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Abstract: In this article, we present a flexible and fast self-calibration system of camera from uncalibrated images taken 

by a mobile camera, characterized by variable intrinsic parameters. We propose a new method leveraging the 

Characteristics Particular Vanishing Points. The estimation of the extrinsic and intrinsic parameters of the 

camera was performed using only two frames, illustrating the importance of our method in terms of turnaround 

time. This shows the importance of our approach in terms of execution time. The principal reason for this 

method is the exploitation of the homography matrix induced by the plane at infinity. The identification is 

made by using two pairs of vanishing points between the two images. Which would allow us to formulate 

nonlinear equations according to the camera intrinsic parameters. The experimental results shown in this paper 

demonstrate that our algorithm is robust. 

1 INTRODUCTION 

Self-calibration is an important area of computer 

vision. Many applications based on this field are 

already utilized in medicine (medical imaging, 

surgical applications), 3D reconstruction to cite a few. 

So much literature already exist that describes 

Camera self-calibration. The latter can be realized in 

two manners: Self-calibration with constant 

parameters and self-calibration using variable 

intrinsic parameters. Our approach falls into the latter 

category. In fact, we have performed an auto-

calibration on a camera having variable intrinsic 

parameters but with no prior knowledge of the subject 

and with fewer constraints (the number of images 

used, the characteristics of the cameras and the type 

of scene). This new solution does not necessitate any 

constraint on the scene or on the cameras. In addition, 

it minimizes the limitations of the self-calibration 

system. 
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In this work, we describe a new method for the self-

calibration of cameras with variable intrinsic 

parameters, using an unknown 3D scene and two 

frames. 

Our method based on the use of vanishing points to 

perform autocalibration. Calculates the homography 

from the detected vanishing points. It is assumed that 

Vanishing Point1 and Vanishing Point 2 (referred to 

as vp1 and vp2 in this paper) correspond to horizontal 

and vertical directions, although the order does not 

need to be respected. 

    Firstly, Projective Transform is computed to 

make the vanishing points go to infinity so that we 

have a Fronto Parellel view. Then, Affine Transform 

is computed to make axes corresponding to vanishing 

points orthogonal. The extraction of two vanishing 

points and the compute of the homography to infinity 

are exploited to formulate a nonlinear cost function. 

The downscaling of the operation by the Levenberg 

Marquardt algorithm (Moré, 1978) requires the 

evaluation of the intrinsic parameters of the devices 

used. 



The article is divided into the form of the 

following sections: In section 2, we look at most of 

the self-calibration procedures and work that has been 

accomplished in recent studies. In section 3, we will 

study the basic structure of the camera model and the 

camera self-calibration tools. Section 4 will present 

the method we propose for camera self-calibration. In 

part 5, we will describe the framework used to 

evaluate the efficiency of the method. Lastly, section 

6 will be a conclusion. 

2 PRVIOUS WORK 

Camera self-calibration consists in establishing the 

parameters of the mapping between the co-ordinates 

of the 3D scene and the co-ordinates of the image, and 

the other way around by an unknown scene. 

We present in this part the two categories of 

existing methods of camera autocalibration: the first 

method concerns the autocalibration of cameras with 

constant intrinsic parameters. However, the second is 

called autocalibration of cameras with varying 

intrinsic parameters. At the beginning, we present 

methods based on the use of cameras characterized by 

constant intrinsic parameters. Next, we deal with 

methods based on the use of cameras with variable 

intrinsic parameters in order to deepen this type of 

approach. 

Several research studies have also been carried out 

in this area. 

(Triggs, 1998), suggests a method relying on the 

self-calibration of cameras with constant intrinsic 

parameters by a planar scene. The basic approach of 

this method is the prediction of these parameters by 

the projection of two pixels in each image, and the 

establishment of the homography between the 

different frames (at least five images).  

(Strum, 2002), explores a technique based on the 

displacement of the camera which is based on constant 

intrinsic properties, with the notable exception of the 

focal length, which varies freely between the different 

views.  

(Gurdjos and Sturm, 2003), explains an auto-

calibration of the zoom camera from the frames of a 

plane scene whose Euclidean structure is unknown, 

the main idea of this method is to calculate both the 

intrinsic parameters of the camera and those related to 

the Euclidean pattern of the viewed scene, the 

formulation of the cost function is non-linear, which 

poses the problems of initialization of the focal length. 

In order to solve these difficulties, the authors have 

suggested a new specification that is not related to the 

focal length.  

(Liu and Shi, 2003) offers a model that calculates 

the initial computation of the intrinsic and extrinsic 

parameters of the camera using some geometric 

constraints on the initial image, and the use of the 

additional image allows the optimization of the first 

solution. 

(Cao and Xiao, 2006) investigates a further 

method complementary to the self-calibration of 

cameras with variable intrinsic partners from 

sequences of images of an object, this method is based 

on a constant motion motion between the images of 

the object moving around a single axis, the 

relationship between the projection matrices and those 

of the fundamental matrices yields the parameters of 

the camera by solving a system of non-linear 

equations.  

(Saaidi and Halli, 2008), offers a method based on 

an unknown 3D scene to calibrate the camera with 

fixed intrinsic parameters. A non-linear cost function 

is formulated from a "translation and small rotation" 

motion of the camera to estimate the homography 

matrices of the infinite plane between the pair of 

images; and the solver of a linear cost function is used 

to obtain the estimation of the camera parameters. 

(Zhao and Lv, 2012), wrote a self-calibration 

approach for cameras with constant intrinsic 

parameters using the creep line, the main idea of this 

method is to calculate the creep line by solving three 

linear equations based on circles and their centers. The 

respective values and theory of these circular lines and 

points are used to calculate the intrinsic parameters of 

the camera.  

(Shang and Yue, 2012), proposes a method based 

on the relative distance of the scene and on the 

homography matrix that converts the projective 

reconstruction into measurement, the elements of 

which depend on the intrinsic parameters of the 

camera. These settings and the 3D structure are 

obtained by minimizing an error function related to the 

relative distance. 

(Jiang and Liu, 2012), has introduced a self-

calibration method for cameras with variable intrinsic 

parameters, relying on a quasi-affine reconstruction. 

After this reconstruction, the homography of the plane 

at infinity can be determined, and used with 

constraints on the image of the absolute conic to 

estimate the intrinsic properties of the cameras used.  

(Zhao and Hu, 2012), presents a method based on 

round points which are obtained from the properties of 

the three prism, the intrinsic parameters of the camera 

can be determined linearly after the trailing points of 

each edge of the tri-prism and the coordination’s of the 

round points have been calculated. 



(Kluger and Ackermann, 2017).proposed a 

method of Deep learning for vanishing point detection 

using an inverse gnomonic projection. 

(El Akkad and Merras, 2018) put forward a 

method for self-calibrating the camera using varying 

intrinsic factors based on a sequence of images of an 

unidentified 3D object. 

3 SCORING AND TOOLS 

3.1 Rating 

We consider a point Ρ(𝑋 𝑌 𝑍)𝑇 of the 3D scene and 

its projection 𝑝 = (𝑢 𝑣)𝑇 in the image either 𝑝∞ =
(𝑢∞ 𝑣∞)𝑇  designates a point in the image plane, 

which represents the projection of a point at 

infinity 𝑃∞ = (𝑋∞ 𝑌∞ 𝑍∞)𝑇 . We denote 

by Ρ̃(𝑋 𝑌 𝑍 1)𝑇  ; �̃�∞ = (𝑋∞ 𝑌∞ 𝑍∞ 0)𝑇; �̃� =
(𝑢 𝑣 1)𝑇 and �̃�∞ = (𝑢∞ 𝑣∞ 1)𝑇  the homogeneous 

coordinates of the points P,𝑃∞ , 𝑝 and 𝑝∞ respectively.  

𝑂(0 0 0)𝑇 The null vector, 𝐼3 the identity matrix 

3 × 3. 

3.2 Modeling the Camera 

Modeling a camera amounts to modeling the process 

of image formation, i.e. finding the relationship 

between the spatial coordinates of a point in space 

with the associated point in the image taken by the 

camera. In this section, we first describe the pinhole 

model. What is called pinhole corresponds to the 

center of the camera through which any light ray 

passes in a rectilinear fashion. The model depends on 

two sets of parameters: intrinsic and extrinsic. All of 

the intrinsic parameters shape the sensor's internal 

geometry and operational properties. The second set 

contains the extrinsic parameters that link the sensor 

frame to the frame associated with the scene where 

the reference objects useful for autocalibration are 

located. 

Shows the pinhole camera model that we will use in 

this work to project points from the 3D scene into 

image planes.  

We denote by Κ𝑖(𝑅𝑖 𝑡𝑖) the matrix (3 × 4) which 

characterizes this model, such as: 

 �̃�𝑘~𝐾𝑖[𝑅𝑖 𝑡𝑖]�̃�𝑘  () 

 𝐾𝑖 = (
𝑓𝑖 𝑠𝑖 𝑢0𝑖

0 𝜀𝑖𝑓𝑖 𝑣0𝑖

0 0 1

) () 

Where: 𝜀𝑖  is the scaling factor, 𝑓𝑖 is the focused 

distance, 𝑠𝑖 is the skew factor and(𝑢0𝑖 𝑣0𝑖) are the co-

ordinates of the main focus point. 

Figure 1: Projection of a scene point by the 

pinhole camera model. 

3.3 Infinity Homography 

If we take, a point 𝑃𝑘
∞ of the 3D scene projected into 

the image planes 1 𝑎𝑛𝑑 𝑖 + 1 by the following 

equations: 

 𝜌0𝑘∞�̅�0𝑘∞ = 𝐾0(𝐼3  𝑂)�̅�𝑘∞ (3) 

 𝜌𝑖𝑘∞�̅�𝑖𝑘∞ = 𝐾𝑖(𝑅𝑖  𝑡𝑖)�̅�𝑘∞, 𝑖 ≥ 1 (4) 

If we replace the value of �̅�𝑘∞ in eq. (4), we get: 
𝜌0𝑘∞�̅�0𝑘∞ = 𝐾0(𝐼3  𝑂)(𝑥𝑘∞ 𝑦𝑘∞ 𝑧𝑘∞ 0)𝑇

= 𝐾0(𝑥𝑘∞ 𝑦𝑘∞ 𝑧𝑘∞)𝑇 

So:  

(𝑥𝑘∞ 𝑦𝑘∞ 𝑧𝑘∞)𝑇 = 𝜌0𝑘∞𝐾0
−1�̅�0𝑘∞ 

Likewise, if we replace the value of �̅�𝑘∞ in eq. (5), 

we get: 

(𝑥𝑘∞ 𝑦𝑘∞ 𝑧𝑘∞)𝑇 = 𝜌𝑖𝑘∞𝑅𝑖
−1𝐾𝑖

−1
�̅�𝑖𝑘∞ 

From these last equations, we can write: 

 �̅�𝑖𝑘∞~𝐾𝑖𝑅𝑖𝐾0
−1�̅�0𝑘∞  (5) 

So: 

 𝐻𝑖∞~𝐾𝑖𝑅𝑖𝐾0
−1 , 𝑖 ≥ 1  (6) 

𝐻𝑖∞ It is the homography of the plane at infinity 

between images 1 and i+1. 

3.4 Vanishing Points 

• Synopsis of approach 



The most accurate method shown uses line detection 

(LSD), followed by RANSAC to find vanishing point 

hypotheses for those lines, and finally J-linkage 

(Toldo and Fusiello, 2008) to cluster the lines which 

had similar responses to the hypotheses. The 

consistency measure, which defines the quality of a 

VP for a given line, is the distance of a segment's 

endpoint to a line connecting its midpoint with a 

hypothetical VP, as described in (Wildenauer and 

Vincze, 2007). 

• Key assumptions 

This makes no "Manhattan world assumption" (under 

which images would be assumed to have three 

dominant vanishing points on a regular grid). Instead, 

a RANSAC variant (Wang and Zheng, 2008) or 

(Zhang, 2006) tries to detect the underlying number 

of models. There is no orthogonality restriction or 

correction on VPs. There is also no reliance on known 

camera parameters. 

3.5 Image of the Absolute Conic 

The perfect conic  Ω∞    is a specific conic in the 

Infinite Plane. The conic Ω∞  is invariant to rigid 

displacements and smooth changes of scale, so that its 

relative position with respect to a moving camera is 

constant. Therefore, its image ω will be constant if the 

intrinsic parameters of the camera are constant. 

The conic Ω∞ can be considered as a calibration 

object present in all the scenes. The conicΩ∞ can be 

represented by the Dual Absolute Quadric Ω′∞.  In 

this instance, Ω′∞ and its carrying plane, the plane of 

infinity Π, are described by a geometric entity and the 

relationship between the Ω′∞ is conveniently 

provided by using the projection equation of the  Ω′∞: 

 𝜔𝑖 ≈ 𝑃𝑖Ω′∞𝑃𝑖
𝑇  () 

The Ω′∞ can be shifted between pictures through 

the homography of his plane (i.e. the plane to the 

infinite). 

From (2) we can write: 

𝑅𝑖 = 𝐾𝑖
−1𝐻𝑖∞𝐾0 

The rotation matrix 𝑅𝑖 is orthogonal then: 

 𝑅𝑖 = 𝑅𝑖
−𝑇  (8) 

From where 

𝐾𝑖
−1𝐻𝑖∞𝐾0 = 𝐾𝑖

𝑇𝐻𝑖∞
−𝑇𝐾0

−𝑇 

Which give: 

 𝜔𝑖 = 𝐻𝑖∞
−𝑇𝜔0𝐻𝑖∞

−1  (9) 

where  𝜔𝑖 = (

𝜔𝑖00 𝜔𝑖01 𝜔𝑖02

𝜔𝑖10 𝜔𝑖11 𝜔𝑖12

𝜔𝑖20 𝜔𝑖21 𝜔𝑖22

) = (𝐾𝑖𝐾𝑖
𝑇)−1  

is the image of the absolute conic. 

𝜔𝑖00 =
1

𝑓𝑖
2 , 𝜔𝑖01 = 𝜔𝑖10 = −

𝑠𝑖

𝜀𝑖𝑓𝑖
3 , 

𝜔𝑖02 = 𝜔𝑖20 =
𝑢0𝑖𝑠𝑖 − 𝜀𝑖𝑢0𝑖𝑓𝑖

𝜀𝑖𝑓𝑖
3  

𝜔𝑖11 =
𝑠2

𝜀𝑖
2𝑓𝑖

4 +
1

𝜀𝑖
2𝑓𝑖

2 , 

𝜔𝑖12 = 𝜔𝑖21 = −
𝑠𝑖(𝑣0𝑖𝑠𝑖 − 𝑢0𝑖𝜀𝑖𝑓𝑖)

𝜀𝑖
2𝑓𝑖

4 −
𝑣0𝑖

𝜀𝑖
2𝑓𝑖

2 

𝜔𝑖22 =
(𝑣0𝑖𝑠𝑖−𝑢0𝑖𝜀𝑖𝑓𝑖)2

𝜀𝑖
2𝑓𝑖

4 +
𝑣0𝑖

2

𝜀𝑖
2𝑓𝑖

2 + 1, 

The infinite point of a line defines its direction 

by Ρ∞
(1)

, Ρ∞
(2)

, soit respectivement, let respectively be 

the infinite points of two orthogonal lines, and then 

we have (Ρ∞
(1)

)𝑇Ω∞Ρ∞
(2)

= 0  since two orthogonal 

directions is a pair of points conjugated with respect 

to the absolute conic. Thus, the image points 

�̃�(1), �̃�(2) of Ρ∞
(1)

, Ρ∞
(2)

, called vanishing points of 

orthogonal directions, satisfy the following equation: 

 (�̃�(1))
𝑇

Κ−𝑇Κ−1�̃�(2) = 0  (10) 

4 PROPOSED METHOD 

In this section, we will describe in detail our 

autocalibration method proposed in this paper. 

To do this, we will start by detecting the points of 

interest, then the mapping of these points 

implemented and we end with the step of formulating 

the self-calibration equations based on the use of 

vanishing points.    

4.1 Autocalibration Equations 

We pose: 𝜔𝑗 = (

𝜔𝑗00 𝜔𝑗01 𝜔𝑗02

𝜔𝑗10 𝜔𝑗11 𝜔𝑗12

𝜔𝑗20 𝜔𝑗21 𝜔𝑗22

) 

And 



 𝐻𝑖∞
−𝑇𝜔0𝐻𝑖∞

−1 = 𝜔′𝑖 = (

𝜔′𝑖00 𝜔′𝑖01 𝜔′𝑖02

𝜔′𝑖10 𝜔′𝑖11 𝜔′𝑖12

𝜔′𝑖20 𝜔′𝑖21 𝜔′𝑖22

)  

From (9) we deduce the following five equations: 

𝜔𝑗00𝜔′𝑖01 − 𝜔𝑗01𝜔′𝑖00 = 0 

𝜔𝑗01𝜔′𝑖02 − 𝜔𝑗02𝜔′𝑖01 = 0 

𝜔𝑗02𝜔′𝑖11 − 𝜔𝑗11𝜔′𝑖02 = 0 

𝜔𝑗11𝜔′𝑖12 − 𝜔𝑗12𝜔′𝑖11 = 0 

𝜔𝑗12𝜔′𝑖22 − 𝜔𝑗22𝜔′𝑖12 = 0 

 Equations (9) and (10) give: 

 �̃�1𝐾0
−𝑇𝐾0

−1�̃�2 = 0,  �̃�1𝐾0
−𝑇𝐾0

−1�̃�3 = 0 

 �̃�2𝐾0
−𝑇𝐾0

−1�̃�3 = 0, �̃�′1𝑖𝐾𝑖
−𝑇𝐾𝑖

−1�̃�′2𝑖 = 0, 𝑖 ≥ 1  

 �̃�′1𝑖𝐾𝑖
−𝑇𝐾𝑖

−1�̃�′3𝑖 = 0, 𝑖 ≥ 1,  �̃�′2𝑖𝐾𝑖
−𝑇𝐾𝑖

−1�̃�′3𝑖 = 0, 𝑖 ≥ 1  

𝜔′𝑖00𝜔𝑗01 − 𝜔′𝑗01𝜔𝑗00 = 0,𝜔′𝑖01𝜔𝑗02 − 𝜔′𝑗02𝜔𝑗01 = 0 

𝜔′𝑖02𝜔𝑗11 − 𝜔′
𝑗11𝜔𝑗02 = 0, 𝜔′𝑖11𝜔𝑗12 − 𝜔′𝑗12𝜔𝑗11 = 0 

𝜔′𝑖12𝜔𝑗22 − 𝜔′𝑗22𝜔𝑗11 = 0 

The previous expression is nonlinear it contains 
eleven equations with unknowns of teeth: five for 𝜔0 
and a fifth for 𝜔𝑖  so, to satisfy it, we estimate the 
nonlinear cost function by the Levenberg-Marquardt 
algorithm (Moré, 1978): 

 𝑚𝑖𝑛𝜔0,𝑖
∑ 𝛼2 + 𝜗2 + 𝜖2𝑛

𝑖=1 + 𝛽𝑖
2 + 𝜆𝑖

2 + 𝜇𝑖
2 +

𝛾𝑖
2 + 𝛿𝑖

2 + 𝜏𝑖
2 + 𝜌𝑖

2 + 𝜒𝑖
2 

  (11) 

With: 

𝛼 =  �̃�1𝐾0
−𝑇𝐾0

−1�̃�2, 𝜗 =  �̃�1𝐾0
−𝑇𝐾0

−1�̃�3 

𝜖 =  �̃�2𝐾0
−𝑇𝐾0

−1�̃�3, 𝛽𝑖 =  �̃�′1𝑖𝐾𝑗
−𝑇𝐾𝑗

−1�̃�′2𝑖 

𝜆𝑖 =  �̃�′1𝑖𝐾𝑗
−𝑇𝐾𝑗

−1�̃�′3𝑖, 𝜇𝑖 =  �̃�′2𝑖𝐾𝑗
−𝑇𝐾𝑗

−1�̃�′3𝑖 

𝛾𝑖 = 𝑤11𝑤′
12𝑖 − 𝑤12𝑤′

11𝑖 

𝛿𝑖 = 𝑤12𝑤′13𝑖 − 𝑤13𝑤′12𝑖 

𝜏𝑖 = 𝑤13𝑤′
22𝑖 − 𝑤22𝑤′

31𝑖 

𝜌𝑖 = 𝑤22𝑤′23𝑖 − 𝑤23𝑤′22𝑖 

𝜒𝑖 = 𝑤23𝑤′33𝑖 − 𝑤33𝑤′23𝑖 

We are going to calculate the intrinsic matrices 
from three orthogonal vanishing points for each 
image, the values obtained are focal distance, co-
ordinates of principal point for each image, which 
will be the initial values of our system of nonlinear 
equations, which requires an initialization step. 

4.2 Rotation Matrix  

After the focal length being calculated, the direction 

vectors 𝑑𝑜𝑥 and 𝑑𝑜𝑦can be computed. Let𝑑𝑧 = 𝑑𝑜𝑥 ×

𝑑𝑜𝑦 , and making 𝑑𝑧  as the third axis, a coordinate 

frame can be constructed at the corner structure. The 

point O is the original point; OX and OY are the x-

axis and y-axis separately and 𝑑𝑧  is the z-axis. We 

call this constructed coordinate frame SCF. The 

representation matrix of SCF in the camera 

coordinate frame can be written as:  

𝑟 = [𝑑𝑜𝑥 𝑑𝑜𝑦 𝑑𝑧] , where r is a 3×3 matrix and 

each column of r is an axis direction of SCF. 

4.3 Translation Vector  

Once the focal length known, the direction of the 

translation vector can be denoted as  𝑡𝑙𝑑 =
[𝑥0 𝑦0 𝑓 ] . Since the corner structure in two 

images will be used in the following optimization, the 

two translation vectors of the two cameras have to be 

balanced.  Let �⃗⃗�𝑜𝑥 = [1 0 0]𝑇  denotes the unit 

direction vector of OX in SCF. Reviewing the 

projection equation of pin-hole camera model, the 

projection of X can be written as: 𝑠 ∗ 𝑟1 ∗ (�⃗⃗�𝑜𝑥 − 𝜆 ∗

𝑟1
𝑇 ∗ 𝑡𝑙𝑑, it is an equations set which includes three 

equations and there are two unknown values: s and λ 

. The value of s can be calculated from the third 

equation and then the least squares solution of λ can 

be calculated from the other two equations. Then the 

translation vector of the first camera is 

calculated:𝑡1 = 𝜆 ∗ 𝑡𝑙𝑑, The same process is done to 

the second camera and 𝑡2 is computed. Up to now, the 

focal length and all the extrinsic parameters have 

been recovered and the next step is to optimize the 

solution and make them more precise. 



5 EXPERIMENTS 

5.1 Synthetic Data 

We have done several experiments with our algorithm 

and two of them are shown here.  Fig 2 shows two 

synthetically images of a box, the real values of the 

two cameras and the calculated ones are represented 

in Table 1. We define the relative calibration error of 

the focal length as 𝑒𝑓 = ‖𝑓 − 𝑓‖ ‖𝑓‖⁄  , the relative 

calibration error of the rotation matrix as 𝑒𝑅 =

‖�̃� − 𝑅‖ ‖𝑅‖⁄ , the relative error of the translation 

vector as 𝑒𝑡 = ‖�̃� − 𝑡‖ ‖𝑡‖⁄ .The relative errors of the 

calculated parameters are shown in Table 2. From 

Table 2 we can see that the relative errors are quite 

little. 

5.2 Real Data 

Our self-calibration procedure using the York Urban 

Dataset is shown in Figure 3. The evaluation of the 

intrinsic parameters of the camera in the 

images{𝐼0, 𝐼𝑛}1≤𝑛≥𝑚  is given by minimizing the cost 

feature (11) using the Levenberg-Marquardt 

algorithm. To estimate the intrinsic parameters of 

each camera by our approach, two phases must be 

implemented: initialization to generate an immediate 

solution and reduction of the cost element in order to 

find an ideal solution. The scene consists of several 

points; the projection is done according to the pinhole 

model. 

 

Figure 2: Two synthetically images of a box. 

    

(A) ORIGINAL IMAGE (E) 3 VANISHING POINTS 

    

(B) ORIGINAL IMAGE (F) 3 VANISHING POINTS 

    

(C) ORIGINAL IMAGE (G)3 VANISHING POINTS 

    

(D) ORIGINAL IMAGE (H)3 VANISHING POINTS 

Figure 3: An illustration of vanishing point estimation 

results three orthogonal vanishing points on a selfcalibrated 

image in Manhattan world, original(A, B, C, D), three 

vanishing points (E, F, G, H). 

 

 

Table 1: The results of the first experiment. 

 Focal length f  Angle round x-axis Angle round y-axis Angle round z-axis 

Real 800.0 0 20 0 

 

Calculated 

802,3 0,3 19.5 0.5 

816.8 

 x-translation (pixels) y-translation (pixels) z-translation (pixels) 

x x/z y y/z z z/z 

 

Real 

ts1 4683.01 -1.30 -1776.19 0.49 -3608.49 1 

ts2 6598.08 -3.22 -1107.88 0.54 -2050.96 1 

 

Calculated 

ts1 2.34 -1.32 -0.88 0,50 -1.77 1 

ts2 3.32 -3.26 -0.56 0.55 -1.02 1 



Table 2: The relative errors of the calculated parameters of the first experiment. 

𝒆𝒇𝟏 𝒆𝒇𝟐 𝒆𝑹 𝒆𝒕𝟏 𝒆𝒕𝟐 

0.25% 1.9% 0.0% 1.4% 1.1% 

Table 3: Estimated camera intrinsic parameters for the four sequences 

Seq. Images f ε s 𝒖𝟎 𝒗𝟎 

(A) Image 1 1271.71 0.99 0.03 528.50 334.06 

Image 2 1165,65 1.00 0.07 448.12 291.07 

(B) Image 1 2820.75 0.99 0.01 1542.43 1039.07 

Image 2 2744.83 1.00 0.07 1479.83 990.18 

(C) Image1 2514.79 0.99 0.06 1108.6 1185.65 

Image2 2607.30 1.00 0.08 884.75 1200.05 

(D) Image1 2893.59 1.00 0.16 1140.86 1430.81 

Image2 2967.02 0.99 0.53 1044.57 1416.03 

 
6 CONCLUSION 

In the present work, we have proposed a new self-
calibration method of a CCD camera with variable 
intrinsic parameters from an unknown scene and 
based on the use of leak points. We have shown that 
the determination of intrinsic parameters is possible 
using only two images. The results are satisfactory in 
terms of stability, robustness and execution time. 
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