the C++ li-
brary SEAL, developed by a homomorphic research
team at Microsoft (pySEAL, 2017) (Laine, 2017).
SEAL is an implementation of the Fan Vercauteren
homomorphic scheme, including further optimiza-
tions introduced by the 2016 paper ”A Full RNS Vari-
ant of FV like Somewhat Homomorphic Encryption
Schemes” (Bajard et al., 2016). Due to the fully ho-
momorphic nature of the Fan Vercauteren scheme, the
initialization parameters are more complex relative to
the Paillier scheme.

The polynomial modulus is parameter required to
be a power-of-two cyclotomic polynomial of the form
1xpower−o f−two +1. The size of the polynomial mod-
ulus is proportional to the security level of the ho-
momorphic scheme and inversely proportional to the
computation time because a larger polynomial modu-
lus increases the size of cipher-texts.

The second parameter chosen is the coefficient
modulus, which is directly proportional to the al-
lowance of noise accumulated on a ciphertext before
the plain-text message is unrecoverable. However,
increasing the coefficient modulus will also decrease
the security level of the scheme. The SEAL doc-
umentation advises the use of the helper function
illustrated on lines 11 to 16, where bit strength = n
denotes that it would take 2n operations to break
the cipher. Furthermore, the plain-text modulus

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

244

is configured in order to determine the size of the
plain-text data, and is inversely proportional to the
noise budget. The importance of these parameters
on the remaining noise budget and computation
time will be investigated in Section 5. Ultimately,
the noise budget of an encrypted ciphertext can be
estimated with:

noise budget ≈ log2(
coefficient modulus

plain modulus
) (1)

The fractional encoder allows the encoding of a
fixed-precision rational number into a plain-text
polynomial. Given a base b, the fractional encoder
maps a rational number to a polynomial where x = b,
and will limit the number of fractional and integral
coefficients by fractional coeff and fractional base,
respectively. The fractional encoder will also move
any fractional component x of the number to the
degree of the polynomial modulus minus the degree
of the fractional component multiplied by −1; 0.75
where b = 2 and the polynomial modulus degree is
12 would be encoded as −1x11 − 1x10. To further
illustrate this encoding method, a fraction encoded
with polynomial degree n = 2048, base b = 2,
fractional coeff = 1, and fractional base = 64 will be
encoded as:

24.2351 = 1x4 +1x3−1x−2047 (2)

4.4 Big Brother and Winston Smith

4.4.1 Big Brother

Our Big Brother is initialized with a classifier object,
a vectorizer object, a cryptographic scheme, a test set,
and a training set. The classifier is the machine learn-
ing model used for surveillance, while the vector-
izer is used to extract independent variables from raw
text. The cryptographic scheme is a ’Homomorphic-
Cryptography’ object with the decrypt and encrypt
implementations abstracted from Big Brother, allow-
ing simple substitution of any homomorphic crypto-
graphic method.

4.4.2 Winston Smith

Winston Smith is initialized with test data, a homo-
morphic evaluator, a vectorizer, and the encrypted
model. The test data is used to simulate original mes-
sages written by Winston Smith. The evaluator con-
tains any parameters necessary to evaluate his mes-
sages. The vectorizer is used to transform his raw
message to a token vector; while this reveals the num-
ber of features used in the encrypted model, it does

not reveal the importance or weight of any feature.
The encrypted model is supplied by Big Brother, and
is a tuple of the encrypted weights and encrypted y-
intercept.

5 EVALUATION

A truly practical homomorphic cryptographic scheme
needs to be able to calculate arbitrary calculations
without developers needing to fine tune their evalua-
tion code or wait substantial time for calculations that
are relatively fast on plain-text data. Fortunately, the
computational requirements for a logistic regression
prediction are small; multiplication against plain-text
data is not only possible in the Fan Vercauteren
and Paillier scheme, but also has no affect on the
noise budget of cipher-texts in the former. A logistic
regression prediction, where n represents the number
of features used in the model, xi represents the data
token at index i, wi represents the weight coefficent at
index i, and yo represents the intercept is calculated
as such:

Y = w0 · x0 +w1 · x1 + ...+wn−1 · xn−1 + y0 (3)
This formula illustrates that addition will be the pri-
mary culprit for any noise accumulated during Win-
ston’s evaluation. Furthermore, the expansion and ex-
ponentiation of the plain-text model to the ciphertext
model will be time intensive for both the Paillier and
FV scheme.

5.1 PySEAL Benchmark

The PySEAL benchmark was performed by timing
different components of our exchange while chang-
ing one exchanging parameter. The different com-
ponents are: the scheme initialization, the model en-
cryption, the homomorphic evaluation, and the pre-
diction decryption. The benchmark was performed
on the same message throughout the experiment, and
using a 2.2GHz, 6-core 8th-generation Intel Core i7
processor with 32GB RAM. Unless otherwise stated,
the default parameters for this experiment are defined
in Table 1.

Table 1: PySEAL Benchmark.

Parameter Default Value
nfeatures 1000
polymodulus 1024
plainmodulus 16
integralcoeffs 32
fractionalcoeffs 64

Privacy-preserving Surveillance Methods using Homomorphic Encryption

245

5.2 Polynomial Modulus

For the FV scheme of PySEAL, the importance of the
polynomial modulus degree on the computation time
and remaining noise budget of the final ciphertext
E(Y) was evaluated for 2n where 10 ≤ n ≤ 14. The
polynomial modulus increases the size of the cipher-
text dramatically; although not recorded precisely in
this paper, the benchmark scripts memory usage grew
linearly with the modulus degree such that a degree
of 210 required 400MB of RAM while a degree of 214

required 20G of RAM. It can be seen from the below
table how the degree of the polynomial modulus has
a positive relationship with the available noise bud-
get; this increased noise budget allows us to evaluate
the ciphertext further without needing to re-linearize
or otherwise refresh the noise, an expensive operation
(Table 2).

Table 2: Polynomial Modulus.

Polynomial Modulus Noise Budget
1024 10
2048 36
4096 90
8192 198

Figure 3 demonstrates the cost that increasing the
polynomial modulus and thus the ciphertext size has
on the computation time.

5.3 Bit Strength

As mentioned in Section 3, the bit strength denotes
the level of security for our scheme. While Figure 4
illustrates that while increasing the bit strength from
128 to 192 has little effect on the computation time
for our model with 1000 features, the bit strength ta-
ble demonstrates that it does have a negative effect on
the remaining noise budget of the evaluated cipher-
text (128-bit strength gives a noise budget of 10, and
192-bit strength gives a noise budget of 1).

Table 3: Bit Strength.

Bit Strength Noise Budget
128 10
192 1

5.4 Plain Modulus

The effect of the plain modulus degree on the noise
budget is evident by the negative relationship demon-
strated in Table 4. Furthermore, Figure 5 illustrates
that the plain modulus is uncorrelated with the time
complexity of the FV cryptographic scheme.

Figure 3: Polynomial Modulus.

Figure 4: Bit Strength.

Figure 5: Plain Modulus.

5.5 Number of Features

The number of features used by the logistic regression
model has a direct correlation with the accuracy of the
model. Figure 6 shows that the number of features is
also correlated with the model encryption and evalua-
tion time because more weights need to be encrypted
and evaluated (Table 5).

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

246

Table 4: Plain Modulus.

Plain Modulus Noise Budget Plain Modulus Noise Budget
64 8 128 7
256 6 512 5
1024 4 2048 3
4096 2 8192 1
16384 0

Table 5: Number of Features.

Features Accuracy Features Accuracy
1000 0.9304 2000 0.9396
3000 0.9445 4000 0.9459
5000 0.9502 6000 0.9534
7000 0.9548 8000 0.9517
9000 0.9548 10000 0.9545

Figure 6: Features.

Figure 7: Features.

Due to the partially homomorphic nature of the Pail-
lier cryptosystem, there is no noise budget to man-
age as such there does not exist a noticeable dif-
ference in time required to perform logistic regres-
sion evaluation. Figure 7 demonstrates the private
key lengths lack of correlation with the encryption

and evaluation time of Paillier cryptography. The
benchmark of Paillier was performed using a count
vectorizer with 44,000 features, as opposed to 1000
features for SEAL; this difference demonstrates the
light-weight efficiency of the Paillier cryptosystem
for this addition-intensive specific evaluation.

6 CONCLUSIONS

This paper has outlined and evaluated a method which
preserves privacy within a surveillance infrastructure.
We increasingly live in a world where the rights of
citizens to privacy are core to fundamental rights. Ho-
momorphic encryption can thus provide a foundation
element in building surveillance systems that respect
these rights.

REFERENCES

Bajard, J.-C., Eynard, J., Hasan, M. A., and Zucca, V.
(2016). A full rns variant of fv like somewhat homo-
morphic encryption schemes. In International Confer-
ence on Selected Areas in Cryptography, pages 423–
442. Springer.

Brakerski, Z. and Vaikuntanathan, V. (2014). Efficient fully
homomorphic encryption from (standard) lwe. SIAM
Journal on Computing, 43(2):831–871.

Ducas, L. and Micciancio, D. (2015). Fhew: bootstrapping
homomorphic encryption in less than a second. In An-
nual International Conference on the Theory and Ap-
plications of Cryptographic Techniques, pages 617–
640. Springer.

Fan, J. and Vercauteren, F. (2012). Somewhat practical fully
homomorphic encryption. IACR Cryptology ePrint
Archive, 2012:144.

Gentry, C. et al. (2009). Fully homomorphic encryption
using ideal lattices. In Stoc, volume 9, pages 169–178.

Laine, K. (2017). Simple encrypted arithmetic library 2.3.
1. Microsoft Research https://www. microsoft. com/en-
us/research/uploads/prod/2017/11/sealmanual-2-3-1.
pdf.

Laine, K., Gilad-Bachrach, R., Chen, H., Lauter, K., Han,
K., Huang, Z., and Jalali, A. (2018). Logistic regres-
sion over encrypted data from fully homomorphic en-
cryption.

Privacy-preserving Surveillance Methods using Homomorphic Encryption

247

Melchor, C. A., Kilijian, M.-O., Lefebvre, C., and Ricosset,
T. (2018). A comparison of the homomorphic encryp-
tion libraries helib, seal and fv-nfllib. In International
Conference on Security for Information Technology
and Communications, pages 425–442. Springer.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer,
P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and
Duchesnay, E. (2011). Scikit-learn: Machine learning
in Python. Journal of Machine Learning Research,
12:2825–2830.

Pymnts (2018 (accessed April 20, 2019)). Lyft accused
of giving access to rider data, including zuck’s phone
number.

pySEAL (2017). Pyseal. Lab41.
python-paillier (2012). python-paillier. n1analytics.
Raynal, F. A brief survey of fully homomorphic encryption,

computing on encrypted data.
Selyukh, A. (2013 (accessed April 20, 2019)). Nsa staff

used spy tools on spouses, ex-lovers: Watchdog.
Trask, A. (2017 (accessed April 20, 2019)). Safe crime de-

tection.
Tribe, F. (2016). How isis uses twitter. We scraped over

17,000 tweets from 100+ pro-ISIS fanboys from all
over the world since the November 2015 Paris At-
tacks.

Wikipedia contributors (2004). Ideal lattice cryptography
— Wikipedia, the free encyclopedia.

Zuboff, S. (2015). Big other: surveillance capitalism and
the prospects of an information civilization. Journal
of Information Technology, 30(1):75–89.

ICISSP 2020 - 6th International Conference on Information Systems Security and Privacy

248

