
Secure Data Flow Messaging on Web Socket using Rivest Code 6

Ika Oktavia Suzanti1, Yoga Dwitya Pramudita1 , Husnul Atho’ Mubarok1 and Dwi Kuswanto1
1Departement of Informatics Engineering, University of Trunojoyo Madura, Bangkalan, Indonesia

Keywords: Realtime System, Data Security, Cryptography.

Abstract: Websocket is a two-way real-time system communication protocol for web and mobile applications. By
utilizing full-duplex communication, WebSocket is very effective in applications that require fast response
times such as instant messaging, real-time gaming and multimedia data communication. Data security issues
are important especially when it comes to financial, health to personal data of many people, but WebSocket
technology does not provide security mechanisms such as connection authentication or message encryption,
making it very vulnerable to passive attacks such as packet monitoring or sniffing by unauthorized parties.
To solve these problems, can be applied an encryption method in data flow on communication lines used.
Rivest Code 6 (RC6) is a cryptographic algorithm with a good avalanche effect of plaintext and keys, and a
fast time in encryption and decryption process. This research aims to apply RC6 encryption method on
websocket communication channel to better maintain confidentiality and authenticity of sent messages.
Speed performance test results show that Rivest Code 6 (RC6) has an avalanche effect of 28.29% changes
in plaintext and 52.28% changes in keys.

1 INTRODUCTION

Websocket is a real-time protocol communication
that are often considered as an alternative method
because it has advantages over request-response
communication as common as Hyper Text Transfer
Protocol (HTTP). These advantages include using a
full duplex transmission model that makes
communication between client and server can be
done simultaneously, reducing delay rate in sending
messages from sender to recipient (Latency) and
easy to use API (Park et al., 2014) (Pimentel and
Nickerson, 2012) (Tsai et al., 2019). Websocket can
be implemented on a web browser, web server or on
Android instant messaging application (Erkkilä,
2012).

On HTTP protocol communication between web
browser (client) and web server (server) will only
occur when there is a request from client, but when
using websocket, it is allows the server to push latest
information to client without prior requests (Tsai et
al., 2019). By utilizing full-duplex communication,
WebSocket is very effective in applications that
require fast response times such as instant
messaging, realtime gaming and multimedia data
communication (Joshi, 2012). Some of websocket
implementations are e-learning (Arora et al., 2016)

portofolio response (Tsai et al., 2019) smarthome
application (Soewitoa et al., 2019), medical
application (Kubov et al., 2019) email address
verifier (Weizhen et al., 2012) and real-time sharing
screen (Darmawan et al., 2019).

Data security issues are important especially
when it comes to financial, health to personal data of
many people (Namasudra and Gandomi, 2020).
Some public facilities often require personal data for
authentication even though they also cannot
guarantee the security of data that has been given
(Dinesha and Kb, 2016). In its development, the
challenge that must be faced when using websocket
in an application is a security problem because focus
of this technology is only on client server
connectivity (Enghardt et al., 2019). WebSocket
technology does not provide security mechanisms
such as connection authentication or message
encryption, so it is very vulnerable to passive attacks
such as packet monitoring or sniffing by
unauthorized parties. To solve these problems, can
be applied an encryption method in a data stream on
communications line used (Mishra and J, 2013) such
as sent message from an instant messaging
application.

Rivest Code 6 (RC6) is a cryptographic
algorithm with a good avalanche effect of plaintext
and key (Liu et al., 2017) and fast time in the

Suzanti, I., Pramudita, Y., Mubarok, H. and Kuswanto, D.
Secure Data Flow Messaging on Web Socket using Rivest Code 6.
DOI: 10.5220/0010305400003051
In Proceedings of the International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies (CESIT 2020), pages 151-157
ISBN: 978-989-758-501-2
Copyright c© 2022 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

151

encryption and decryption process (Aggarwal,
2015). RC6 has been used for encryption in wireless
communications (Mahidhar and Raut, 2016) image
protection (Naeem et al., 2016) or data transfer in
cloud computing (Bhardwaja et al., 2016). The RC6
algorithm adopts three primitive operations used in
RC5, also using a 32-bit multiplication operation
that can already be implemented on today's modern
processors. This primitive operation is very effective
to produce a "diffusion" effect or a more efficient
distribution effect, operation results in RC6
algorithm being safer than RC5, multiplication
operation is used to count number of bits rotated so
that concept of data-dependent rotations can be
implemented with more perfect by RC6 algorithm
(Rivest et al., 1998) This research is aim to
implementing RC6 encryption method, it is expected
that data flow on websocket communication path
used will be more secure in confidentiality and
authenticity of messages sent.

2 METHOD

2.1 Encrypted Communication Design

In this research, encrypted communication was
developed by implementing RC6 method as an
algorithm for encoding messages carried out by
exploiting frames in websocket packages. To be able
to communicate with encrypted communication, all
parties involved in communication must have the
same type of encryption from both client and
websocket server. Before the message is sent,
encryption process will first be carried out. There are
two main parts of encrypted communication system
design on a websocket, namely:

1. Client A will be party sending the message
and client B who will be the recipient of
encrypted message.

2. Server applications that play a role in routing
message delivery from client to client.

Users who act as senders can send information in
the form of files or text, while users who act as
recipients will receive the information sent. Message
sending is done during websocket communication.
The whole system works are:

Figure 1. RC6 Algorithm Encryption Process

1. Encrypted communication process starts from
client sending encrypted messages. All types
of secret messages both files and text are first
converted into bytes. After message is
successfully converted to byte format,
message encryption process is carried out.

2. Encryption key is determined as soon as
websocket implementation built both from
client server and port number of each
connection is added. After key is added with
port number, it changed to a byte. In
experiments conducted by, client and server
are on the same local network so that port
numbers used are also the same. If client and
server are on different networks, then a static
key should be used so that it can be encrypted
by all connecting devices from sender to
receiver.

3. The encryption process RC6 algorithm asks
for two inputs of a plaintext and a byte type
key. Details secret message encoding process
is shown in Figure 1. After plaintext and key
received, encryption process is then performed
by :

CESIT 2020 - International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies

152

Figure 2. RC6 Algorithm Decryption Process

1. Plaintext input and encryption key are in byte.
2. Variable initialization
a. Initialization variable r with a value of 20.

Variable r is number of repetitions during
encryption process.

b. Initialize variable B by summing value of
variable B with internal key S index 0.
Variable B is part of four register blocks A, B,
C, and D.

c. Initializing variable D by adding up the value
of variable D with the internal key S index 1.

d. Initialize index variable with a value of 1 as an
iteration indicator.

3. The number of r repetitions, with r value is 20
turns.

4. The encryption process for RC6 algorithm.
Each repetition in this algorithm follows the
following rules, value of B is inserted into

function f, which is defined as follows f (X) =
X (2X + 1), then rotated left as far as 2log(w)
or 5 bits. The results of this process are
assumed to be t. The value of t is then XOR
with value of A and result will be value A.
The value of t is also used as a reference for C
to rotate value to the left. Likewise for value
of u is also used as a reference for value of A
to do the leftist spinning process.

5. Check the number of repetitions that have
been done.

6. After the looping process is finished, then
value of variable A is carried out with key
value S to 2r + 2 and value of C with key S to
2r + 3.

7. Ciphertext encryption results.
4. Furthermore, after encryption process at

sending client is completed, encrypted
message (ciphertext) will be sent to server.

5. When server receives an encrypted message
(ciphertext) then message will be decrypted to
find out information from message.
Information needed by server is about
message recipient. Details decryption process
is shown in Figure 2. In message decryption
process two inputs are required, which are
encrypted messages (ciphertext) and
encryption key then each of it will converted
to a byte. At decryption process that occurs
are :

1. Input ciphertext and encryption key in byte.
2. Variable initialization
a. Initialization variable r with a value of 20.

Variable r is number of repetitions during
encryption process.

b. Initialize variable C by summing value of
variable C with internal key S index 0.
Variable C is part of four register blocks A, B,
C, and D.

c. Initializing variable A by adding up the value
of variable A with the internal key S index 1.

d. Initialize index variable with a value of 1 as an
iteration indicator.

3. The number of r repetitions, with r value is 20
turns.

4. The decryption process for RC6 algorithm.
Each repetition in this algorithm follows the
following rules, value of D is inserted into
function f, which is defined as follows f (x) =
x (2x + 1), then rotated left as far as 2log(w)
or 5 bits. The results of this process are
assumed to be t. The value of t is then XOR
with value of D and result will be value D.
The value of t is also used as a reference for C

Secure Data Flow Messaging on Web Socket using Rivest Code 6

153

to rotate value to the right. Likewise for value
of u is also used as a reference for value of A
to do right playback process.

5. Check the number of repetitions that have
been done.

6. After the looping process is finished, then
value of variable D is carried out with key
value S to 2r + 2 and value of B with key S to
2r + 3.

7. Plaintext encryption process results.
6. After recipient's information is known by

server, message will be back to encryption
process and then encrypted message will be
sent to receiving client.

7. Client receives an encrypted message from
server then message will be decrypted to find
out information sent by message sender.

2.2 Testing Scenario

2.2.1 Speed Performance Test

SERVER
APPLICATION

DUMMYNET

WIFI HOSTPOT

Client A App
(Sender)

Client B App
(Destination)

Data stream Data stream

Figure 3. Speed performance test scenario.

Speed performance test is done by comparing
time usage difference in message sending process,
using Transport Layer Security (TLS) with
certificate format “PKCS12” and Rivest Code 6
(RC6) encryption. Testing process is carried out
using text and binary data with different sizes so that
average value of overall test results will be obtained.
In the speed performance test, Dummynet is used as
a network simulator to simulate packet loss. Test
scenario can be seen in Figure 3.

Message sending speed performance tests are
carried out from sender to destination applications.
Speed performance test has 5 packet loss scenarios,
namely 0%, 3%, 6%, 9% and 12%. As well as 2
types of data that are 5 text and 5 binary data which
has a different size. Table 1 shows types and sizes of
data used in the process.

Table 1. Types and size of data test

No Data types size (byte)

1 Text 141

2 Text 325

3 Text 379

4 Text 612

5 Text 1320

6 Binary 732808

7 Binary 972524

8 Binary 1034296

9 Binary 1051521

10 Binary 2958132

2.2.2 Security Test

Security testing was carried out on RC6 and TLS
algorithm by calculating avalanche effect of
ciphertext. This test is done by changing for example
one bit randomly from plaintext and making changes
to one bit in encryption key. In this test, avalanche
effect formula will be used to calculate complexity
of encryption algorithm. The formula for calculating
avalanche effect can be seen in equation 1

𝐴𝐸 ൌ
𝑁

𝑁௧
𝑥100% ሺ1ሻ

AE is the Avalanche Effect value. If encryption
is performed on plaintext or key, Nc is number of
bits of ciphertext change and Nt is total number of
bits of ciphertext. In this test encryption algorithm is
said to be good if value of avalanche effect is
around 45% - 60% or about half of total ciphertext.

3 RESULT AND DISCUSSION

3.1 Websocket Library Modifications

The web source source code library was obtained
from Github site shared by Nathan Rajlich . After
source code for websocket library is obtained,
websocket library is modified. A modification was
made to existing websocket program code to add
RC6 algorithm program code as a data encryption
method. There are two main programs that will be
modified in WebsocketImpl.java and
DefaultExtension.java files. Modifications made to
source code of WebsocketImpl.java file are to add
program code to generate keys based on initial key
that was determined at the time of websocket's
implementation . The key then added to port

CESIT 2020 - International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies

154

number of each client connection, for example initial
key is "AripasolA" and connected port number is
"13579" so generated key will be
"AripasolA13579". Adding port number to key is
done so that when there is one message being sent to
different client connections it will produce a
different ciphertext. The following is a source code
added to modified WebsocketImpl.java file.

private String
getEncryptionKey(){

String key = "AripasolA-";
if (this.role == Role.CLIENT) {
key +=

getLocalSocketAddress().getPort();
return key;
}else{
key+=

getRemoteSocketAddress().getPort();
return key;
}}

Code Program 1. WebsocketImpl Code

Next is to modify the DefaultExtension.java file.
Modification is done on this files by adding
encryption and decryption on definition decode and
encode. Encryption process is added to encode
method while decryption process is added to decode
method. The encode method is used when
websocket will send a message and decode method
is used when websocket receives message from both
server and client side. In implementing RC6
algorithm, it will be divided into functions based on
their respective uses.

Encrypt function is used to arrange plaintext in
array of bytes which has length n into plaintext
blocks with array length 16. And if it turns out that
plaintext length is not multiple of 16, then it will be
padded so that it will eventually become a multiple
of 16. Here is source code encrypt function:

public static byte[]
encrypt(byte[] data, byte[] key){

if (data.length < 1 || key.length
< 16) return new byte[0];

 byte[] bloc = new byte[16];
 S = generteSubkeys(key);
 int lenght = 16 - data.length

% 16;
 byte[] padding = new

byte[lenght];
 for (int i = 0; i < lenght;

i++)
 padding[i] = 0;
 int count = 0;

 byte[]tmp= new
byte[data.length+lenght];

 int i;
 for(i = 0; i <

data.length+lenght; i++){
 if (i > 0 && i % 16 == 0)

{
 bloc = encryptBloc(bloc);
 System.arraycopy(bloc, 0, tmp,

i-16, bloc.length);}
 if (i < data.length) {
 bloc[i % 16] =

data[i];}else{
 bloc[i % 16] =

padding[count];
 count++;
 if(count > lenght +

1) count = 1;}}
 bloc = encryptBloc(bloc);
 System.arraycopy(bloc, 0,

tmp, i - 16, bloc.length);
 return tmp;}

Code Program 2. Encrypt Code

Decrypt function is used to compile ciphertext in
array of bytes which has length n into ciphertext
blocks with array length 16. At the end of the
decrypt function process will call deletePadding
function to delete padding that was previously done
during encryption process. Here is the source code
function decript.

public static byte[]
decrypt(byte[] data, byte[] key){

 if (data.length < 1 ||
key.length < 16) return new
byte[0];

 byte[] tmp = new
byte[data.length];

 byte[] bloc = new byte[16];
 S = generteSubkeys(key);
 int i;
 for(i = 0; i < data.length;

i++){
 if (i > 0 && i % 16 == 0)

{
 bloc =

decryptBloc(bloc);

System.arraycopy(bloc, 0, tmp, i -
16, bloc.length);}

 if(i < data.length)
 bloc[i % 16] =

data[i];}
 bloc = decryptBloc(bloc);

Secure Data Flow Messaging on Web Socket using Rivest Code 6

155

 System.arraycopy(bloc, 0,
tmp, i - 16, bloc.length);

 tmp = deletePadding(tmp);
 return tmp;}

Code Program 3. Decrypt Code

3.2 Testing Result

3.2.1 Speed Performance Test Result

Figure 4. Speed performance test result

The results of time comparison test that have
been obtained then analysed for each additional
number of packet loss to time required in each
message sending process both RC6 and TLS
algorithm. From figure 4 shows that testing with a
packet loss of 3% has decreased due to addition of
packet loss which is bigger than the previous 0% so
that packet delivery process becomes slower,
because it requires repetition process of sending lost
packages. Meanwhile, the 6% packet loss
experienced an increase due to device condition
which experienced an increase in speed performance
and end of processes running on testing device or
network traffic level which was not too dense at the
test time. In testing with packet loss of 9% and 12%
with the device and network conditions returning to
normal, there was a decrease in performance due to
the large number of packets lost.

The test results comparing of average messages
delivery time (1/x) taken from client A (sender) to
client B (destination) between RC6 and TLS
algorithm displayed in graphical form as seen in
Figure 4. The graph shows test results using 0%,
3%, 6%, 9% and 12% packet loss of each
experiment so that comparison of message delivery
times can be seen. From each experiment, average
values (x) were 1327, 12569, 3343, 19441 and 7118
for RC6 and 2373, 16855, 3939, 24926 and 23961
for TLS. It can be concluded that RC6 algorithm has
a better performance compared to TLS.

3.2.2 Security Test Result

The result of avalanche effect test on RC6 and TLS
algorithms have been obtained by two test scenarios,
based on plaintext and based on encryption key. In
table 2 shows that avalanche effect test which is
carried out by changing plaintext for RC6 algorithm,
the average value is 28.29% and for TLS average
value is amounted to 42.50%. Furthermore, the
results of avalanche effect test with changes based
on key, for RC6 algorithm obtained an average value
of 52.28% and for TLS an average value was
53.19%. From these results it can be concluded that
TLS is safer than RC6 algorithm.

Table 2. Analysis results calculation of avalanche effect
RC6 and TLS algorithm

N
o

Cha
nge

s

Algo
rith
m

Testing Avg
1 2 3

1 Plai
n

text

RC6 25,20
%

28,61
%

31,95
%

28,29
%

2 TLS 37,57
%

38,59
%

51,36
%

42,50
%

3 Ke
y

RC6 47,17
%

46,97
%

62,70
%

52,28
%

4 TLS 49,46
%

53,26
%

56,86
%

53,19
%

4 CONCLUSIONS

From the implementation and result that has been
done, several conclusions can be drawn as follows:

1. The speed performance test results of sending
messages from client A (sender) to client B
(destination) is about average 8757
milliseconds for RC6 and 14411 milliseconds
for TLS. From these results it can be
concluded that RC6 algorithm has better
performance compared to TLS.

2. The avalanche effect calculation results for
RC6 algorithm obtained an average value of
28.29% based on plaintext and 52.28% based
on keys. Meanwhile for TLS, average value
was 42.50% based on plaintext and 53.19%
based on keys. From these results it can be
concluded that TLS is safer than RC6
algorithm.

0,00075
35

0,00007
96

0,00029
91

0,00005
14

0,00014
05

0,00042
14

0,00005
93

0,00025
39 0,00004

01
0,00004

170,0000

0,0005

0,0010

0 3 6 9 12

ti
m
e
 in

 s
e
co
n
d
 (
1
/m

s)

Packet Loss (%)

RC6 TLS

CESIT 2020 - International Conference on Culture Heritage, Education, Sustainable Tourism, and Innovation Technologies

156

REFERENCES

AGGARWAL, K. Comparison of RC6, Modified RC6 &
Enhancement of RC6. 2015 International Conference
on Advances in Computer Engineering and
Applications,, 2015 Ghaziabad, India.

ARORA, S., MAINI, J., MALLICK, P., GOEL, P. &
RASTOGI, R. Efficient E-learning management
system through web socket. 3rd International
Conference on Computing for Sustainable Global
Development (INDIACom), 2016 New Delhi, India.

BHARDWAJA, A., SUBRAHMANYAM, G., AVASTHI,
V. & SASTRY, H. Security Algorithms for Cloud
Computing. International Conference on
Computational Modeling and Security (CMS 2016),
2016 Bengaluru, India.

DARMAWAN, I., RAHMATULLOH, A. &
GUNAWAN, R. Real-time Screen Sharing Using Web
Socket for Presenting Without Projector. 2019 7th
International Conference on Information and
Communication Technology (ICoICT), 2019 Kuala
Lumpur, Malaysia, Malaysia.

DINESHA, A. & KB, E. B. Computations on Cipher
Speech for Secure Biometrics. 6th International
Conference On Advances In Computing &
Communications, 2016 Cochin, India.

ENGHARDT, T., TIESEL, P. S., ZINNER, T. & A.
FELDMANN. Informed Access Network Selection:
The Benefitsof Socket Intents for Web Performance.
15th International Conference on Network and Service
Management (CNSM), 2019 Halifax, NS, Canada,
Canada, .

ERKKILÄ, J.-P. WebSocket Security Analysis. Seminar
on Network Securi, 2012 Aalto University T-110.5291

JOSHI, B. 2012. HTML5 Programming for ASP.NET
Developers. New York :apress.

KUBOV, V., DYMYTROV, Y. & KUBOVA, R. Wireless
Devices HTML-interface for Medical Applications.
8th Mediterranean Conference on Embedded
Computing (MECO), 2019 Budva, Montenegro,
Monten.

LIU, N., CAI, J., ZENG, X., LIN, G. & CHEN, J.
Cryptographic Performance for Rijndael and
RC6Block Ciphers. 11th IEEE International
Conference on Anti-counterfeiting, Security, and
Identification (ASID), 2017 Xiamen, China.

MAHIDHAR, R. & RAUT, A. A Survey On Scheduling
Schemes With Security In Wireless Sensor Networks,.
International Conference on Information Security &
Privacy (ICISP2015), 2016 Nagpur, INDIA.

MISHRA, P. & J, J. 2013. Application Research and
Penetration Testing on WebSocket Technology.
International Journal of Science and Research (IJSR),
, 4.

NAEEM, E. A., ELNABY, M. M. A., EL-SAYED, H.,
EL-SAMIE, F. E. A. & FARAGALLAH, O. S. 2016.
Wavelet fusion foren crypting image swith a few

details. Computers and Electrical Engineering, 54,
450-470.

NAMASUDRA, S. & GANDOMI, G. C. D. P. J. M. H. A.
H. 2020. The Revolution of Blockchain: State of the
Art and Research Challenges. Archives of
Computational Methods in Engineering.

PARK, J.-T., H.-S. HWANG, YUN, J.-S. & MOON, I.-Y.
2014. Study of HTML5 WebSocket for a Multimedia
Communication. International Journal of Multimedia
and Ubiquitous Engineering, 9, 61-72.

PIMENTEL, V. & NICKERSON, B. G. 2012.
Communicating and Displaying Real-Time Data with
WebSocket. IEEE Computer Society, 16, 340-361.

RIVEST, R. L., M.J.B. ROBSHAW, R.SIDNEY & YIN,
Y. L. 1998. The RC6 Block Cipher.

SOEWITOA, B., CHRISTIANA, GUNAWAN, F. E.,
DIANAA & KUSUMA, I. G. P. Websocket to
Support Real Time Smart Home Applications. 4th
International Conference on Computer Science and
Computational Intelligence 2019(ICCSCI), 2019
Yogyakarta, Indonesia.

TSAI, H., CHANG, C., HOU, X., YONG, Y., CHIOU, K.
& YU, P. 2019. Interactive student response system
with iBeacon and web socket for flipped classroom
learning. Journal of Computing in Higher Education,
31, 3430-361.

WEIZHEN, S., YUTONG, F. & LIMING, L. 2012. A
Hybrid Design and Implementation of Socket Directly
and Web Browser Online Email Address Verifier.
Affective Computing and Intelligent Interaction,, 137,
11-19.

Secure Data Flow Messaging on Web Socket using Rivest Code 6

157

