
Encryption Algorithms for WSN - IOT: A Software based Analysis
with Contiki Cooja

Yves Frederic Ebobisse Djene1,2 a, Amine Berrazzouk1, Brahim El Bhiri2 and Youssef Fakhri1
1 LARIT- IBN Tofail University, Kenitra, Morocco

2 SMARTiLab EMSI, Rabat, Morocco

Keywords: Wireless sensor network (WSN), IOT, simulation, cryptography, algorithms, contiki, analysis, evaluation

Abstract: IOT has increasingly become part of people’s daily lives and is applied in an incredibly broad range of
domains (transport, logistics, agriculture, etc…). Though initial applications of IOT did not take security into
consideration, it has become an important field of research. This paper focuses on encryption algorithms
evaluation using Contiki Cooja simulator. We mainly analyze the impact of the mode of operation, key length
and blocks as we measure the number of clock ticks on sensor nodes.

1 INTRODUCTION

The IOT (Internet of Things) global market is meant
to reach 1.6 trillion US dollar in 2025, with more
devices interconnected and communicating through
the internet (Tankovska, 2020). As we go through
literature, there are several definitions of IOT (Ray,
2018):
– ‘‘3A concept: anytime, anywhere and any media,
resulting into sustained ratio between radio and man
around 1:1”
– ‘‘A global infrastructure for the information society
enabling advanced services by interconnecting
(physical and virtual) things based on, existing and
evolving, interoperable information and
communication technologies”

(Ray, 2018) identified several functional blocks
required to build an IOT infrastructure. Among these
are:
– Devices: sensors, actuators, monitoring devices,
etc... that collect data and process it locally or send it
to centralized servers. These devices usually have
constrained capabilities in terms of storage and
processing for instance.
– Communication: an important part of the
architecture that involves protocols at the datalink,
network, transport and application layer

a https://orcid.org/0000-0003-4929-7362

– Services: such as device control and monitoring, as
well as data publishing and analytics which need to
be provided by a complete system
– Applications: in order to monitor the overall system,
fields-oriented applications (agriculture, health,
transport, smart grids) are required to keep track of
the changes in the system and ease decision making.
– Security: copes with everything related to security
in the system.

An IOT architecture is based on 3 important layers
(Rwan, 2015):
 The perception layer “senses” the environment,

in other words, it collects data from the real
world (physical environment or nodes) and
transmits it to the Network layer.

 The Network layer is in charge of data routing
and transmission from one end to another end
of the system (for example from a sensor to a
sink, a gateway, or base station, etc..).

 Application layer guarantees confidentiality,
authenticity and integrity of the collected data
and helps create the smart environment.

If security was a neglected issue at the early stages of
IOT development, it became a non-negligible aspect
that needs to be properly addressed in IOT systems.
Some IOT security issues relate to (Ray, 2018):
 Confidentiality: we need to secure data and

deliver it to authorized users

 Integrity: ensure that the accuracy of the data
received and transmitted using end-to-end
security in communications.

 Availability: data and devices must be
accessible and reachable whenever required

 Authentication: be able to identify each IoT
entity in the system

 Lightweight solutions: because of their
constrained capabilities in terms of energy,
computational power and storage, IoT devices
require lightweight protocols and applications
as we will later examine in this study.

 Heterogeneity: entities in an IOT system may
come from different vendors, with different
levels of specifications, but these specifications
should still be able to seamlessly cooperate.

 Key Management System: whenever
exchanged, data needs to be encrypted.

There are further security issues in IOT systems
mentioned by (Sha, 2018) as :
 Integration with the physical world: a corrupted

or wrong data transmitted by sensors in a train
or a plane can have irremediable consequences.
If the data is for example tampered by
unauthorized access, it can endanger people’s
lives.

 Heterogeneity of devices and communications:
depending on the domain of application, IOT
systems do not have the same requirements
when it comes to devices. Monitoring a farm,
an industrial compound, a home or smart Grid
comes with different costs in terms of physical
architectures and communication schemes.
While some may stress on data updates others
may rely on more secure channels.

 Scalability: Deploying IoT systems increase
interactions within the architecture, between
nodes and outside the environment, with data
servers, etc… As the number of entities grows,
it is important to ensure the availability, the
liability and the reliability of the system

 Resource constraints: as we previously
mentioned, due to resource limitations, IoT
devices are designed with low capabilities.
Some features that need to be integrated in IoT
architectures involve more challenges just as
encryption, trust management and PKI usually
require more powerful systems.

Addressing these issues and implementing
solutions within IoT systems have an impact in
several aspects of the behaviour of the environment
in terms of energy consumption, reliability and
availability.

Our focus in this paper is the evaluation of some
encryption algorithms on nodes in IoT/WSN
architectures.

The present study explores literature and related
work defining encryption modes and types as well as
some performance analysis. Simulations,
methodologies, results and their analysis are also
presented.

2 RELATED WORK

When it comes to security challenges in IOT and
WSN architectures, there are several aspects that can
be addressed. (Mardiana binti Mohamad, 2019)
analysis of publications in IoT security from 2016 to
June 2018 (Elsevier, IEEE, Hindawi and Springer)
showed that most papers focused respectively on
authentication, trust, encryption and secure routing.

It is important to note that this evaluation may
suffer some flaws because cryptography (encryption
and decryption) is transverse to the previously
mentioned fields. We can simply consider encryption
as the process of transforming a plain text into a
cypher text using a hash. This process can be reverted
by the receiver via a key (deciphering).

Cryptography helps achieving several security
goals in information systems in general. Through
encryption and decryption, the sender and the
receiver can communicate with a certain level of
security. Depending on the encryption method,
messages are meant to be useless for any
unauthorized third party. By using hashing and
message digests, data’s integrity can be verified,
while digital signatures and certificates tackle
authentication goals.

(Mardiana binti Mohamad, 2019) also pointed out
that security can be applied at different layers of an
IoT architecture (physical, network or application).
As we examine encryption systems, we will gradually
investigate their effect on IoT or WSN devices and
networks.

2.1 Encryption Modes

Encryption can be either done through a stream cipher
that is byte-by-byte, or with block cyphers of fixed
lengths when you work on larger blocks (Meneghello,
2019). Different operating modes can be used to
encode and decode larger blocks namely (Kowalczyk,
2020):
 ECB (Electronic CodeBook): each plain block

is encrypted and decrypted separately with a
key.

 CBC (Cipher Block Chaining): the initial block
is encrypted with the initializing vector. A
XOR operation is performed with the plaintext
block before encryption with the key. Next
block uses the previous cypher block in the
same manner. In order to decipher the stream,
the first encrypted block is decrypted, then a
XOR operation is applied to the result to get
one plaintext block. Next step involves
deciphering the new block with the key and
applying a XOR operation with the cyphertext
of the previous step.

 CTR (Counter): a number used once (nonce) is
added to a counter and encrypted using the key.
The final cipher block is then obtained through
a XOR operation with the plain text. If you
have several blocks, the counter increases for
each block. The same operation is done for
decryption by switching the positions of the
cipher and the plaintext.

More modes are available such as OFB (Output
FeedBack), CFB (Cipher FeedBack), and PCBC
(Propagating or Plaintext Cipher-Block Chaining) but
were not part of our study.

It is important to mention that these modes are
related to the way blocks/stream are treated when
encryption/decryption is performed. When you
consider encryption algorithms, there are two main
techniques.

2.2 Encryption Techniques

 Asymmetric Encryption
Also referred as the public key cryptography, it

requires two keys: one public key used by the sender
to encrypt data and the corresponding private key
used by the receiver to decrypt the data.

 Symmetric Encryption
The secret key cryptography or symmetric

encryption involves a unique key that is used by the
sender and the receiver. At one end of the
communication, encryption is performed and at the
other end, decryption, using the same key.

AES (Advanced Encryption Standard), DES
(Data Encryption Signature), 3DES (Triple DES) and
Blowfish are examples of symmetric encryption
algorithms while Diffie Hellman Key agreement,
RSA (Rivest Shamir Adleman), El Galmal, DSA
(Digital Signature Algorithm) and ECC (Elliptic
Curve Cryptography) are asymmetric. These
algorithms usually necessitate heavy computational
power and resources that IoT devices may not have.

The performance of four algorithms namely AES,
DES, 3DES and Blowfish was compared with ECB
and CBC modes respectively as shown in figures 1 &
2 (Tamimi, 2006). The amount of time required to
perform encryption and decryption was then
analyzed. According to their work, Blowfish was the
fastest in both modes, and AES increased rapidly with
the size of the block. They also stated that these
results were different from other works in literature
because of the size of data size used.
It is important to mention that these experiments were
conducted on 3500+ AMD 64bits processor with 1Gb
of RAM and using C# and visual studio. Even if this
work seems to be outdated, it does not comply with
the IoT/WSN environment that impose some
limitations in terms of RAM, storage and
computational power in order to evaluate the effect on
IoT and WSN networks and devices.

Figure 1 : ECB mode Performance

Figure 2 : CBC mode Performance

 (Mansour, 2012) evaluated several algorithms (both
symmetric and asymmetric) on sensors nodes with
regard to energy consumption. They implemented
their algorithms in nesC, a programming language for
networked embedded systems using TelosB motes
(sensors with 16-bit 8MHz

TI MSP430 micro-processor) while their asymmetric
implementation of algorithms was based on
TinyECC. Their results encompassed every stages of
the encryption, from initialization to
encryption/decryption phases (for symmetric keys) as
well as the generation and exchange of private/public
keys, the calculation of symmetric key between two
nodes (for asymmetric encryption). They compared
AES, CHAOS (CTR mode) - two symmetric
algorithm on one hand - and ECIES (Elliptic Curve
Integrated Encryption Scheme) coupled with AES
and CHAOS with regard to execution time but also in
terms of energy consumption. From their results 1
byte consumes the same amount of energy for
encryption and decryption for AES and CHAOS
while Asymmetric Algorithms show a higher
consumption for the respective operations.
Asymmetric algorithms tend to consume minimum
100 times amount of energy as illustrated in table I
based on their work.

Table 1: Energy Consumption in mJ (Mansour, 2012)

 Algorithm Encrypt Decrypt

SYMME
-TRIC

AES-CTR 0.07 0.07

CHAOS-
CTR

0.01 0.01

ASYM-
METRIC

ECIES/AES 2.1 1.4

ECIES/
CHAOS

1.9 1.3

Meanwhile, (Ghehioueche, 2019) evaluated the
performance of AES, Trivium, ECIES, RSA and
McEliece algorithms. TOSSIM and AVRORA
simulators were used to evaluate computational and
power consumption, using MICAZ sensor. McEliece
was implemented using NesC without optimization.
Their work came in line with the result obtained in
(Mansour, 2012) meaning that private key encryption
algorithms are faster and consume less energy than
public shared algorithms. Table 2 provides a
summary of the work by (Ghehioueche, 2019).

Table 2: Energy Consumption in mJ (Ghehioueche, 2019)

 Algorithm Encryption Decryption

SYMME
TRIC

AES 0.013 0.016

TRIVIUM 25.4391 25.3159

ASYMME

TRIC

ECIES 33.535 20.658

RSA 44.012 43.249

Mc Eliece 110.5004 -

3 EXPERIMENTS AND
SIMULATIONS

Based on related work, we explored several
possibilities to establish our own simulations and
tests. Our main objective was to first find a way of
calculating the Energy consumption of an algorithm
regardless of initialization phases on the nodes part of
the system.

3.1 Environment

There are several simulators that can be used to
simulate WSN IOT. (Mardiana binti Mohamad,
2019) ‘s review of related work mentioned
MATLAB, NS2 &3, AVISPA, OPTNET, MICA2
and Contiki. Some of them are meant to simulate
networks without really emulating sensors. We ended
up working with Contiki because we could program
several types of nodes as well as using a Java
graphical tool to simulate (Cooja) and collect data.
Contiki (Contiki, 2019) programs are written in C
while the simulator requires Java. Contiki does not
only allow simulation of sensor nodes, but also IOT
devices.

Our experiments were conducted on i-5 3400Ghz
8Go RAM computer with Windows 7 (64bytes). We
used a VMware virtual Machine based on Ubuntu
18.04LTS 64bytes version and 8Gb of RAM. We
were also able to install two versions of Contiki and
compared the results obtained. We used the following
implementations of AES(Kokke, 2019), DES and
3DES(Ibeatu, 2019). It is also important to note that
although there are several models of sensors available
in Contiki Cooja simulator, we mainly worked with
Skymote.

3.2 Methodology

As we mentioned in the previous paragraph, we used
two methods to run simulations. These methods are
directly related to the version of Contiki used.

 Method 1 using Contiki 3.0: this method just

requires to add or copy the header and c files
(aes.h and aes.c for example), either at the root
of the project or in the libraries’ directory

 Method 2 using Contiki 2.7: here, there is need
to first build a library using MSP430-GCC.
This operation requires to build libraries for
each type of node used

In the simulator, we created nodes implementing
different encryption algorithms with different block
sizes. We measured clock sticks at the beginning of
the process (encryption or decryption) and calculated
the difference (number of clock sticks executed to
perform an operation). We did not set initialization
phases (exchange of keys, vector) but rather
considered that they were already available for the
node. We tested different sizes of blocks (16, 32,48
and 64 bytes) as well as various operational modes
(ECB, CTR, CBC for AES in instance), and different
key lengths (48, 128, 192, 256) depending on the
parameters available for the algorithm. Each node
implemented an encryption algorithm with specific
parameters. For each type of node, 100 rounds were
executed and the mean clock ticks of the round were
used in order to compare the algorithms.

Table 3 summarizes the available algorithms,
mode of operation, cipher block size and key length.
Each of the entries of Table III has been implemented
into a node and tested. We choose to present our
results based on the number of clock ticks for each
operation because, combined with the mote data sheet
characteristics (voltage, current, and CLOCK TIME)
the amount of energy consumed by encryption or
decryption for a specific algorithm can easily be
calculated.

Table 3: Encryption Algorithms (Mode, keylength, Size)

Algorithm Mode Key length Block Size

AES

CBC 256,192,128 16,32,48,64

ECB 256,192,128 16

CTR 256,192,128 16,32,48,64

DES Not
available

48 16,32,48,64

3DES

Not
available

48 16,32,48,64

3.3 Results and Discussion

It is important to note at this level that Method 1 is
presented here because it generated quicker results.
Method 2 gave similar observations with different
values and will be presented at the end of the paper.

The first noticeable remark is the fact that using a
specific mode and size of block, the key length has no
effect on the calculation. It is illustrated with CBC
Mode at 16bytes (figure 3) and 32 bytes (figure 4)
block sizes, respectively. Similar observations were
obtained at 48 and 64 bytes block sizes for CBC (not
presented).

Figure 3: CBC results with 16bytes block size

Figure 4: CBC results with 32bytes block size

Tables 4 and 5 show that similar measurements
were obtained when we compared CTR and ECB
modes with 128, 192 and 256 bytes key lengths
respectively, for the same block size to encrypt and
decrypt.

Table 4: AES CTR 32 bytes block size

CTR128 CTR192 CTR256
ENCRYPT 290 291 291

DECRYPT 290 290 290

Table 5: Clock ticks (AES ECB 16 bits block size)

ECB128 ECB192 ECB256
ENCRYPT 150 149 149

DECRYPT 286 286 286

It was also observed that for the same block size
and key length, encryption with CBC, ECB and CTR
use almost the same number of clock sticks (figure 5).
On the other hand, when it comes to decryption of
blocks, CTR Mode tends to use almost half of the
value needed by CBC and ECB which were relatively
close.

0

100

200

300

400

Encrypt Decrypt

CBC128 CBC192 CBC256

0

200

400

600

Encrypt Decrypt

CBC128 CBC192 CBC256

Figure 5: CBC, ECB, CTR results using 128 bytes key
length and 16 block size.

As illustrated in figure 6, and conformingly with
previous studies, DES and 3DES consume a far
greater number of clock ticks than AES in various
modes (16 bytes blocks). The tendency reported by
studies using computers was clearly observed in
sensor nodes.

Figure 7 illustrates the same conclusion using
Method 2. The same huge difference between DES,
3DES and AES with the same size of block was
observed. Thus, these two algorithms (DES, 3DES)
are not suitable for Wireless Sensor Networks and
IoT devices as they will consume more energy and
subsequently reduce the lifespan of nodes in the
network.

Figure 6: AES (CBC, ECB, CTR) vs DES/3DES for
16bytes block (Method 1)

Figure 7: AES (CBC, ECB, CTR) vs DES/3DES for
16bytes block (Method 2)

Finally, comparing the two methods used in this
study. It was noticed that Method 1 gave, for the same
type of node (Skymote), better results compared with
Method 2. The second method uses almost three times
the number of clock ticks used in the first method
(figure 8) and even more when deciphering a 16 block
of data, except for the CTR Mode. Using a different
type of node (for example wismote) also generated
different results although the same pattern was
maintained.

It was mentioned earlier in this study that CTR
Mode consumed almost the same number of clock
ticks for encryption and decryption. However, DES
and 3DES results were not included in figures 8 and
9 as a conclusion was previously drawn compared to
other algorithms.

At this point it is important to note that method 2
only works with targeted devices i.e a library has to
be built for each targeted device and some
incompatibilities might arise. For example, we were
able to compile, simulate and take measurements with
Wismote using method 1 while no solution was found
for method 2.

Figure 8: Comparison of Method 1 and Method 2 for
(encryption)

0

100

200

300

400

Encrypt Decrypt

CBC128 ECB128 CTR128

0

5000

10000

15000

20000

25000

30000

35000

40000

Encrypt Decrypt

CBC128 ECB128 CTR128 DES 3DES

0

10000

20000

30000

40000

50000

Encrypt Decrypt

CBC128 ECB128 CTR128 DES 3DES

0

200

400

600

CBC128 ECB128 CTR128

Method1 Method2

Figure 9: Comparison of Method 1 and Method 2 for
decryption

4 CONCLUSIONS

Our work focused on evaluating the number of clock
ticks required to perform encryption and decryption
on wireless sensor nodes using different modes (ECB,
CBC, CTR) for AES, DES and 3DES with different
key lengths and block size of data (16, 32, 48 and 64).
We observed that the length of the key does not have
a significant impact on the consumed energy
irrespective of the block size and the mode used or the
method. As concluded by previous studies, DES and
3DES consume more energy compared with AES.
CTR mode proved to be more efficient when it comes
to decryption of data, compared with other AES
modes. Depending on the method used (1 or 2), the
results are different. Method 1 exhibited the capacity
to be deployed on different sensor types of and
consumed less energy while Method 2 requires the
creation libraries for each type of nodes. We were
unable to create libraries for other nodes other than
skymote. Future works may include testing on real
sensors, adding more encryption algorithms,
introducing improvements made in IoT architectures
compared with WSN and evaluating the performance
of these methods on a network.

ACKNOWLEDGEMENTS

The authors would like to thank SMARTiLab/ EMSI
for support and material.

REFERENCES

Contiki Operating System. 2019 [C, Java, C++, Python].
Retrieved April 12, 2020, from
https://github.com/contiki-os/contiki/releases

Ghehioueche, A. A., Chikouche, N., Mezrag F., 2019.
Performance Evaluation and Analysis of Encryption

Schemes for Wireless Sensor Networks. In
International Conference on Digitization (ICD),
Sharjah, United Arab Emirates, 2019, pp. 187-191

Ibeatu, 2019. The TRIPLE-DES Algorithm Illustrated for
C code. https://github.com/lbeatu/The-TRIPLE-DES-
Algorithm-Illustrated-for-C-code

Kokke, 2019. TinyAES Implementation (1.0).
https://github.com/kokke/tiny-AES-c

Kowalczyk, C., 2020. Block Ciphers Modes of Operation.
CRYPTO-IT. http://www.crypto-
it.net/eng/theory/modes-of-block-ciphers.html

Mansour, I., Chalhoub, G. 2012. Evaluation of different
cryptographic algorithms on wireless sensor network
nodes. 2012 International Conference on Wireless
Communications in Underground and Confined Areas.
pp1–6.

Mardiana binti Mohamad, N., Wan Haslina, H., 2019.
Current research on Internet of Things (IoT) security: A
survey. In Computer Networks, 148, pp 283–294.

Meneghello, F., Calore, M., Zucchetto, D., Polese, M.,
Andrea Zanella, A., 2019. IoT: Internet of Threats? A
survey of practical security vulnerabilities in real IoT
devices. In IEEE Internet of Things Journal, 5(6), pp
8182–8201.

Ray, P.P., 2018. A survey on Internet of Things
architectures. Journal of King Saud University –
Computer and Information Sciences, 30, pp 291–319.

Rwan, M., Tasneem, Y., Fadi, A., Imran, Z., 2015. Internet
of Things (IoT) Security: Current Status, Challenges
and Prospective Measures. In 10th International
Conference for Internet Technology and Secured
Transactions (ICITST), pp. 336-341

Sha, K., Wei, W., Yang, A., Wang, Z., Shi, W., 2018. On
security challenges and open issues in Internet of
Things. Future Generation Computer Systems, 83, pp
326–387.

Tamimi, A., (2006). Performance Analysis of Data
Encryption Algorithms.
https://www.cse.wustl.edu/~jain/cse567-
06/ftp/encryption_perf/

Tankovska, H., 2020. Forecast end-user spending on IoT
solutions worldwide from 2017 to 2025. Statisticca.
https://www.statista.com/statistics/976313/global-iot-
market-size/

0

2000

4000

CBC128 ECB128 CTR128

Method1 Method2

