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Abstract: An application of the lattice Boltzmann method (LBM) to the study of sound wave propagation is presented 
in this paper. The major purpose of this simulation is to show how the LBM technique can be easily applied 
in the domain of acoustics. The sound waves are emitted from a vibrating rectangular source placed in the 
center of the left face of a rectangular enclosure filled with air. An analytical study is performed to validate 
our numerical approach and the error between the two studies is also described to ensure the validity of the 
LBM analysis.

1 INTRODUCTION 

The history of the LBM method stems from two 
different approaches, the kinetic theory of discrete 
velocity distribution gases and lattice gases 
(Bechereau, 2017). The first approach is generally 
used to model a system composed of a large number 
of particles such as a gas using statistical description 
tools (Mohamad, 2011; Timm et al, 2017; Tristani, 
2015). A lattice gas is a cellular automaton developed 
to simulate the behaviour of a fluid (Frisch et al., 
1986; McNamara and Zanetti, 1988). That is, a 
structured grid of cells. Each of these cells is in a state 
(empty or full) which evolves over time. 

The application of the LBM in different scientific 
fields has been well known in the literature for a long 
time. This numerical method is a mesoscopic 
approach that can simulate various physical 
mechanisms such as fluid flows, wave propagation 
and heat transfer. For example, for wave simulation, 
the LBM has been employed for many years to study 
many types of waves such as elastic (Frantziskonis, 
2011; O’Brien et al., 2012), sound (Benhamou et al., 
2020; Buick et al., 1998; Salomons et al., 2016), 
aeroacoustic (Marié et al., 2009; Weidong and Jun, 
2019)  and shock waves (Guangwu et al., 1999; Xiao, 
2007). 
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In this article, our work deals with numerical and 
analytical studies of the sound waves propagation. 
For numerical simulation, the LB method is used to 
model the waves produced using the point source 
modelling tool. In the analytical case, the study will 
be carried out using the mathematical expression of 
cylindrical waves given by the resolution of the 
standing wave equation. 

It is important to mention that the study of sound 
waves is chosen in this article as a research topic 
because its applications are very important in various 
fields, especially in the industrial (Moudjed, 2013) 
and medical (Ranganayakulu et al., 2016; Sarvazyan 
et al., 2013) sectors. 

2 NUMERICAL APPROACH 

For the LBM simulations, there are two popular 
models to simulate different physical problems: 
multiple relaxation time (MRT) and single relaxation 
time (SRT) models. In the case of acoustic wave 
simulation, the MRT model is more stable and precise 
than the SRT scheme (Viggen, 2009). For this simple 
reason, the LBM-MRT model is chosen in this work 
to simulate the wave propagation. In this way, the 
description of the fluid evolution using this model can 
be given by the following discrete Boltzmann 



equation (Mohamad, 2011; Benhamou et al., 2020; 
Jami et al., 2016; Mezrhab et al., 2010): 

𝑓௜ሺ𝑥௜ ൅ 𝑐௜𝛥𝑡, 𝑡 ൅ 𝛥𝑡ሻ െ 𝑓௜ሺ𝑥௜, 𝑡ሻ ൌ 𝑀ିଵ𝑆ሾ𝑚௜
௘௤ െ 𝑚௜ ሿ 

where 𝑓௜  represents the distribution function in 
direction 𝑖, 𝑐௜ denotes the velocities of the lattice used, 
𝛥𝑡 is the time step, 𝑆 is the relaxation matrix and 𝑀ିଵ 
is the inverse matrix of the transformation matrix 𝑀. 
𝑚௜  and 𝑚௜

௘௤  are the fluid moments and equilibrium 
moments, respectively. 

The discretization of the velocity space allows to 
define the LBM lattice. Therefore, it is necessary to 
choose a set of well reduced velocities to optimize the 
computation time of the LBM simulations. However, 
the number of velocities must be sufficient to describe 
the dynamic behaviour of the flow and the velocities 
should not be chosen randomly. The choice of the 
LBM lattice is therefore very important. Generally, it 
is necessary to choose a symmetrical lattice in order 
to obtain the flow behaviour at the macroscopic scale. 
Usually, the D2Q9-LBM scheme (Figure 1) is 
employed to determine the macroscopic quantities 
such as velocities and density (Mohamad, 2011). 

 

Figure 1: The D2Q9-LBM model. 

The matrix 𝑆 is a diagonal matrix. In this LBM 
simulation, the nine relaxation rates are the same as 
those mentioned in the references (Mohamad, 2011; 
Benhamou et al., 2020): 

S ൌ diagሺ1,1.4,1.4,1,1.2,1,1.2, 𝑠଻, 𝑠଼ሻ     (2) 

The two relaxation rates s଻ and s଼ are equal and 
related to the kinematic viscosity (ν) as: 

  s଻ ൌ s଼ ൌ
ଵ

ଷ஝ ା଴.ହ
                              (3) 

The matrices 𝑀 and 𝑀ିଵ are matrices (9*9). Their 
role is to map the nine distribution functions to the 
space of moments:  

𝑚 ൌ 𝑀𝑓    and      𝑓 ൌ 𝑀ିଵ𝑚                 (4)   

The mathematical expression of the M is given as 
(Mohamad, 2011): 
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 (5) 

The moment vector 𝑚 is given as a function of the 
density, physical energy, energy flux, impulsion and 
the physical quantities related to the components of 
the stress tensor (Benhamou et al., 2020; Mezrhab et 
al., 2010). 

The vector 𝑚௜
௘௤ depends of the fluid density and 

the macroscopic velocities (𝑢, 𝑣) (Mohamad, 2011).  

𝑚଴
௘௤ ൌ 𝜌 

𝑚ଵ
௘௤ ൌ െ2𝜌 ൅ 3𝜌ଶሺ𝑢ଶ ൅ 𝑣ଶሻ 

𝑚ଶ
௘௤ ൌ 𝜌 െ 3𝜌ଶሺ𝑢ଶ ൅ 𝑣ଶሻ 

𝑚ଷ
௘௤ ൌ 𝜌𝑢  

𝑚ସ
௘௤ ൌ െ𝜌𝑢                                                       (6) 

𝑚ହ
௘௤ ൌ 𝜌𝑣 

    𝑚଺
௘௤ ൌ െ𝜌𝑣 

𝑚଻
௘௤ ൌ 𝜌ଶሺ𝑢ଶ െ 𝑣ଶሻ 

𝑚଼
௘௤ ൌ 𝜌ଶ𝑢𝑣    

Differently from CFD methods, which are based 
on solving the differential equations, the LBM is a 
statistical approach that gives the macroscopic 
quantities as the mean of the microscopic quantities 
outlined by the functions 𝑓௜

 . For example, for the 
D2Q9 schema, the density (𝜌) and velocities (𝑢, 𝑣ሻ ) 
can be computed as (A. A. Mohamad, 2011): 

𝜌 ൌ ∑ 𝑓௜
 ଼

௜ୀ଴ ,   𝜌𝑢 ൌ ∑ 𝑓௜
 ଼

௜ୀ଴ 𝑐௜  and   𝜌𝑣 ൌ ∑ 𝑓௜
 ଼

௜ୀ଴ 𝑐௜     
(7)              

where 𝑐௜ are the nine LBM velocities of the D2Q9 
model. 

3 BOUNDARY CONDITIONS 

The boundary conditions applied at all walls of the 
rectangular enclosure are the bounce-back boundary 
conditions (BBC). These types of conditions are 
typically employed to rebound the fluid particles at 
the solid boundaries. The BBC are based on the idea 



that the known functions can be exploited at the 
boundaries to determine the unknown functions. For 
example, an implementation of the BBC at the 
vertical walls of a rectangular cavity is illustrated in 
figure 2. At the west boundary, the functions 𝑓ଵ, 𝑓ହ 
and 𝑓  are respectively replaced by 𝑓ଷ, 𝑓଻, 𝑓଺. At the 
east wall, the functions  𝑓ଷ , 𝑓଺  and 𝑓଻  are given as 
follows: 𝑓ଷ ൌ 𝑓ଵ,  𝑓଺ ൌ 𝑓  and 𝑓଻ ൌ 𝑓ହ.    

 

Figure 2: Illustration of the Bounce-back boundary 
conditions. 

4 RESULTS AND DISCUSSION 

The geometry of the physical problem is depicted in 
figure 3. The sound waves are emitted by a vibrating 
rectangular source placed in the center of the left wall 
of a rectangular enclosure filled with air. The acoustic 
source is discretized into a set of point sources based 
on the acoustic point source technique (Benhamou et 
al., 2020; Salomons et al., 2016; Viggen, 2009). This 
technique allows the sound waves to be easily 
produced. For a single point source, the waves can be 
described by the following equation:  

𝜌 ൌ 𝜌଴ ൅ 𝜌஺ 𝑠𝑖𝑛 ሺ
ଶగ௧

்
ሻ                         (8)     

where the parameters 𝜌஺ , 𝑡 , 𝑇  and 𝜌଴  represent the 
amplitude, the time, the period, and the equilibrium 
density (𝜌଴ ൌ 1), respectively. 

It should be noted that this model is only valid in 
cases of weak oscillations, i.e. in cases where the 
amplitude is very small compared to the equilibrium 
density ( 𝜌଴ ≫ 𝜌஺) (Viggen, 2009). 

For the point source, it is necessary to confirm 
that it behaves in a way that corresponds to the 
analytical solution of the simulated physical problem. 
In 2D, the emitted acoustic waves are the circular 
waves corresponding to the cylindrical waves in 3D  
(Salomons et al., 2016; Viggen, 2009). Thus, the 
analytical solution can be expressed as:  

𝜌 ൌ 𝐴𝐻଴
ሺଶሻሺ𝑘𝑟ሻ𝑒௝

మ
೅

௧                          (9)                                       

where 𝐴  is a constant, 𝐻଴
ሺଶሻ is the Hankel function, 

which depends on the wave number 𝑘  and the 

distance to the source 𝑟 . All the parameters 
represented in this equation (Equation (9)) are well 
discussed in the references (Benhamou et al., 2020; 
Viggen, 2009).  

 

Figure 3: Simulated physical problem. 

It should be noted that our LBM code has already 
been validated by comparing our results obtained 
from a single acoustic source placed in the center of a 
square air-filled cavity. This validation is illustrated 
in reference (Benhamou et al., 2020). It is reported on 
the simulation of circular wave propagation in air at 
time 1600 and for a period and viscosity of 40 and 
0.06, respectively.  

The numerical results obtained for this simulation 
are given in figure 4 . From this figure, it can be seen 
that the waves produced are plane and propagating in 
the x-direction towards the right wall of the enclosure. 
These waves are obtained by the interference of 
circular waves emitted by discrete acoustic point 
sources. This result are obtained at  700 iterations 
(𝑡 ൌ 700).  At this time, the waves arrive at the east 
wall and begin to be reflected by this boundary. 

The diameter of the rectangular source considered 
here is H/3, it corresponds to 100 point sources for a 
mesh of 400*300 nodes. The priode (𝑇) is equal to 40, 
the viscosity () is fixed at 0.02 and the amplitude 
(𝜌஺) is chosen in a way that the acoustic model used 
always remains linear (𝜌஺ ൌ 0.01) (Benhamou et al., 
2020). 

 

Figure 4: Simulation results of the acoustic waves 
propagation in enclosure filled with air at 700 iterations. 



To further validate our numerical results, the 
analytical analysis results are also presented in this 
work. As mentioned previously, for a single acoustic 
source, this analytical solution is given by equation 
(9).  In the case of the source shown in figure 3, the 
analytical solution is given by the sum of the density 
fields of the point acoustic sources.  

The mathematical expression of the constant 𝐴 
appearing in equation (9) can be expressed as 
(Viggen, 2009) : 

𝐴 ൌ 𝑎 𝜌஺ 𝑒ି
ೕమ

య                            (10) 

where 𝑎 is a constant and 𝜌஺ is the amplitude of the 
point source.  The factor 𝑎 depends in particular on 
the viscosity used. For example, for a LBM period of 
20, the values of 𝑎 found by Viggen (Viggen, 2009) 
for viscosities of 0.166 and 0.033 are 0.135 and 0.15, 
respectively. 

It is worth noting that the mathematical 
expression of 𝐴  (equation (10)) is given from a 
comparison of the analytical and numerical results 
(Viggen, 2009). The analytical resolution of equation 
(9) gives an analytical solution very close to the 
numerical results found. However, there is a 
discrepancy (gap) between these two solutions. This 
is due to the term 𝑒ି௝ଶ/ଷ expressed in equation (10). 
This gap can be clearly seen in figure 5, which 
represents the analytical and numerical longitudinal 
profiles of the density along the x-axis at time 700 and 
at the position H/2. The calculation of the absolute 
error ( Ea ) is also presented. This error can be 
determined as the difference between the analytical 
(𝜌஺௡௟) and numerical (𝜌ே௨௠) densities (Benhamou et 
al., 2020): 

𝐸𝑎 ൌ  |𝜌஺௡௟ െ 𝜌ே௨௠|                       (11) 

 

Figure 5: Longitudinal profiles of the numerical and 
analytical densities along the x-axis given by equations (8) 
and (9) in the presence of the constant 𝐴  expressed in 
equation (10). 

Figure 6 illustrates the variation of  𝐸𝑎 along the 
x-axis. It fluctuates between 0 and 2.22 10ିଷ  very 
close to the rectangular sound source and its variation 
becomes small away from the source. It should be 
noted that for the maximum value found in this 
calculation (2.22 10ିଷ), the error can be considered 
significant in relation to the variation of the density, 
which oscillates between 0.996 and 1.004 (see Figure 
5).  Consequently, the analytical solution must be 
improved.  

 

Figure 6: Fluctuation of the absolute error between the 
analytical and numerical densities along the x-axis. 

Many tests have been performed to improve the 
gap between analytical and numerical results, i.e. to 
improve the absolute error. We found very good 
agreement between the two results if equation (10) 
becomes: 

𝐴 ൌ 𝑎 𝜌஺ 𝑒ି
ೕ
మ                            (12) 

It is important to note that  the absolute value of 
the density obtained by using this last expression is 
high compared to that found by using equation (10) 
and therefore it leads to the improvement of the 
absolute error between the numerical and analytical 
results. The change of the mathematical expression of 
the constant A is tested in the present studied 
configuration and will be tested in other subsequent 
work. The new results found are shown in figure 7. A 
good correspondence between the analytical and 
numerical calculations can be seen from this figure.  

As for the first case, the absolute error (Ea) is 
calculated and is depicted in figure 8. From this 
figure, it can be seen that Ea varies between 0 and 
about 4.5 10ିସ along the x-axis, except in the vicinity 
of the acoustic source and the right wall of the cavity 
where it takes a more significant value. The 
maximum value of Ea (8 10ିସ ) can be considered 
very low compared to its former maximum value 



( 2.22 10ିଷ ) which indicates that the numerical 
results are now very close to those calculated 
analytically. 

 

Figure 7: Longitudinal profiles of the analytical and 
numerical densities found after the improvement of the 
mathematical expression of the constant A  (equation (12)). 

 

Figure 8: Oscillation of the absolute error between the 
analytical and numerical densities along the x-axis after the 
improvement of the mathematical expression of the 
constant A  (equation (12)). 

The analytical density field is shown in figure 9, 
in order to compare it with the numerical result shown 
in figure 4. There is a good resemblance between the 
two figures. Note, however, that due to the reflection 
of the waves due to the bounce-back boundary 
conditions applied in the numerical calculations, 
interferences occur and modify the waveform near the 
walls with regard to the analytically calculated 
density field. The reflected waves can be absorbed 
using the absorption boundary conditions, and this 
will be a future study. 

 

 

 

Figure 9: Analytical results found using the sum of the 
density expressed in equation (9) in the presence of the 
constant 𝐴 formulated in equation (12). 

5 CONCLUSIONS 

This work deals with the simulation of acoustic waves 
using the MRT-LBM method. The numerical study 
presented here has shown that the LB method can be 
used to simulate the acoustic waves generated in air 
by a rectangular acoustic source. The proposed 
numerical model presents a good accuracy, confirmed 
by the comparison with the analytical calculation that 
is improved in this study compared to the one already 
reported in the literature. This validation is carried out 
using the mathematical expression of the density 
given by the wave equation solution for the case of 
cylindrical waves emitted by point sources 
(Benhamou et al., 2020). 
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