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Abstract: This study presents size and shape parameters relevant to volcanic scoria powder characterization. Particle 
size distribution was compared using two different techniques, including laser diffraction and automated static 
image analysis, and their respective results were discussed. Specific information on particle shape has been 
obtained using image analysis by 2-D images. The image analysis was used to identify key controls on particle 
morphology, six shape parameters: elongation, circularity, solidity, roughness, bluntness and luminance have 
effectively accounted for the morphological variance of powder particles. The effect of the number of particles 
of testing samples on these variables obtained through the image analysis was investigated. To develop 
analytical models, Multiple linear regressions analysis was applied using the dataset. The dataset comprised 
size and shape information’s about 24,268 particles from black natural powder, 32,302 particles from dark 
red natural powder, 22,562 particles from red natural powder and 25,041 particles from yellow natural powder. 
The analysis allowed us to identify the explanatory variables and develop eight mathematical models and 
three of these models are intended to prediction with very good significance. The correlation coefficients and 
analysis of variance test results obtained evidence the adequacy level of models. Thus, it is possible to estimate 
each dependent response parameter through the proposed models. 

1 INTRODUCTION 

In the past few years, several studies have been 
published that focused on the characterization of 
maximum packing of supplementary cementitious 
materials (SCMs) in cement-based systems. The 
related works generally classified the factors that 
affect the matrix compactness into four groups: 
particle morphology, particle packing, interparticle 
spacing and matrix rheology (Felekoglu. 2009;  
Arvaniti et al, 2015a; Bouyahyaoui et al, 2018). 
Particle size and particle shape are closely related to 
the reactivity of SCMs. Industrial by-products, their 
partial replacement of cement in concrete mixes 
represents a substantial offset by the consequent 
environmental impact. The size and shape 
characterization of irregular particles is a key issue in 
many fields of science (Bagheri et al, 2015) and 
engineering (food, pharmaceutics, minerals, biology, 
astronomy, …), which is often associated with large 

uncertainties (Felekoglu. 2009; Bouyahyaoui et al, 
2018; Bagheri et al, 2015; Liu et al, 2015; Dioguardi 
et al, 2018). The main characteristics of powders are 
the particle size (granulometry) and particle shape 
(morphology). Technological properties of powders 
depend on their granulometry and particle 
morphology (Pavlović et al, 2010).  

To date, only a few studies have been published 
on particle size and particle shape parameters of 
mineral powders using as SCMs (Felekoglu. 2009; 
Bouyahyaoui et al, 2018; Bagheri et al, 2015 ; 
Hackley et al, 2004 ; Michel and Courard, 2014 ; 
Klemm and Wiggins, 2017). Technological 
properties of mineral powders (bulk density, 
flowability, surface area, etc.), as well as the potential 
areas of SCMs, depend on these characteristics (Mikli 
et al, 2001). It also has been known that powders may 
improve the particle packing density of cementitious 
system, and superplasticizers help to obtain the 
desired rheological properties by increasing the 



workability without causing segregation in fresh state 
(Bouglada et al, 2019) and improve the mechanical 
properties and durability by reducing the 
water/cement ratio. Some of these powder materials 
are either industrial by-products or unprocessed 
materials. They provide environmental relief because 
industrial by-products are being recycled and 
hazardous emissions released into the atmosphere due 
to cement production are reduced, raw materials are 
preserved and energy is saved (Felekoglu. 2009). 
Besides, inert and semi-inert powders such as 
grounded volcanic scoria can be alternatively 
employed for high-performance mortar and concrete 
mixture designs (Juimo et al, 2017). More recent 
works have addressed the effects of volcanic scoria 
powder addition on rheological properties of cement 
paste (Bouglada et al, 2019; Tchamdjou et al, 2017a; 
Tchamdjou et al, 2017b).  

Powders are problematic materials in the 
application of particle size analysis (Felekoglu. 
2009). In general, sizing techniques work best over a 
limited size range. The optimum range of particle size 
analysis varies according to many factors, including 
detector sensitivity and the assumptions associated 
with the underlying principle of measurement 
(Felekoglu. 2009; Arvaniti et al, 2015b).  

Most commercial methods are designed 
specifically for a range of particle size, and work best 
with homogeneous spheres. The degree to which 
irregularity affects the results vary with the technique 
employed, and is not well understood or exactly 
accounted for in many methods (Felekoglu. 2009; 
Bagheri et al, 2015 ; Orhan et al, 2004; Ferraris et al, 
2002).  

The morphology of raw powder includes its 
particle size distribution (PSD), specific surface area 
( 𝑆ௌ஻  or 𝑆ௌ௅ ) and particle shape. The PSD can be 
determined by sieves analysis, laser diffraction (LD) 
and image analysis (IA). The industrial method to 
determine 𝑆ௌ஻  is Blaine Air Permeability test 
(Arvaniti et al, 2015a; Niesel. 1973). The evaluation 
of particle shape needs complex techniques such as 
the LD and the IA (Bagheri et al, 2015; Arvaniti et al, 
2015b). Individual particle features should be 
captured by IA to derive the shape descriptors 
(Bouyahyaoui et al, 2018; Abazarpoor et al, 2017; Ilic 
et al, 2015). 

In this study, the particle shape and surface 
morphology of volcanic scoria powders (ground at 
different grades) data were analyzed.  

2 EXPERIMENTAL DATA 

2.1 Powders Samples 

Four volcanic scoria groups according to the color of 
scoria have been collected. The collected sample was 
firstly sieved using the 5 mm stainless steel sieve of 
20 cm diameter to separate large volcanic scoria (5–
100 mm in order) to fine volcanic scoria (≤5 mm). 
The volcanic scoria sample was performed on the 
material dried in an open air environment during 24 h 
and in the oven at 105 °C during 24 h for the removal 
of moisture in the rocks (Juimo et al, 2016). 

The mill process was performed for 20 minutes. 
Milling sample has been introduced at the same 
weight for each production. The rotation speed of the 
mill was about 70 rpm (Bouyahyaoui et al, 2018). 
Each powder obtained has been described by a two-
component code designation: the letter reflecting 
powder color as black (B), dark-red (DR), red (R) and 
yellow (Y) followed by the ‘np’ reflecting natural 
powder or natural pozzolan (Juimo et al, 2017). 

2.2 Measurement Methods 

2.2.1 Gas Pycnometer and Blaine Air 
Permeability (Blaine Fineness, BF) 

In this work, the density of powders was performed 
on a Gas Pycnometer. This method measures the 
density by determining the volume of inert gas that 
can be introduced into a sample chamber of a defined 
size which contains a known mass of powder. 
Automatic Gas Pycnometer has long been identified 
as the instrument of choice to accurately measure the 
true density of solid materials by employing 
Archimedes’ principle of fluid displacement, and 
Boyle’s Law of gas expansion (Niesel. 1973; EN 196-
6, 2010). Helium inert gas, rather than a liquid, is used 
since it will penetrate even the finest pores and 
eliminate the influence of surface chemistry. This 
ensures quick results of the highest accuracy.  

The fineness of the grinding was being 
determined according to the Blaine technique and is 
indicated as the specific surface (Blaine fineness 
value). The Blaine Air Permeability apparatus serves 
exclusively for the determination of the specific 
surface area (𝑆ௌ஻) of powders. The Blaine Fineness 
(BF) value is not a measure of granulometric 
distribution (Means PSD).  

 
 
 



2.2.2 Laser Diffraction (LD) 

The granulometry of powders was determined by 
many methods (sieve analysis, LD, IA, etc.), but the 
question is how adequately they describe the powder 
granulometry (Mikli et al, 2001). Mikli et al. (Mikli 
et al, 2001) reported that the evaluation of the fine 
powder granulometry (with particle size less than 50 
μm) is more difficult and the results of the sieve 
analysis do not describe adequately the powder 
granulometry. For this reason, the first method used 
here to describe powder granulometry is LD. LD 
which is based on a complex theory of interaction 
between monochromatic light and individual 
particles. This involves the detection of the angular 
distribution of light scattered by a set of 
monodispersed spherical particles to provide a 
‘sphere’-equivalent size diameter distribution using a 
reverse optical scattering-based model calculation 
(Michel and Courard, 2014).  

In LD, the angular distribution of light is 
measured after passing through an optically dilute 
dispersion of suspended particles. The LD system 
determines the PSD based on a volumetric basis. 
Different optical models are commonly used to build 
the PSD weighted by apparent volume (volume of an 
equivalent sphere of diameter D), such as Mie theory-
based and Fraunhofer models (Michel and Courard, 
2014; Varga et al, 2018).  

2.2.3 Image Analysis (IA) 

IA has made a decisive breakthrough in the recent 
years to become a reference technique in the field of 
combined size and shape analysis of particles 
(Arvaniti et al, 2015b; Gregoire et al, 2007). The IA 
is a method for the measurement of particle size and 
shape distributions. For the measurement of particle 
size and morphometric characterization, an Occhio 
500 Nano image analyzer has been used. The 
morphology of a powder particle is characterized by 
shape description (elongation, circularity, solidity, 
roughness, bluntness (with the calypter), luminance) 
or quasi-quantitatively, for example, by means of 
geometrical shape parameters. 

The IA is based on the measurement of each 
particle; the accuracy of a size and shape distribution 
has to be formulated in number of particles (𝑁௉) and 
not in terms of sample weight or duration of the 
analysis. The adequate particle number is linked to 
the shape of the distribution curve and its extension 
or range (Gregoire et al, 2007). Volcanic scoria 
powders tested by the IA had respectively: 24,268 
particles for Bnp, 32,302 particles for DRnp, 22,562 
particles for Rnp and 25,041 particles for Ynp. 

3 DATA ANALYSIS METHODS 

Data sets obtained by experimental analysis were 
studied using SPSS software to understand the 
influence and the correlation of different considerable 
parameters (factors). The analysis of the individual 
influence of a given factor in the description of a 
complex phenomenon, such as the max distance 
(𝑋஽ெ) or geodesic length (𝑋௅ீ) of the powder particle 
can lead to erroneous conclusions; for example a 
given factor could seem extremely relevant when it is 
not. Slinker and Glantz (Slinker and Glantz, 2008) 
and Neves et al. (Neves et al, 2018) reported that, a 
given variable may appear unrelated to the dependent 
variable when analyzed alone, but may have a strong 
influence when considered simultaneously with other 
predictors. To model and identify the main factors 
that influence the other size parameter descriptors in 
particle max distance and geodesic length, a multiple 
linear regression (MLR) analysis is used, which 
makes if possible examine the simultaneous effects of 
multiple of independent predictor variables (IPVs) in 
the variability of the dependent or explained variable 
(Neves et al, 2018).  

Table 1: Definitions of response variables and IPVs in the 
systems. 

Variable/Definition 

𝑌 or 
𝑌௜ 

Max Distance (𝑋஽ெ), Geodesic length (𝑋௅ீ), 
Powdering ratio index by Blaine (𝑃𝑟ௌ஻ ൌ
𝑁௉ ሺ𝑆ௌ஻ ൈ 𝐷ௌሻ⁄ ) or Powdering ratio index by 
LD (𝑃𝑟ௌ௅ ൌ 𝑁௉ ሺ𝑆ௌ௅ ൈ 𝐷ௌሻ⁄ ). 

Var. Definition Variable Definition 

𝑥ଵ 
Inner Diameter 
(𝑋஽ூ)

𝑦ଵ Elongation (𝐸௟) 

𝑥ଶ 
Area Diameter 
(𝑋஽஺)

𝑦ଶ Circularity (𝐶௖) 

𝑥ଷ Width (𝑊௕) 𝑦ଷ Solidity (𝑆ௗ) 

𝑥ସ Length (𝐿௕) 𝑦ସ Roughness (𝑅௚) 

𝑥ହ 
Max Distance 
(𝑋஽ெ)

𝑦ହ 
Luminance 
(𝐿௠) 

𝑥଺ 
Geodesic length 
(𝑋௅ீ)

𝑦଺ Bluntness (𝐵௧) 

 
This study also aimed to evaluate the potential 

relationship between dependent variables (i.e., 𝑋஽ெ ; 
𝑋௅ீ  ; 𝑃𝑟ௌ஻  or 𝑃𝑟ௌ௅ ) and input variables (i.e., 𝑋஽ூ ; 
𝑋஽஺; 𝑊௕ ; 𝐿௕ ; 𝑋஽ெ ; 𝑋௅ீ ; 𝐸௟ ; 𝐶௖ ; 𝑆ௗ ; 𝑅௚ ; 𝐿௠ ; 𝐵௧) by 
applying statistical models. The independent 
variables 𝑃𝑟ௌ஻ and 𝑃𝑟ௌ௅ expresses by 𝑁௉ ሺ𝑆ௌ஻ ൈ 𝐷ௌሻ⁄  
and  𝑁௉ ሺ𝑆ௌ௅ ൈ 𝐷ௌሻ⁄ , and represent powdering ratio 
index of powders by BF and LD respectively.  



The explanatory variables included in models are 
: 𝑋஽ூ ; 𝑋஽஺ ; 𝑊௕ ; 𝐿௕ ; 𝑋஽ெ ; 𝑋௅ீ ; 𝐸௟ ; 𝐶௖ ; 𝑆ௗ ; 𝑅௚ ; 𝐿௠ 
and 𝐵௧ . Besides the conventional linear regression 
model, introduced as Model 1(with 4 IPVs) and 
Model 2 (with 5 IPVs) in Equation (1) based on the 
linear regression model provide by Neves et al. 
(Neves et al, 2018) and Jin et al. (Jin et al, 2018). 

𝑌 ൌ 𝑓ሺ𝑥௜ሻ → 𝑌 ൌ 𝛼଴ ൅ ∑ 𝛼௜𝑥௜
௡
௜ୀଵ ൅ 𝜀 ൌ

𝛼଴ ൅ 𝛼ଵ𝑥ଵ ൅ 𝛼ଶ𝑥ଶ ൅ ∙ ∙ ∙  ൅𝛼௡𝑥௡ ൅ 𝜖  
(1)

where 𝑌 represents the dependent variable (also 
called response variable, output, endogenous or 
explained), 𝛼଴ , 𝛼ଵ , . . ., 𝛼௞  the regression 
coefficients, 𝑥ଵ, 𝑥ଶ, . . ., 𝑥௞ the IPVs (Table I) and 𝜖 
the random errors of the model.  

Table 2: Description of the multiple linear regression model. 

Equation 
/Model 
n° 

IPVs used to predict Max 
Distance (𝑋஽ெ)  

IPVs used to predict 
Geodesic length (𝑋௅ீ) 

IPVs used to predict 
Powdering ratio index by 
Blaine (𝑃𝑟ௌ஻ ൌ
𝑁௉ ሺ𝑆ௌ஻ ൈ 𝐷ௌሻ⁄ )

IPVs used to predict 
Powdering ratio index 
by LD (𝑃𝑟ௌ௅ ൌ
𝑁௉ ሺ𝑆ௌ௅ ൈ 𝐷ௌሻ⁄ ) 

Eq. 
(1) 

1 𝑋஽ூ, 𝑋஽஺, 𝑊௕, 𝐿௕  - - - 

2 𝑋஽ூ, 𝑋஽஺, 𝑊௕, 𝐿௕, 𝑋௅ீ   𝑋஽ூ, 𝑋஽஺, 𝑊௕, 𝐿௕, 𝑋஽ெ  - - 

Eq. 
(2) 

3 𝑋஽ூ , 𝑋஽ூ ൈ 𝐸௟ , 𝑋஽ூ ൈ 𝐶௖ , 𝑋஽ூ ൈ 𝑅௚ , 𝑋஽ூ ൈ 𝑆ௗ , 𝑋஽ூ ൈ 𝐿௠ , 𝑋஽ூ ൈ 𝐵௧  

4 𝑋஽஺ , 𝑋஽஺ ൈ 𝐸௟ , 𝑋஽஺ ൈ 𝐶௖ , 𝑋஽஺ ൈ 𝑅௚ , 𝑋஽஺ ൈ 𝑆ௗ , 𝑋஽஺ ൈ 𝐿௠ , 𝑋஽஺ ൈ 𝐵௧  

5 𝑊௕ , 𝑊௕ ൈ 𝐸௟ , 𝑊௕ ൈ 𝐶௖ , 𝑊௕ ൈ 𝑅௚ , 𝑊௕ ൈ 𝑆ௗ , 𝑊௕ ൈ 𝐿௠ , 𝑊௕ ൈ 𝐵௧  

6 𝐿௕ , 𝐿௕ ൈ 𝐸௟ , 𝐿௕ ൈ 𝐶௖ , 𝐿௕ ൈ 𝑅௚ , 𝐿௕ ൈ 𝑆ௗ , 𝐿௕ ൈ 𝐿௠ , 𝐿௕ ൈ 𝐵௧  

7 - 𝑋஽ெ , 𝑋஽ெ ൈ 𝐸௟ , 𝑋஽ெ ൈ 𝐶௖ , 𝑋஽ெ ൈ 𝑅௚ , 𝑋஽ெ ൈ 𝑆ௗ , 𝑋஽ெ ൈ 𝐿௠ , 𝑋஽ெ ൈ 𝐵௧  

8 
𝑋௅ீ , 𝑋௅ீ ൈ 𝐸௟ , 𝑋௅ீ ൈ
𝐶௖ , 𝑋௅ீ ൈ 𝑅௚ , 𝑋௅ீ ൈ
𝑆ௗ , 𝑋௅ீ ൈ 𝐿௠ , 𝑋௅ீ ൈ 𝐵௧  

- 
𝑋௅ீ , 𝑋௅ீ ൈ 𝐸௟ , 𝑋௅ீ ൈ 𝐶௖ , 𝑋௅ீ ൈ 𝑅௚ , 𝑋௅ீ ൈ
𝑆ௗ , 𝑋௅ீ ൈ 𝐿௠ , 𝑋௅ீ ൈ 𝐵௧  

The regression equation given by Equation (1) 
gives the value predicted for the dependent variable 
according to the IPVs included in the model, which 
lies on the best-fit regression plane, which represents 
the multidimensional generalization of a line (Slinker 
and Glantz, 2008; Neves et al, 2018). 

In this research we also proposed alternative non-
linear models to improve the determination 
coefficients when predicting dependent variables 
(Model 1 & 2: Multi-linear regression analysis). 

These models range from Model 3 to Model 8 in 
Equation (2), where 𝑖 ൌ 1,∙ ∙ ∙ , 6 denotes the number 
of IPVs concerning particle size descriptors. The 
analysis of the interactions between size and shape 
parameters in the description the max distance or 
geodesic length of the powder particle, a MLR 
analysis is used, which allows examining the 
simultaneous effects of multiple IPVs in the 
variability of the dependent or explained variable 
with variables interact.  

The statistical relationship between the dependent 
variable 𝑌௜  and the multiple IPVs 𝑥௜  and 𝑦௞ is given 
by Equation (2) (Model 3 to 8: Non-linear model 
involving variables interactions). 

 
𝑌௜ ൌ 𝑓൫𝑥௜, 𝑦௝൯ → 𝑌௜  ൌ 𝛽଴ ൅ ∑ 𝛽௝𝑥௜𝑦௝

௞
௝ୀଵ ൅

𝜀 ൌ  𝛽଴ ൅ 𝛽ଵ𝑥௜𝑦ଵ ൅ 𝛽ଶ𝑥௜𝑦ଶ ൅ ∙ ∙ ∙
 ൅𝛽௞𝑥௜𝑦௞ ൅ 𝜖  

(2)

where 𝑌௜  represents the dependent variable (also 
called response variable, output, endogenous or 
explained, 𝑖 ൌ 1,∙ ∙ ∙ , 𝑛 ), 𝛽଴ , 𝛽ଵ , . . ., 𝛽௞  the 
regression coefficients, 𝑥௜  and 𝑦ଵ , 𝑥ଶ ,. . ., 𝑦௞  the 
independent variables (Table 1) and 𝜀  the random 
errors of the model.  

The regression equation given by Equation (2) 
gives the value predicted for the dependent variable 
according to the IPVs included in the model which 
lies on the best-fit regression plane that represents the 
multidimensional generalization of a line (Slinker and 
Glantz, 2008; Neves et al, 2018).  

Among the k independent predictor variables 
(IPVs), some may have more significant effects on 
the target response variable than others as reported by 
Jin et al. (Jin et al, 2018). In the same way, the t-test 
of correlation analysis was used to determine the 
significance regarding the effect of each IPV on the 
response variable in this study. There is a p-value 
corresponding to each t-value for an IPV. At the 95% 
confidence level, a p-value lower than 0.05 would 
indicate that this selected IPV makes a significant 
contribution to the response variable. In contrast, 
IPVs with p-values higher than 0.05 are those without 
significant contributions. A possible reason why 
some IPVs had higher significance than others was 
the strong internal correlation among IPVs, which 
caused redundancies. Therefore, the regression 



analysis could be redone by removing the redundant 
IPVs, shortening the equation to include only 
significant IPVs. Target models, response variables 

and various IPVs using input systems are defined in 
Table 1 and Table 2.  

 

 

Figure 1: Summary of production process and main testing data of powders.

4 RESULTS AND DISCUSSION 

4.1 Principal Properties 

The powders obtained have a density between 2.8 and 
3.1 g/cm3 and SSA Blaine between 3,500 and 5,300 
cm2/g, which are comparable to ordinary Portland 
cement fineness ((Bouyahyaoui et al, 2018; Juimo et 
al, 2017).  

By LD, mean particle diameter (Dmed), mean 
particle diameter of 10% of particles D(10), median 
particle diameter D(50) and mean particle diameter of 
90% of particles D(90) were measured to evaluate the 
efficiency of the milling process. Using the PSD data 
obtain by LD and Equations (1)-(2), 𝑆ௌ௅ evaluated are 
ranging between 4,400 to 6,000 cm2/g. 𝑆ௌ௅  value 
obtains by this method for each powder is always 
higher, that is about 4% to 25% than 𝑆ௌ஻ obtain by BF 
(Figure 1). 

PSDs of powders were evaluated by using the LD 
and IA (Figure 1). In the LD technique, the angular 
distribution of light is measured after passing through 
an optically dilute dispersion of suspended particles. 
This technique is widely used in dust and mineral 
industry with water and dispersive agent to a special 
cell where the laser light is sent (Felekoglu, 2009; 
Orhan et al, 2004).  

The inscribed disk diameter (𝑋஽ூ or 𝑋஽஺) of each 
particle is calculated in real time to build PSD curves 
weighted by apparent volume (Gregoire et al, 2007), 
making the assumption that particles have identical 
flatness ratios, whatever their size (Michel and 
Courard, 2014). Area diameter of particles was used 
to plot PSD curve obtained by IA. The PSD profile 
shows a negligible difference in the results by the two 
methods (Abazarpoor et al, 2017). The main reasons 
for differences between two PSD methods are as 
follows: the considerate particle diameter by each 
measurement process, the different shapes of the 
particles; better insight into particles using the IA 



method; insufficient dispersion of fine particles; fine 
particles adhering to the bigger particles. LD and 2D 
projection image by the IA are commonly used the 
PSD measurement techniques, but the results may not 
be representative of the strongly true physical 
dimensions of the particles (Califice et al, 2013). 

4.2 Particle Morphology Analysis 

More than 50 images of powder particles were 
identified. The particle morphology was found to 
provide reasonable accuracy for estimating the 
particle sizes of highly porous particles, where the 
distinction between inter-particle and intra-particle 
porosity was made. This important comment 
concerning inter-particle and intra-particle porosity 
has been also reported by Klemm and Wiggins 
(Klemm and Wiggins, 2017). 

4.2.1 Particle Morphology: Size Parameters 
Distribution 

Figure 2 shows the general identification of particles 
according to their inner diameter and area diameter. 
About 25% of Bnp particles, 25% of Ynp particles, 
25% of DRnp particles, 25% of Bnp and 5% of Bnp 
particles have the same area diameter like 
respectively a particle n°1, n°2, n°3, n°4 and n°5 as 

showing in Figure 2. In the same way, about 5% of 
DRnp particles, 5% of Bnp particles, 6% of Rnp 
particles, 6% of Ynp and 25% of Ynp particles have 
the same area diameter like respectively a particle 
n°1, n°2, n°3, n°4 and n°5 as showing in Figure 2.  

 

Figure 2: Identification of particles based on their inner 
diameter and area diameter. 

Particles who have a high inner diameter and area 
diameter are from DRnp powder and Particles who 
present a very few inner diameter and area diameter 
are from Rnp and Ynp powders.  

 

Figure 3: Relation between (a) inner and area diameter, (b) width and length and (c) max distance and geodesic length consider 
all powders.

Figure 3a shows that for all data obtained for all 
powders, inner diameter and area diameter are well 
related with a coefficient of correlation up to 0.99. 

Figure 4 shows the general identification of 
particles according to their inner diameter and area 
diameter. About 25% of Bnp particles, 25% of DRnp 
particles, 25% of Bnp particles, 6% of Ynp and 5% of 
Bnp particles have the same width as particles n°11, 
n°12, n°13, n°9 and n°7 respectively as shown in 
Figure 4.  

In the same way, about 5% of DRnp particles, 5% 
of Rnp particles, 25% of Rnp particles, 25% of Rnp 
and 25% of Ynp particles have the same length as 
particles n°6, n°14, n°8, n°15 and n°16 respectively 
as also shown in Figure 4. Particles that have a higher 
width are from DRnp powder and those that present a 
higher length are from Ynp powder. Particles that 
present a very few width and length are from Rnp and 
Ynp powders. Figure 3b shows that for all data 



obtained for all powders, width and length are well 
related with a coefficient of correlation up to 0.98. 

 

Figure 4: Identification of particles based on their width and 
length. 

Figure 5 shows the general identification of 
particles according to their max distance and geodesic 
length. About 25% of Bnp particles, 25% of DRnp 
particles, 25% of Bnp particles, 5% of Rnp and 5% of 
DRnp particles have the same max distance as 
particles n°11, n°17, n°18, n°14 and n°6 respectively 
as shown in Figure 5. In the same way, about 5% of 
Ynp particles, 5% of Bnp particles, 25% of Rnp 
particles, 25% of Rnp and 25% of Ynp particles have 
the same geodesic length as particles n°19, n°20, 
n°21, n°22 and n°23 respectively as also shown in 
Figure 5.  

 

Figure 5: Identification of particles based on their max 
distance and geodesic length. 

Particles that have a higher max distance are from 
DRnp and Ynp powders and whose who present a 
higher geodesic length are from DRnp powder. 

Particles that present a very few max distance and 
geodesic length are from Rnp and Ynp powders. 

Figure 3c shows that for all data obtained for all 
powders, max distance and geodesic length are well 
related with a coefficient of correlation up to 0.97. 

4.2.2 Particle Morphology: Shape 
Parameters Distribution 

Figure 6 shows the general identification of particles 
according to their elongation and circularity. About 
4% of DRnp particles, 9% of Bnp particles, 25% of 
Ynp particles, 25% of DRnp and 6% of Ynp particles 
have the same circularity as particles n°6, n°24, n°25, 
n°26 and n°27 respectively as shown in Figure 6.  

 

Figure 6: Identification of particles based on their 
elongation and circularity. 

In the same way, about 5% of Ynp particles, 5% 
of Rnp particles, 25% of DRnp particles, 25% of Bnp 
and 25% of DRnp particles have the same elongation 
as particles n°19, n°14, n°28, n°11 and n°17 
respectively as also shown in Figure 6. Particles that 
have a higher elongation are from Rnp and Ynp 
powders and those that present a higher circularity are 
from Rnp and Ynp powders. Particles that present a 
very few elongation and circularity are from Bnp and 
DRnp powders. 

Figure 7 shows the general identification of 
particles according to their roughness and solidity. 
About 6% of Bnp particles, 6% of DRnp particles, 5% 
of DRnp particles, 5% of Rnp and 6% of Ynp 
particles have the same roughness as particles n°29, 
n°30, n°31, n°32 and n°19 respectively as shown in 
Figure 7.  

In the same way, about 25% of Rnp particles, 25% 
of DRnp particles, 25% of Ynp particles, 25% of Bnp 
and 25% of DRnp particles have the same solidity as 
particles n°33, n°17, n°25, n°7 and n°6 respectively 



as also shown in Figure 7. Particles that have a higher 
roughness are from Ynp powder. Particles that 
present a very few roughnesses are also from Ynp 
powder. These powder particles have in general a 
solidity value equal to 1.0. This means that these 
particles from volcanic scoria have a higher solidity.  

 

Figure 7: Identification of particles based on their 
roughness and solidity. 

Figure 8 shows the general identification of 
particles according to their luminance and bluntness. 
About 4% of DRnp particles, 5% of Bnp particles, 
25% of Rnp particles, 25% of Ynp and 5% of Rnp 
particles have the same bluntness as particles n°34, 
n°35, n°36, n°16 and n°37 respectively as shown in 
Figure 8.  

 

Figure 8: Identification of particles based on their 
luminance and bluntness. 

In the same way, about 5% of DRnp particles, 5% 
of Rnp particles, 5% of Bnp particles, 9% of Ynp and 
25% of Bnp particles have the same luminance as 
particles n°28, n°8, n°38, n°39 and n°40 respectively 

as also shown in Figure 8. Particles that have a higher 
luminance are from DRnp powder. Particles that 
present a very few luminance are from Rnp and Bnp 
powders.  

4.3 Study the Correlation Between 
Several Parameters 

In this study, the two major input systems within 
volcanic scoria powder particle morphology (i.e., size 
and shape input systems) were compared for their 
accuracy in predicting considered dependent variable. 
In addition, the effect of number of particle 
projections (𝑁௉) on the variables obtained through IA 
is investigated.  

The bestfit models were identified under each 
input system. By removing significantly correlated 
IPVs within each input system, the regression 
modelling process was rerun by shortlisting (Jin et al, 
2018).  

Figure 9 presents the summary of measurement 
values for size and shape parameters of powder 
sample identifying the variables considered in this 
study. These data are used for the definition of several 
models, to predict the considerable dependent 
variable. These values have obtained the 
consideration of 24,268, 32,302, 22,562 and 25,041 
particles for Bnp, DRnp, Rnp and Ynp respectively. 
For all size parameters, the value is down to 500 µm 
for all powders. 

The regression analysis was conducted based on 
the proposed models for input systems, respectively. 
The reliability of these models was compared, and the 
best-fit model was identified. Table 3 displays the 
corresponding R2 values for all predictions. The 
summary of models is shown in Table 3 where the 
statistical coefficients analyzed are presented to 
evaluate the validity of the regression model. The 
model proposed for samples leads a correlation 
coefficient (R) of 0.810 and a determination 
coefficient (R2) of 0.779, thus revealing a very strong 
correlation between the values predicted by the model 
and the values observed in the dataset. 

Table 3 shows also the analysis of variance 
(ANOVA) of models. The ANOVA table reveals an 
F value (Fisher-Snedecor test) of models, which is 
considerably higher than the critical value of F, for a 
level of significance of 5%. Moreover, the 
significance value of the model is practically null, 
thus lower than the p-value adopted as significance 
level (5%). The results obtained reveal that all the 
independent variables considered are statistically 
significant in explaining the dependent variable.  



As shown in Table 3, input systems led to highly 
consistent R2 values (up to 0.919) from Models 1 to 8 
for predicting 𝑋஽ெ  and 𝑋௅ீ  , meaning similar 
prediction accuracy. Model 4 (the mixed model using 

size/shape as the RRV) achieved the consistently high 
R2 values for all the four predicted variables (𝑋஽ெ, 
𝑋௅ீ, 𝑃𝑟ௌ஻ or 𝑃𝑟ௌ௅).  

 

Figure 9: Summary of measurement values for size and shape parameters of powders.

All of the corresponding R2 values in the 25 
scenarios are within the reasonable range (i.e., 0.810–
0.998). Model 1 also achieved the highest R2 value 
for the prediction of 𝑋஽ெ in both systems (0.998 for 
Multi-linear regression analysis and 0.979 for Non-
linear model involving variables interactions).  

In the 𝑃𝑟ௌ஻ or 𝑃𝑟ௌ௅ regression analysis, Model 6 
(the non-linear approach) represents the best-fit 
model by achieving even higher accuracy than others, 
the highest based on both input systems.  

The remaining mixed models had relatively lower 
R2 values for both input systems. The R2 values 
resulting from the best-fit non-linear and mixed 
regression models in this research (ranging from 
0.810–0.998) are significantly higher than the values 
generated from previous studies adopting linear 
methods. This can be seen in Table 3.  

According to these correlation and ANOVA 
coefficients, model 2, model 5 and model 6 are the 
three best models to predict max distance and 
geodesic length and the best model to predict 

Powdering ratio index by Blaine and by LD is the 
model 6 as indicated in bold in Table 3. 

The linear regression coefficients (𝛼௜ or 𝛽௝) of the 
proposed models were determinate. All the 
independent variables included in the model are 
statistically relevant in the description of the 
variability of the dependent variable, showing a 
significance value lower than the p-value (5%).  The 
linear regression coefficients of model present a 
significance value lower than the p-value (5%), 
indicating that all the independent variables are 
statistically relevant in the description of the 
dependent response n coefficient obtained from this 
test technique (Table 4). These significance values 
are marked in green and the models selected on this 
basis are also marked in bold in Table 4. According 
to these p-values, model 2 and model 5 are the two 
best models to predict max distance and geodesic 
length and the best model to predict Powdering ratio 
index by Blaine and by LD is the model 6 as indicated 
in bold in Table 4. 



Once the statistical relevance of models is 
confirmed, Table 5 presents the mathematical 
formulation that makes rating estimation of each 
dependent response possible. 

Table 3: Summary of the multiple linear regression analysis 
results (In this table, *Analysis of variance of the model 
(ANOVA), **Square of the mean square error (RMSE)) 

Parameter  Correlation ANOVA* 

E
q.

 

Model n° R R2 R2ad. RMSE** F value 
p 

value 

E
qu

at
io

n 
(1

) 

1 𝑿𝑫𝑴  0.998 0.996 0.996 3.868045369 2436.723 0.000

2 𝑿𝑫𝑴  0.999 0.998 0.997 2.963935818 3325.711 0.000

 𝑿𝑳𝑮  0.972 0.944 0.944 34.390131493 128.921 0.000

E
qu

at
io

n 
(2

) 

3 𝑿𝑫𝑴  0.942 0.888 0.866 21.326295389 40.846 0.000

 𝑿𝑳𝑮  0.959 0.919 0.904 42.540114280 58.587 0.000

 𝑷𝒓𝑺𝑩  0.951 0.904 0.885 0.286212210 48.326 0.000

 𝑷𝒓𝑺𝑳  0.945 0.892 0.871 0.244277238 42.594 0.000

4 𝑿𝑫𝑴  0.968 0.936 0.924 16.097413373 75.576 0.000

 𝑿𝑳𝑮  0.969 0.939 0.927 36.948598108 79.335 0.000

 𝑷𝒓𝑺𝑩  0.944 0.891 0.870 0.304327341 42.150 0.000

 𝑷𝒓𝑺𝑳  0.946 0.896 0.876 0.240259398 44.204 0.000

5 𝑿𝑫𝑴  0.989 0.979 0.974 9.349541278 234.136 0.000

 𝑿𝑳𝑮  0.980 0.960 0.952 29.887883900 123.964 0.000

 𝑷𝒓𝑺𝑩  0.942 0.888 0.866 0.308774263 40.798 0.000

 𝑷𝒓𝑺𝑳  0.944 0.892 0.871 0.244995796 42.314 0.000

6 𝑿𝑫𝑴  0.998 0.996 0.996 3.787558166 1452.888 0.000

 𝑿𝑳𝑮  0.979 0.959 0.951 30.442169551 119.306 0.000

 𝑷𝒓𝑺𝑩  0.931 0.866 0.840 0.337897319 33.220 0.000

 𝑷𝒓𝑺𝑳  0.936 0.876 0.852 0.261645598 36.467 0.000

7 𝑿𝑳𝑮  0.973 0.947 0.937 34.388965646 92.379 0.000

 𝑷𝒓𝑺𝑩  0.930 0.864 0.838 0.340304620 32.679 0.000

 𝑷𝒓𝑺𝑳  0.935 0.873 0.849 0.264888669 35.454 0.000

8 𝑿𝑫𝑴  0.966 0.934 0.923 16.211425615 86.685 0.000

 𝑷𝒓𝑺𝑩  0.900 0.810 0.779 0.396643132 26.314 0.000

 𝑷𝒓𝑺𝑳  0.903 0.815 0.785 0.315815860 27.153 0.000

 
According to these equations with higher 

correlation (Table 5), including main characteristics of 
powders: the particle size, particle shape and 
technological properties of powders (density, surface 
area, etc.). It is demonstrated that using powders, as 
well as the potential areas of their application, strongly 
depends on these characteristics. Dimensionless 
relationships between particle size and particle shape 
can be determined theoretically for simplified, but 
realistic, powder particle geometries. These 

relationships have important implications for the 
interpretation of shape data, and, more fundamentally, 
for the selection of grain size(s) for analysis. 

5 CONCLUSIONS 

This study showed that the size estimation of 
particulate material is a complicated matter. The 
results highlight the fact that particle size 
distributions may not be unique. Different techniques 
can give a large range of different parameters which 
need to be interpreted correctly. The choice of the 
parameters also depends on the purpose of the 
research. It is shown that particle shape analysis that 
includes the full range of available grain sizes can 
contribute not only measurements of particle size and 
shape, but also information on size-dependent 
densities and specific surface area.  

Based on the analysis of particle characteristics, 
design of experiment, and analysis of variance 
(ANOVA), it can be concluded that: good correlation 
was found between the specific surface area measured 
by Blaine Permeability Tester and calculated from the 
LD and the IA data.  

Thus, based on these conclusions, it appears that 
the density, specific surface area, granulometry and, 
morphology of volcanic scoria powders may be 
efficiently estimated from complementary 
techniques. This description is absolutely needed for 
understanding particles’ behavior in contact with 
water when used in cementitious materials. 
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Table 4: p-value  (In this table, x : non-considered variable, xx : excluded variable). 

Model n° Const. 𝑿𝑫𝑰 𝑿𝑫𝑨 𝑾𝒃 𝑳𝒃 𝑿𝑫𝑴 𝑿𝑳𝑮 
𝑿𝑫𝑰
ൈ 𝑬𝒍 

𝑿𝑫𝑰
ൈ 𝑪𝒄 

𝑿𝑫𝑰
ൈ 𝑹𝒈 

𝑾𝒃
ൈ 𝑺𝒅 

𝑾𝒃
ൈ 𝑳𝒎 

𝑾𝒃
ൈ 𝑩𝒕 

𝑿𝑫𝑴  1 0.842 0.226 0.610 0.864 0.000 x x x x x x x x 

𝐗𝐃𝐌  2 0.121 0.001 0.304 0.107 0.000 x 0.000 x x x x x x 

𝐗𝐋𝐆   0.008 0.000 0.030 0.006 0.000 0.000 x x x x x x x 

𝑋஽ெ  3 0.365 x 0.120 x x x x 0.001 0.946 0.038 0.199 0.442 0.203 

𝑋௅ீ   0.289 x 0.046 x x x x 0.969 0.796 0.903 0.034 0.355 0.000 

𝑃𝑟ௌ஻    0.279 x 0.405 x x x x 0.584 0.261 0.543 0.234 0.155 0.009 

𝑃𝑟ௌ௅   0.160 x 0.287 x x x x 0.863 0.198 0.772 0.159 0.109 0.002 

Model 4 Const. 𝑿𝑫𝑰 𝑿𝑫𝑨 𝑾𝒃 𝑳𝒃 𝑿𝑫𝑴 𝑿𝑳𝑮 
𝑿𝑫𝑨
ൈ 𝑬𝒍 

𝑿𝑫𝑨
ൈ 𝑪𝒄 

𝑿𝑫𝑨
ൈ 𝑹𝒈 

𝑿𝑫𝑨
ൈ 𝑺𝒅 

𝑿𝑫𝑨
ൈ 𝑳𝒎 

𝑿𝑫𝑨
ൈ 𝑩𝒕 

𝑋஽ெ  0.365 x 0.120 x x x x 0.001 0.946 0.038 0.199 0.442 0.203 

𝑋௅ீ 0.289 x 0.046 x x x x 0.969 0.796 0.903 0.034 0.355 0.000 

𝑃𝑟ௌ஻  0.279 x 0.405 x x x x 0.584 0.261 0.543 0.234 0.155 0.009 

𝑃𝑟ௌ௅ 0.160 x 0.287 x x x x 0.863 0.198 0.772 0.159 0.109 0.002 

Model 5 Const. 𝑿𝑫𝑰 𝑿𝑫𝑨 𝑾𝒃 𝑳𝒃 𝑿𝑫𝑴 𝑿𝑳𝑮 
𝑾𝒃
ൈ 𝑬𝒍 

𝑾𝒃
ൈ 𝑪𝒄 

𝑾𝒃
ൈ 𝑹𝒈 

𝑾𝒃
ൈ 𝑺𝒅 

𝑾𝒃
ൈ 𝑳𝒎 

𝑾𝒃
ൈ 𝑩𝒕 

𝑿𝑫𝑴  0.110 x x 0.094 x x x 0.000 0.265 0.000 0.042 0.000 0.667 

𝑿𝑳𝑮 0.748 x x 0.169 x x x 0.000 0.757 0.000 0.105 0.907 0.000 

𝑃𝑟ௌ஻  0.334 x x 
0.

605 
x x x 0.885 0.267 0.944 0.358 0.023 0.002 

𝑃𝑟ௌ௅ 0.118 x x 0.249 x x x 0.870 0.182 0.462 0.130 0.001 0.001 

Model 6 Const. 𝑿𝑫𝑰 𝑿𝑫𝑨 𝑾𝒃 𝑳𝒃 𝑿𝑫𝑴 𝑿𝑳𝑮 
𝑳𝒃
ൈ 𝑬𝒍 

𝑳𝒃
ൈ 𝑪𝒄 

𝑳𝒃
ൈ 𝑹𝒈 

𝑳𝒃
ൈ 𝑺𝒅 

𝑳𝒃
ൈ 𝑳𝒎 

𝑳𝒃
ൈ 𝑩𝒕 

𝑋஽ெ  0.519 x x x 0.966 x x 0.908 0.386 0.330 0.313 0.400 0.384 

𝑋௅ீ 0.783 x x x 0.261 x x 0.001 0.952 0.084 0.185 0.336 0.000 

𝑷𝒓𝑺𝑩 0.035 x x x 0.070 x x 0.041 0.246 0.523 0.042 0.510 0.049 

𝑷𝒓𝑺𝑳 0.012 x x x 0.028 x x 0.091 0.183 0.533 0.017 0.260 0.017 

Model 7 Const. 𝑿𝑫𝑰 𝑿𝑫𝑨 𝑾𝒃 𝑳𝒃 𝑿𝑫𝑴 𝑿𝑳𝑮 
𝑿𝑫𝑴
ൈ 𝑬𝒍 

𝑿𝑫𝑴
ൈ 𝑪𝒄 

𝑿𝑫𝑴
ൈ 𝑹𝒈 

𝑿𝑫𝑴
ൈ 𝑺𝒅 

𝑿𝑫𝑴
ൈ 𝑳𝒎 

𝑿𝑫𝑴
ൈ 𝑩𝒕 

𝑋௅ீ  0.906 x x x x 0.281 x 0.002 0.931 0.061 0.208 0.603 0.000 

𝑃𝑟ௌ஻  0.037 x x x x 0.092 x 0.035 0.325 0.349 0.056 0.371 0.078 

𝑃𝑟ௌ௅ 0.013 x x x x 0.040 x 0.078 0.255 0.352 0.023 0.176 0.030 

Model 8 Const. 𝑿𝑫𝑰 𝑿𝑫𝑨 𝑾𝒃 𝑳𝒃 𝑿𝑫𝑴 𝑿𝑳𝑮 
𝑿𝑳𝑮
ൈ 𝑬𝒍 

𝑿𝑳𝑮
ൈ 𝑪𝒄 

𝑿𝑳𝑮
ൈ 𝑹𝒈 

𝑿𝑳𝑮
ൈ 𝑺𝒅 

𝑿𝑳𝑮
ൈ 𝑳𝒎 

𝑿𝑳𝑮
ൈ 𝑩𝒕 

𝑋஽ெ   0.399 x x x x x 0.076 0.010 0.111 0.136 xx 0.390 0.000 

𝑃𝑟ௌ஻    0.182 x x x x x 0.127 0.939 0.021 0.570 xx 0.499 0.000 

𝑃𝑟ௌ௅   0.122 x x x x x 0.160 0.585 0.011 0.460 xx 0.351 0.000 

 
 
 
 
 
 
 
 



Table 5: Equations of efficient models identified. 

Model n° Equations R2 

Model 2 
Xୈ୑ ൌ െ1.167 ൅ 0.435Xୈ୍ ൅ 0.281Xୈ୅ െ 0.501Wୠ ൅ 1.043Lୠ െ 0.056X୐ୋ  0.998 

X୐ୋ  ൌ െ22.528 ൅ 6.003Xୈ୍ ൅ 6.718Xୈ୅ െ 9.542Wୠ ൅ 8.240Lୠ െ 7.590Xୈ୑  0.944 

Model 5 

Xୈ୑ ൌ 6.306 െ 4.455Wୠ െ 1.989Wୠ ൈ E୪ ൅ 0.827Wୠ ൈ Cୡ ൅ 4.877Wୠ ൈ
R୥ ൅ 5.815Wୠ ൈ Sୢ െ 1.377Wୠ ൈ L୫ ൅ 0.157Wୠ ൈ B୲  

0.979 

X୐ୋ  ൌ െ3.989 ൅ 11.619Wୠ െ 6.019Wୠ ൈ E୪ ൅ 0.727Wୠ ൈ Cୡ ൅
8.110Wୠ ൈ R୥ െ 14.650Wୠ ൈ Sୢ െ 0.053Wୠ ൈ L୫ ൅ 7.069Wୠ ൈ B୲  

0.960 

Model 6 

Prୗ୆ ൌ 0.302 െ 0.145Lୠ െ 0.031Lୠ ൈ E୪ ൅ 0.024Lୠ ൈ Cୡ ൅ 0.025Lୠ ൈ R୥ ൅
0.175Lୠ ൈ Sୢ െ 0.006Lୠ ൈ L୫ െ 0.021Lୠ ൈ B୲

0.866 

Prୗ୐ ൌ 0.282 െ 0.137Lୠ െ 0.019Lୠ ൈ E୪ ൅ 0.021Lୠ ൈ Cୡ ൅ 0.019Lୠ ൈ R୥ ൅
0.162Lୠ ൈ Sୢ െ 0.008Lୠ ൈ L୫ െ 0.020Lୠ ൈ B୲

0.876 

 


