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Abstract: The paper describes a family of remarkable curves (integer and half-integer hypocycloids and rational perfect
hypocycloids) given in an inverse-natural form using a simple trigonometric relation s = s(χ), where s is the
arc coordinate and χ is the angle defining the direction of the tangent. In the paper we presented all perfect
hypocycloids with the number of cusps ν≤ 10. From designing the hypocycloid using inverse natural setting
easy to determine the number of cusps and find the values of the λm parameter, corresponding to perfect
hypocycloids.

1 INTRODUCTION

Many remarkable curves have emerged in mathemat-
ics over the past centuries. The study of these curves
is a very effective tool in the teaching of calculus, dif-
ferential geometry and computer science. Many great
curves are described in the classical book “A Catalog
of Special Plane Curves” (Lawrence, 2014) that fea-
tured more than 60 special curves. The other work on
plane curves is “A handbook on curves and their prop-
erties” (Yates, 2012). This handbook contains curves
constructions, equations, physical and mathematical
properties, and connections to each other.

Wang et al. (Wang et al., 2019) explored hypocy-
cloid’s parametric equation and discussed the appli-
cation of the astroid on the bus door for saving space.
For simulating its dynamic opening process, they used
MATLAB. There are a lot of examples of the using
curves and surfaces innovation in the architectural de-
signs of modern buildings (Biran, 2018).

Almost all curves can be represented mathemati-
cally and on a computer. The mathematical study of
curves and surfaces in space is called “differential ge-
ometry”. There are a lot of mathematical tools avail-
able to the computer scientist. The combination of
these tools depends on what and how curves need to
be represented.

There are different types of curves using in the
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design of geometric data structures. For example,
Space-Filling Curves described in the papers (Asano
et al., 1997; Rad and Karimipour, 2019).

There are a lot of ways to define curves. One of
the most convenient ways to describe a plane curve is
the “Euler” or “natural” way of locally defining the
curve. In this method, the angle of inclination of the
tangent is set as a function of the length of the arc
along the curve.

In some situations, the “reverse” method of “nat-
ural” curve definition is convenient, in which the arc
length is set as a function of the angle of inclination of
the tangent. We will demonstrate in this article how
convenient this “reverse” method is when describing
some types of hypocycloids.

2 AN INVERSE METHOD OF THE
NATURAL SETTING FOR
PLANAR CURVES

One well known way to define flat curves is to de-
scribe them in the so-called natural form (or, another
name is “Euler’s form”):

χ = χ(s), (1)

where χ is an angle between some fixed direction – for
example, the x-axis – and the direction of the tangent
to the curve; s is the arc coordinate along the curve.
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If the natural equation of the curve (1) is known,
then the equations of the corresponding curve in para-
metric form x = x(s), y = y(s) can be written in the
following form:

x =
s∫

0

cosχ(s)ds+ x0,

y =
s∫

0

sinχ(s)ds+ y0,

(2)

where (x0,y0) is an arbitrarily chosen point (x,y) in
the plane, corresponding on the curve to the origin of
the arc coordinate s = 0.

Leonhard Euler studied a family of curves of the
form (1) with a power-law dependence of χ on s
(χ = λsp, λ = const, p = const) (MacTutor History
of Mathematics, 2020). Euler called these curves as
“clothoids”. The most famous of these curves for p=2
is called the “Euler spiral” or “Cornu spiral”. Euler in-
vestigated this curve a century earlier than did Marie
Alfred Cornu.

Instead of the equation (1), we can consider the
inverse method of natural setting for the curve:

s = s(χ). (3)

This method is convenient if the function inverse
to (3) is multivalued or does not have an explicit ana-
lytic expression.

Equations (2) with this method for specifying the
curve (3) become:

x(χ) =

χ∫
0

cosχ · ds
dχ

dχ+ x0,

y(χ) =

χ∫
0

sinχ · ds
dχ

dχ+ y0.

(4)

Equations (4) define a parametric description of
the curve. In this specification parameter χ has clear
geometric meaning: it is the angle between the axis x
and the direction tangent to the curve.

3 INTEGER HYPOCYCLOIDS

We consider in this note a one-parameter family of
curves of the form (3):

s =
n2−1

n2 · sin(nχ), (5)

in which n ≥ 2 is an integer parameter. Let’s call the
equation (5) the “trigonometric Euler relation”. This

relation in local variables (s,λ) describes the classic
family of curves: integer hypocycloids.

For an even value of n, the range of the function
(5) is 0 ≤ χ ≤ 2π. For an odd value of n, the range
of the function (5) is 0 ≤ χ ≤ π. On this interval
the trigonometric Euler’s relation (5) defines a closed
curve.

Assuming that x0 = 0, y0 = 1/n, and performing
the integration in (4), we obtain the equations of the
integer hypocycloids in parametric form:

x =
1

2n

(
(n+1)sin

(
(n−1)χ

)
+

(n−1)sin
(
(n+1)χ

))
,

y =
1

2n

(
(n+1)cos

(
(n−1)χ

)
−

(n−1)cos
(
(n+1)χ

))
.

(6)

4 CUSPS OF THE INTEGER
HYPOCYCLOIDS

The curves (6) are smooth everywhere except the
points χn,k, in which the cusps of the curve (6) are
located. The positions of the cusps’ vertices are de-
termined by the points of a curvature singularity of
the curve (6):

χ
′
s =

1
s′χ

=
n

(n2−1)cos(nχ)
. (7)

Respectively, the cusp-points are zeros of cos(nχ):

χn,k =
π

2n
(2k+1). (8)

Let ν denote a number of cusps for the integer
hypocycloids (6). In equation (8) k can take 2n val-
ues for even n (0 ≤ k ≤ 2n−1) and n values for odd
(0 ≤ k ≤ n− 1). Accordingly, the integer hypocy-
cloids can have an odd number of ν cusps at n =
2m+1 or the it can have ν as a multiple of 4 (ν = 4m
at n = 2m). There is no integer hypocycloids with
ν = 4m + 2 cusps – for example, there is no six-
pointed “Euler star”, but there is a five-pointed Euler
star, eight-pointed and twelve-pointed Euler stars.

Substituting (8) into (6), we define the positions
of the cusps’ vertices on the plane (x,y):

xn,k = (−1)k cos
(

π

2n
(2k+1)

)
,

yn,k = (−1)k sin
(

π

2n
(2k+1)

)
.

(9)

All the cusps’ vertices (9) lie on a circle of unit
radius with the center at the origin.
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5 APPEARANCE OF THE
INTEGER HYPOCYCLOIDS

Figures 1-5 show an appearance of the integer
hypocycloids with the number of rays ν, equal to 3,
4, 5, 8 and 12.
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Figure 1: The tricuspidate hypocycloid (deltoid) (n = 3,
ν = 3).
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Figure 2: The tetracuspidate hypocycloid (astroid) (n = 2,
ν = 4).

6 HALF-INTEGER
HYPOCYCLOIDS

Consider the half-integer hypocycloid, assuming that
in equations (5) and (6) the integer parameter n is re-

placed by a half-integer n→ n+
1
2

(n≥ 1).
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Figure 3: The pentacuspidate hypocycloid (the integer
hypocycloid with n = 5, ν = 5).
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Figure 4: The octacuspidate hypocycloid (the integer
hypocycloid with n = 4, ν = 8).

With half-integer parameter, the hypocycloid
equations (5) and (6) take the following form:

s =
(2n−1)(2n+3)

(2n+1)2 sin
(
(2n+1)

χ

2

)
, (10)

x =
1

2(2n+1)

(
(2n+3)sin

(
(2n−1)

χ

2

)
+

+(2n−1)sin
(
(2n+3)

χ

2

))
,

y =
1

2(2n+1)

(
(2n+3)cos

(
(2n−1)

χ

2

)
−

−(2n−1)cos
(
(2n+3)

χ

2

))
.

(11)

The functions x(χ) and y(χ) (11) are periodic in
the argument χ with a period P = 4π.
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Figure 5: The dodecacuspidate hypocycloid (the integer
hypocycloid with n = 6, ν = 12).

The positions of the cusps of the half-integer
hypocycloid (11) are determined by the condition:

ds
dχ

= 0, (12)

or

χk = π
2k+1
2n+1

; 0≤ k ≤ kmax = 4n+1. (13)

The number of cusps ν is determined by the con-
dition

ν = 1+ kmax = 4n+2. (14)

In accordance with (14), half-integer hypocy-
cloids together with integer hypocycloids make it pos-
sible to obtain an hypocycloid with any number of
rays. In particular, for n = 1, equation (1) describes a
six-beam astroid.

Figure 6 and figure 7 show half-integer hypocy-
cloids at n = 1 (figure 6) and n = 2 (figure 7).

A half-integer hypocycloid with n = 1 has no self-
intersection points (like two integer hypocycloids of
the lowest index 1, even and odd). The remain-
ing half-integer hypocycloids with n≥ 2 (and integer
hypocycloids with index n≥ 2) have self-intersection
points. The half-integer hypocycloids are located in

the ring between Rmin =
2

2n+1
and Rmax = 1. It is

easy to show that these curves touch a circle of radius
Rmin in ν = 4n+2 points for χt,k:

χt,k =
2πk

2n+1
; 0≤ k ≤ kmax = 4n+1. (15)

The totality of integer and half-integer hypocy-
cloids forms the set of figures, called in (Seidametova
and Temnenko, 2019) “The Euler Insignia”.
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Figure 6: The half-integer hypocycloid at n = 1(the six-
pointed star).
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Figure 7: The half-integer hypocycloid at n = 2 (the ten-
pointed star).

7 THE PERFECT
HYPOCYCLOIDS

Let’s call a hypocycloid “perfect” if it has no self-
intersection points. An example of a perfect hypocy-
cloid is the deltoid (an odd integer hypocycloid with
n = 3 and ν = 3, figure 1), the astroid (an even inte-
ger hypocycloid, n = 2, ν = 4, figure 2) and the six-
point star (the half-integer hypocycloid, n = 1, ν = 6,
figure 6). All other integer and half-integer hypocy-
cloids, in particular, shown in figures 3, 4, 5, 7, are
not perfect.

Perfect hypocycloids are described by the trigono-
metric Euler relation (5), in which an integer n is re-
placed by some rational number λm of a certain type.
The parameter λm is an irreducible fraction of one of
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three possible types:

λm =
2m+1
2m−1

; m≥ 1. (16)

λm =
2m

2m−1
; m≥ 1. (17)

λm =
2m+1

2m
; m≥ 1. (18)

Let call perfect hypocycloids of the type (16)
the Odd-Odd perfect hypocycloids. Let call perfect
hypocycloids of the type (17) the Even-Odd perfect
hypocycloids. Let call perfect hypocycloids of the
type (18) the Odd- Even perfect hypocycloids. For
m = 1 a perfect hypocycloid of the type (16) is an
integer hypocycloid with three cusps (the deltoid, fig-
ure 1), a perfect hypocycloid of the type (17) is an
integer hypocycloid with four cusps (the astroid, fig-
ure 2), a perfect hypocycloid of the type (18) is a half-
integral six-pointed star (figure 6).

Figure 8 shows the Odd-Odd perfect hypocycloid
with m = 2 (the “five-pointed star of Euler”). In
accordance with relations (5) and (6) and the value
λm = 5/3, the equations of this perfect hypocycloid
have the form:

s =
(4

5

)2
sin

(5χ

3

)
, (19)

x =
1
5

(
4sin

(2χ

3

)
+ sin

(8χ

3

))
,

y =
1
5

(
4cos

(2χ

3

)
− cos

(8χ

3

))
.

(20)
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Figure 8: The Odd-Odd perfect hypocycloid with m = 2
(λm = 5/3, the five-pointed star of Euler).
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Figure 9: The Odd-Odd perfect hypocycloid with m = 3
(λm = 7/5, the seven-pointed star of Euler).

Figure 9 shows the Odd-Odd perfect hypocycloid
with m = 3 (λm = 7/5, the “seven-pointed star of Eu-
ler”). The equations of this hypocycloid are follow-
ing:

s =
24
49

sin
(7χ

5

)
, (21)

x =
1
7

(
6sin

(2χ

5

)
+ sin

(12χ

5

))
,

y =
1
7

(
6cos

(2χ

5

)
− cos

(12χ

5

))
.

(22)

Figure 10 shows the Odd-Odd perfect hypocy-
cloid with m = 4 (λm = 9/7). This is the “nine-
pointed Euler star”). The equations of this curve are
following:

s =
32
81

sin
(9χ

7

)
, (23)

x =
1
9

(
8sin

(2χ

7

)
+ sin

(16χ

7

))
,

y =
1
9

(
8cos

(2χ

7

)
− cos

(16χ

7

))
.

(24)

Figure 11 shows the Even-Odd perfect hypocy-
cloid with m = 2 (λm = 4/3). This is the “eight-
pointed Euler star”). The equations of this curve are
following:

s =
7

16
sin

(4χ

3

)
, (25)

x =
1
8

(
7sin

(
χ

3

)
+ sin

(7χ

3

))
,

y =
1
8

(
7cos

(
χ

3

)
− cos

(7χ

3

))
.

(26)
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Figure 10: The Odd-Odd perfect hypocycloid with m = 4
(λm = 9/7, the nine-pointed Euler star).
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Figure 11: The Even-Odd perfect hypocycloid with m = 2
(λm = 4/3, the eight-pointed Euler star).

Figure 12 shows the Odd-Even perfect hypocy-
cloid with m = 2 (λm = 5/4). This is the “ten-pointed
Euler star”). The equations of this curve are follow-
ing:

s =
(3

5

)2
sin

(5χ

4

)
, (27)

x =
1

10

(
9sin

(
χ

4

)
+ sin

(9χ

4

))
,

y =
1
10

(
9cos

(
χ

4

)
− cos

(9χ

4

))
.

(28)
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Figure 12: The Odd-Even perfect hypocycloid with m = 2
(λm = 5/4, the ten-pointed Euler star).

8 CONCLUSIONS

Figures 1, 2, 6, 8, 9, 10, 11, 12 presented in the paper
demonstrate all perfect hypocycloids with the number
of cusps ν≤ 10.

Designing the hypocycloid by inverse natural set-
ting makes it easy to determine the number of cusps
and find the values of the λm parameter ((16), (17) and
(18)), corresponding to perfect hypocycloids.
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