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Abstract: Although trust is predominantly a human trait, it has been carried over to the Web almost since its very
inception. Given the rapid Web evolution to a true melting pot of human activity, trust plays a central role
since there is a massive number of parties interested in interacting in a multitude of ways but have little or
even no reason to trust a priori each other. This has led to schemes for evaluating Web trust in contexts such
as e-commerce, social media, recommender systems, and e-banking. Of particular interest in social networks
are classification methods relying on network-dependent attributes pertaining to the past online behavior of an
account. Since the deployment of such methods takes place at Internet scale, it makes perfect sense to rely
on distributed processing platforms like Apache Spark. An added benefit of distributed platforms is paving
the way algorithmically and computationally for higher order Web trust metrics. Here a Web trust classifier
in MLlib, the machine learning library for Apache Spark, is presented. It relies on both the account activity
but also on that of similar accounts. Three datasets obtained from topic sampling regarding trending Twitter
topics serve as benchmarks. Based on the experimental results best practice recommendations are given.

1 INTRODUCTION

Social networks are already teenagers and they are
still expanding at an impressive rate both in terms of
their respective account base as well as of the vari-
ety of applications they natively support. Moreover,
there is a definite shift towards multimodal account
interaction where accounts share messages, images
(often in the form of memes), voice clips, and ge-
olocation information, especially in conjunction with
smartphones. Additionally, social networks recently
tend to cooperate by providing social login services
across sites. For instance, now ResearchGate allows
both LinkedIn and Google login credentials in ad-
dition to its own. Despite that certain groups tend
to migrate among social networks, this is more than
compensated by the creation of new accounts on a
daily basis from people across all generational co-
horts. Clearly, this rapidly increasing account base
requires a set of rules in order to interact appropri-
ately. In turn, they rely on Web trust, namely the set
of mechanisms and procedures ensuring up to a rea-
sonable degree that the entity behind an account is

actually who (in the case of netizens) or what (in the
case of groups and companies) it claims to be.

The need for Web trust actually predates social
networks. In the proto-Internet Web trust was orig-
inally not considered a primary issue because of its
small size and little digital value. That was main-
stream mentality until the Morris worm in 1989 al-
most incapacitated ARPANET (Furnell and Spafford,
2019; Obimbo et al., 2018). Since then the Mor-
ris worm has been depicted in numerous stories in-
cluding the 1995 film Hackers1, which has already
attained cult status. Similarly the Markovian par-
allax denigrent incident of 1996, where a consider-
able number of Usenet fora were massively spammed
with automatically generated messages whose lan-
guage was very close to real world written English in
terms of syntax, proved beyond a shadow of a doubt
that certain cyberattacks could rely on machine intel-
ligence for social engineering (Baldwin, 2017; Salah-
dine and Kaabouch, 2019). Therefore, cyberdefenses
of any kind should include Web trust as a major com-

1https://www.imdb.com/title/tt0113243
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ponent in order to reliably and efficiently answer in
the Web, essentially in the digital domain, the funda-
mental human question “Who are you?”.

Currently trust in the Web translates to a computa-
tional problem, typically in the form of digital reputa-
tion. This happens because trust has to be established
between parties who have no a priori reason to trust
each other, mostly for one time interactions. Other
manifestations include the solution certificate to an
NP-hard problem such as the key in asymmetric cryp-
tography systems of the various proofs in blockchain
environments. This in fact constitutes the motivation
behind this conference paper. Several computational
mechanisms are in place to determine Web trust level:

• In e-commerce applications a generic or more
specialized feedback mechanism is typically in ef-
fect. For instance, eBay relies heavily on detailed
transaction feedback which breaks down to rating
in categorical scales both the overall experience
(positive, negative, or neutral) as well as a mul-
titude of individual aspects such as buyer-seller
communication, item description accuracy, item
condition, and dispatch time. Moreover, feedback
is incomplete without comments. Feedback score
is not only public but is in fact shown in a very
prominent position right next to the account name,
connecting it thus with its score.

• In job related portals trust tends to mimic actual
candidate verification procedures. For instance,
in LinkedIn trust is expressed by a combination of
recommendation letters from former employers or
peers, skill endorsements, and links to third party
degree or qualification verification sites.

• In social media trust is frequently expressed
through conact- and communication related at-
tributes. Trust in Facebook has close connections
to friendship as friends are supposed to be trusted.
To this end Facebook enforced a policy mandat-
ing that accounts must have the true name of their
owner (Haimson and Hoffmann, 2016). Twitter
relies on administrative tools for cross-checking
account profiles2. However, because of the enor-
mous number of Twitter base, only a small frac-
tion has been verified.

• Recently, blockchain technology along with its
competition like IOTA3 promise to safeguard data
of any kind through distributed ledger technolo-
gies. Identity verification as well as any reward
claims in blockchains require distributed verifica-

2https://help.twitter.com/en/managing-your-account/
about-twitter-verified-accounts

3www.iota.org

tion from a large number of independent parties,
rendering phony claims difficult to make.

The primary research contribution of this conference
paper is twofold. First, a generic model for Web trust
is proposed. It is based on two components, namely
on online account activity attributes as well as on the
activity of similar accounts. This has the advantage
that features pertaining to both the micro and macro
activity level can be combined. Second, said model
has been specialized for Twitter and a realistic Spark
implementation thereof has been made. The results
on the benchmark datasets obtained from topic sam-
pling of trending issues are encouraging.

The rest of the paper is structured as follows. Sec-
tion 2 presents background topics in sentiment analy-
sis and community detection. Section 3 presents the
proposed technique in its general form and analyses
trust in Twitter. Section 4 contains implementation
details, benchmark dataset synopses, results analysis,
and best practice recommendations. Finally, section 5
concludes the work and presents directions for future
research. Technical acronyms are explained the first
time they are encountered. The popular term netizen
denotes a social media user. Finally, the notation for
this conference paper is summarized in table 1.

Table 1: Paper Notation.

Symbol Meaning
4
= Definition or equality by definition
{s1, . . . ,sn} Set with elements s1, . . . ,sn
|S| Set cardinality
Φ(tk) Set of followers of account tk
Ψ(tk) Set of followees of account tk

2 RELATED WORK

Trust is paramount in establishing a wide array of
short- or long-lasting and properly functional rela-
tionships over the Web (Buskens, 2002). A prime ap-
plication is e-commerce (Hallikainen and Laukkanen,
2018), particularly as shown in the meta-analysis of e-
commerce relationships examined in (Kim and Peter-
son, 2017) or in the scale examined at (Oliveira et al.,
2017) where consumer behavior is analyzed in terms
of trust. Moreover Web trust is essential in candidate
recruiting as explained in (Drakopoulos et al., 2020)
where open LinkedIn attributes determined admissi-
ble candidates for startup teams. Along a similar line
of reasoning in (Sharma and Sharma, 2017) the im-
portance of trusted candidates for HR departments is
analyzed. Further applications include recommender
systems (Massa and Bhattacharjee, 2004; O’Donovan
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and Smyth, 2005; Alexopoulos et al., 2020), e-voting
(Garg et al., 2019; Risnanto et al., 2019), and e-
mail sender verification where the pretty good pri-
vacy (PGP) web of trust plays a central role for a long
number of years now (Attia et al., 2016). Trust met-
rics based on online interactions between accounts are
presented among others in (Lumbreras and Gavaldà,
2012) where trust takes the form of recommendations,
in (Richardson et al., 2003) where Semantic Web fea-
tures are exploited, and in (Kamvar et al., 2003) where
the EigenTrust method is developed for peer-to-peer
(P2P) networks. Recently, the advent of blockchains
has delegated trust to a widely distributed compu-
tation of an NP hard problem (Liang et al., 2018).
Most blockchain implementations offer a high level
of security (Li et al., 2020) including resistance to
distributed attacks (Sengupta et al., 2020). For an
overview of proof systems see (Drakopoulos et al.,
2019a).

Beyond the limits of its formal definition, it
should be noted that Web trust ultimately relies heav-
ily on myriads of human decisions and actions (Pa-
paoikonomou et al., 2013). In turn, the latter depend
on emotions, which are widely considered the main
human motivators (Albanie et al., 2018). Affective
computing takes this psychological fact into consid-
eration for various objectives like efficient human-
computer interfaces (Davis et al., 2020). Human emo-
tion can be estimated through voice as described in
(Drakopoulos et al., 2019b), physiological signals as
in (Egger et al., 2019), face expression as for in-
stance explained in (Jain et al., 2018) and in (Wang
et al., 2018), gait as shown among others in (Chiu
et al., 2018) and (Xue et al., 2019), or any combina-
tion thereof (Schirmer and Adolphs, 2017). Recently
deep learning architectures have been used to estimate
human emotional state from the fusion of multiple
modalities (Ranganathan et al., 2016).

In social networks Web trust may well take dif-
ferent forms. For instance, in small world networks
trust issues are examined in (Gray et al., 2003). More
recently, trust in social networks is inherently tied to
whether an account refrains from spreading fake news
(Buntain and Golbeck, 2017). In the overwhelming
majority of cases it depends on digital account activ-
ity (Adali et al., 2010). A notable exception is Twitter
account verification (Kyriazidou et al., 2019) as ac-
counts may optionally report their real identity includ-
ing phone number and Web site. Additionally, dig-
ital influence may be considered as an indirect con-
firmation of trust (Drakopoulos et al., 2017). The
broad picture of the Web of trust in Twitter is ex-
plored in (Tavakolifard et al., 2013), while various
trust attributes for Twitter are discussed in (Castillo

et al., 2011). Additionally, various recurrent- (RNN)
and convolutional neural network (CNN) architec-
tures for discovering fake news on Twitter are pro-
posed in (Ajao et al., 2018)

The recent advent of massive distributed frame-
works such as Apache Spark has enabled an in-depth
analysis of Web trust (Ventocilla, 2019). Principles
for the development of distributed trust analytics are
given in (Ciordas-Hertel et al., 2019). Computational
aspects of the Web trust when seen as a data intensive
problem are examined in (Terzi et al., 2017). In (Adib
et al., 2017) is discussed the reduction of Web trust
to a large scale computational problem which can be
efficiently solved in Spark. Moreover, trusted product
recommendation where Spark computes trustworhi-
ness levels is the focus of (Patil et al., 2017).

3 PROPOSED METHODOLOGY

3.1 Trust Directions

In the contemporary digital sphere the notion of Web
trust is literally everywhere, although each site may
well have its own interpretation in an effort to pro-
vide high quality services. Web trust has the follow-
ing three basic directions, which albeit distinct may
well overlap in certain sites:

• Site-to-Account: A site should have in place ef-
ficient and transparent rules, policies, and proce-
dures in order to order to verify both the fact that a
given piece of material was indeed posted by the
account it claimed to have done so but also the
identity of an account owner if the need arises and
depending on the nature of the site. Frequently
two- or multi-factor authentication (2FA/MFA)
are part of the trust protocols, as so recently
are machine- or deep learning (ML/DL) tech-
niques. This direction is the focus of the proposed
methodology presented here.

• Account-to-Site: An account should be able
to trust the content of material and messages
posted by authenticated site administrators or
moderators. This is often accomplished by non-
repudiation techniques, the majority of which
rely in turn on advanced asymmetric encryption
schemes such as RSA or the El Gamal algorithm.
An extra layer of trust comes from using PGP
signed e-mails. Although there may be a signif-
icant gap between the parties involved in terms of
computing power, cryptographic protocols ensure
a considerable degree of parity.
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• Account-to-Account: In contrary to the previous
two cases, this is a peer problem in the sense that
the two parties are usually equal in terms of com-
puting power and of access level. Depending on
the nature of the site and the general goals of the
parties involved, the two accounts can trust each
other for a single transaction or action item, main-
tain a trusted connection until a set of objectives is
accomplished, or they can establish a permanent
trust relationship.

At this point it should be noted that the level and in-
tensity of malicious online activity such as false ru-
mour circulation from fake news farms and trolling
through inflammatory comments and irony along with
social engineering and old school frauds have forced
EU to issue the publicly available guide titled Fake
news and disinformation online.

3.2 Web Trust Model

In this subsection the most general form of proposed
methodology is described, whereas its specific from
for Twitter is given in later subsections. The funda-
mental observation underlying it is the following:

Observation 1. Trust is eventually a human trait.
Therefore, its computational aspects should rely on
elements of human activity in order to estimate it.

Analyzing the above observation further, it can be
deduced that the trust level of an account has at least
two main components:

• Trustworthiness related to the individual activity
of the particular account. This is estimated by
network-specific attributes. Nonetheless, the gen-
erality of the proposed methodology is not af-
fected by the nature of this attribute set.

• Trustworthiness derived from accounts similar to
the particular account. To this end group-specific
attributes as well as an account similarity metric
must be defined. In this work the term group de-
notes the set of similar accounts.

The proposed methodology is also shown in figure 1.
One way to mathematically express the preceding

analysis is through the following model. Specifically,
let L be the level of Web trust which ultimately de-
pends on two attribute sets, one containing ni features{

t i
k

}
with 1 ≤ k ≤ ni pertaining to the individual on-

line behavior of an account and one consisting of ng
attributes

{
tg
k

}
with 1 ≤ k ≤ ng of the group this ac-

count belongs to. Assuming that there are n accounts
in total, let column vector fi contain the normalized
scores from an appropriate metric or ML model which

relies on
{

t i
}

as shown in equation (1):

fi
4
=
[

fi [1] fi [2] . . . fi [n]
]T (1)

As a shorthand, let fi [¬ j] denote fi without its j-
th element, resulting in a column vector of length n−
1. Since relative trust scores are more important than
raw ones and in order to keep the scores at the same
scale with all the weights involved in the scheme, the
raw scores f̃i [ j] have been normalized by computing
the softmax score as follows as in equation (2):

fi [ j]
4
=

ef̃i[ j]

n

∑
j=1

ef̃i[ j]
∈U

4
= [0,1] (2)

Along the same line of reasoning let matrix Fg
contain the normalized scores obtained from an ac-
count similarity metric or ML model. Clearly its diag-
onal contains only ones, which is the maximum possi-
ble similarity value. Also let Fg [¬ j; j] be the column
vector of length n− 1 resulting from keeping the j-
th column and removing the element in the j-th row.
The final trust score for the j-th account is determined
by the formula in equation (3):

L [ j]
4
= T

(
wifi [ j]+wbFg [¬ j; j]T fi [¬ j]

)
(3)

The Web trust scores are collected to a vector L which
may consequently used for ranking, account recom-
mendation, or any other social media analytics.

In the preceding equation the weighted sum con-
sists of the trust for the j-th account and that of ac-
counts similar to it. This sum is in turn the input of
a non-linear kernel T [·] which yields the final Web
trust score. The respective weights wi and wg obey
the constraint of equation (4):

wi +wg = 1, 0 < wi,wg < 1 (4)

This scheme works if both models fi (·) and fg (·)
yield results in the same range. For the purposes of
this work the weights were set to the values:

wi
4
=

ni

ni +ng
, wg

4
=

ng

ni +ng
(5)

The kernel T (·) may well be anything which ap-
propriately expresses Web trust in the underlying do-
main. It may even be the identity function, if the
weighted sum suffices. The reason a non-linear ker-
nel is proposed is that typically the latter can differ-
entiate between two trust scores on the linear scale.
The modified range of the maximum possible to the
lowest possible yields the discrimination power of the
kernel shown in equation (6):

max j L [ j]
max

{
β0 , min j L [ j]

} (6)
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In the above equation β0 is a least nominal trust
for an account when the computed trust level is be-
low it. The main reason for assigning a known mini-
mum trust score to an account is to help new accounts
boost their trustworthiness. Moreover, it gives a sec-
ond chance to accounts involved in serious incidents
to make a clean start in terms of Web trust.

Although it is not a strict requirement, the non-
linear kernel T : U → V should be differentiable in
order to ensure a smooth mapping of its domain U to
its range V .

Individual
Trustworthiness

Group
Trustworhtiness

Total
Trustworthiness

x

x

T[	]

Group
Weight

Individual
Weight

Figure 1: Proposed general scheme.

The proposed scheme includes certain metrics
found in the literature. In Twitter trust can be tied
to the digital influence of an account with the ratio-
nale that humans know almost immediately which ac-
counts to trust based on their real world experience.
One intuitive way to evaluate the influence P [ j] of
the j-th account is the logarithm of the followers-to-
followees ratio as defined in equation (7):

P [ j]
4
= ln

(
1+

|Φ( j)|
max{1, |Ψ( j)|}

)
(7)

Notice that the definition of equation (7) is a first
order metric in the sense that only attributes concern-
ing account j are needed in order to compute its digi-
tal influence. Thus, computations can be done in par-
allel, allowing the influence of a massive number of
accounts to be determined. However, this approach
says little about the influence of an account compared
to others, especially accounts with similar online be-
havior. To this end, a higher order, non-linear exten-
sion Q [·] of P [·] could lead to the following recursive
definition of trust as shown in equation (8):

Q [ j]
4
= ln

(
1+

∑ j′∈Φ( j) Q [ j′]

max
{

1,∑ j′∈Ψ( j) Q [ j′]
}) (8)

The above equation can be also expressed by the gen-
eral model of equation (3). This can be seen by ex-

panding the above recursive definition of Q [·] to a
non-linear equation system.

3.3 Trust in Twitter

Twitter is perhaps the prime microblogging platform
where conversations of various kinds take place on a
daily basis. Recent figures reveal the extent of its ac-
count base: There are 330 million monthly active ac-
counts and 152 million daily ones. 500 million tweets
are posted per day, the 80% of them from mobile de-
vices. Since there is a low upper limit of 280 char-
acters per tweet (in fact only 140 until 2018), conver-
sations tend to be apophthegmatic in nature, although
threads are progressively becoming common. In turn
this may occasionally lead to emotionally charged
conversations, especially in comparison to other so-
cial media, e-mail, or even ordinary texting.

Twitter has to preserve trust in order to keep ma-
licious accounts at bay, especially if they attempt to
consolidate a considerable follower base and becom-
ing thus potential influencers. In this context trust
may be defined as the possibility to authenticate who
(for persons) or what (for organizations) the account
claims to be. An additional question is whether tweets
from a given account are accurate or are they fraud-
ulent (e.g. promoting low quality products) or even
fake (and even worse straight from a fake news farm).
Therefore, there are two primary trust axes of trust:

• Account Axis: This is the stronger axis since
trusting an account also covers their respective
tweets. Typically metrics such as digital influence
or verification are used. Higher order metrics are
better in discovering fraudulent accounts at the ex-
pense of increased computational cost.

• Tweet Axis: Trust is weaker as only tweets of var-
ious accounts are deemed as trustworthy or not.
Frequently natural language processing (NLP)
and affective computing methodologies uncover
any tweet inconsistencies. However, occasionally
these schemes can be misled by honest mistakes
made by accounts, unconventionally formulated
tweets, or irony, a very common trait in social me-
dia conversations which cannot be easily detected
even by humans as it is culture-specific.

Obviously malicious parties can create fake Twitter
accounts and spread out through strategically planned
tweets rumors in order to cause harm somebody, pro-
voke doubts, or achieve other questionable objectives.
Before the advent of massive distributed platforms it
was almost impossible to algorithmically authenticate
every logged in user and check every uploaded tweet
for trustworthy content. From the perspective of a hu-
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man account owner trust may rely on the following
characteristics:

• The bio and photo of a Twitter profile have to be
clear with no uncertainties or inconsistencies. Al-
though many sophisticated image processing al-
gorithms can discover objects, detect whether an
image has been tampered with, or perform scene
analysis, few can actually understand convoluted
visual semantics (Lewis et al., 2019).

• The account is verified. In contrast to most of the
features in this list, this can be easily verified algo-
rithmically with access to Twitter application in-
terface (API) and the appropriate method.

• The account corresponds to a well-known real
world person or entity. This can be easily veri-
fied by any netizen, especially by someone with
a considerable online activity. On the contrary,
a classifier might need to consult online databases
for the same purpose, unless of course the account
in question is verified by Twitter.

• Tweets are precise, with a clear meaning, and cor-
rect in terms of grammar and syntax. NLP tech-
niques can very efficiently parse tweets but their
semantic analysis is a different story as irony, in-
nuendos, and mentions to previous tweets are usu-
ally hard to discover.

• Any references to persons, products, events, or
technology are accurate. The same algorithmic
constraints described earlier apply.

• Content delivery is done through trusted links to
sites with secure protocols like https and transport
layer security (TLS). Here an algorithmic classi-
fier may in fact fare better than an human since the
former may employ a Web crawler and quickly
collect information about content and site quality.

• Tweets are posted regularly. Also this is some-
what fuzzy for an algorithm to check, although
probabilistic methods can determine whether time
intervals between tweets follow a certain distribu-
tion or progressively construct an empirical distri-
bution and check for outliers.

From the above list it follows that these criteria may
be easily estimated by a human but not algorithmi-
cally. This can be primarily attributed to the heavy re-
liance on semantics as well as on fuzzy quantities. For
instance how can a regular tweet rate be defined? Hu-
mans, partly because of their analog thinking and the
completion principle (Boselie and Wouterlood, 1989),
can make sense of degraded or irregular information.

3.4 Individual Attributes for Twitter

The attributes given as input to the MLlib classifiers
are very closely tied to the online activity of an ac-
count and they have been frequently mentioned in the
relevant scientific literature. Following the analysis
presented earlier, this list contains a combination of
tweet trust axis features (the first six) and account
trust axis features (the remaining six). Observe how
this list differs from the preceding one.

• Tweet Number of Characters (Numerical):
Tweet size. Tweets too long or too short may sig-
nal an abnormal situation.

• Tweet Number of Words (Numerical): Number
of words. A consistent number of many words
may be an attempt to shift the topic of a conver-
sation. Alternatively, tweets may have been al-
gorithmically generated. Conversely, very short
tweets may be the result of trolling, but they may
also well be clever use of English in an argument.

• Question Mark (Binary): True if the tweet con-
tains a question mark. This is a relatively weak
indicator for a single tweet, yet trolling or fake ac-
counts are known to answer questions with ques-
tions to evade direct answers towards them. Also
they may attempt to shift attention from them by
asking carefully engineered questions to change
the subject or subtly accuse others. Therefore, un-
trustworthy accounts are expected to have a long
string of tweets with questions.

• Exclamation Point (Binary): True if the tweet
contains an exclamation point. Depending on cul-
ture, an exclamation point may indicate a variety
of emotions ranging from happiness and surprise
to anger and disgust. Also it is common in certain
cases of irony. Despite this, a single use is not al-
ways a red flag by itself. Instead, frequent apper-
ances may indicate an account trying to increase
the emotional potential of a reply or an entire con-
versation, perhaps trying to shift its focus.

• Number of Capital Letters (Numerical): Num-
ber of capital letters. A very low number rela-
tive to the total tweet characters may indicate a
tweet with improper syntax or a machine gener-
ated tweet. Moreover, a very high number of cap-
ital letters hint at frequent tantrums, either real or
fake. At any rate, this should be flagged as a po-
tentially abnormal situation.

• More than one “?” or “!” (Binary): A large
number of these punctuation marks may consti-
tute a sign of irony or passive aggressive behav-
ior, especially if this is a recurring phenomenon.
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However, context should also be taken into ac-
count for better results.

• Number of Tweets (Numerical): How many
tweets this account has posted. This is an overall
account attribute, meaning it influences all tweets
even indirectly. Too many tweets may indicate of-
fensive behavior, but also may be the result of a
very active legitimate account such a high profile
celebrity or a certified news agency.

• Number of Followers (Numerical): A large
number of followers is typically an indicator of
an account which can be trusted, provided that the
account has been in existence sufficiently long to
attract a critical mass of followers.

• Number of Friends (Numerical): By friends is
meant accounts which follow each other. This is a
stronger indicator than the preceding one, yet fake
accounts or bots controlled by the same source
may easily create phony networks immitating real
ones to take advantage of this property.

• Account is Verified (Binary): True if account is
verified by Twitter.

• Account Changed Profile (Binary): True if
the account bio has changed during the past six
months. Fake and suspicious accounts tend to fre-
quently transform, often in an Ovidian way, in or-
der to achieve their malicious objectives.

• Account Favourites (Numerical): The number
of tweets the account has marked as favourite. A
very high number may point at a bot indiscrimi-
nately following other accounts or topics in order
to locate potential targets.

Once tweet scores are obtained, the raw individual
trust score of each account is the average of those of
its tweets. A critical question arising is whether there
are sufficient tweets for each account in order to en-
sure a fair classification. The distribution of tweets
per accounts was assumed to follow a normal distri-
bution as shown in equation (9). The rationale be-
hind this assumption is that since the total number of
tweets is a result of the tweeting activity of a large
number of accounts, then by the central limit theorem
(CLT) the resulting distribution is Gaussian.

f
(
x;µ0,σ

2
0
) 4
=

1
σ0
√

2π
exp

(
− (x−µ0)

2

2σ2
0

)
(9)

This assumption was tested with the Kolmogorov-
Smirnoff test for each dataset separately. Table 2 has
the test results as well as the estimated µ0 and σ2

0. For
a description of the datasets see section 4.

For each of the datasets described in the next sub-
section the parameters µ0 and σ2

0 were estimated. The

Table 2: Statistical properties for datasets.

Dataset Gaussian? µ̂0 σ̂0
Terror Yes 189.32 45.72
US Election Yes 362.67 27.44
Harvey Yes 537.11 16.96

six sigma property of the normal distribution man-
dates that 99.5% of its mass in concentrated in the
interval centered in the mean value µ0 with a length
of three standard deviations 3σ0 on each side, result-
ing in a total size of 6σ0. In view of this property,
it follows that if µ0 is high enough and σ0 is small
enough, then only at most 0.25% of the accounts in
each dataset has insufficient tweets for a sound sta-
tistical analysis. Given that fake and troll accounts
typically tweet a lot as explained in (Im et al., 2020),
they are bound to be contained in the accounts where
a significant tweet sample exists in the datasets.

The Gaussian distribution parameters are esti-
mated through their respective sample estimates as
follows. Assume that for each account there are avail-
able ns tweets and the j-th such tweet has received a
score of y [ j]. Equation (10) yields the sample mean:

µ̂0
4
=

1
ns

ns

∑
j=1

y [ j] (10)

Since each tweet trust score is essentially an estimator
in the statistical signal processing sense, averaging ns
tweet scores leads to the estimator variance divided by√

ns. Thus, the more tweets available for an account,
the more reliable the raw trust score.

The sample variance is obtained by equation (11):

σ̂0
4
=

1
ns−1

(
ns

∑
j=1

(y [ j]− µ̂0)
2

) 1
2

(11)

The normalizing factor in the above equation ensures
an unbiased variance estimator.

3.5 Group Attributes for Twitter

Since estimating similarity between accounts is diffi-
cult in the general case, it makes sense to establish this
piece of ground truth directly. An online survey was
organized asking social media users to anonymously
complete Web forms. Additionally, a Web application
was developed on purpose and linked to a relational
database where answers where collected and sorted
for subsequent processing. The evaluation scenario
complied with the following directives:

• Evaluation was anonymous since Twitter screen
names were mapped to hashed ones.
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• Participating netizens were not presented with the
results. Otherwise, a bandwagon effect (Howard,
2019) might have influenced their decisions.

Please note that at that time the EU data protection
directive 95/46/EC was in effect. The broader and
more detailed general directive protection regulation
(GDPR)4 directive was enacted much later.

Each netizen answered questions about its own in-
terests as shown in table 3. Based on these answers
each of N the netizens was represented as a binary
vector. Since almost every netizen expressed a posi-
tive stance towards news, this category was omitted.
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Figure 2: Sorted cluster percentage size.

The k-means with the Hamming distance h(·, ·) as
the metric between data points was used to derive ac-
count clusters with a maximum of 16. Blank clusters
were allowed. Since k-means operate in a probabilis-
tic way, the number of clusters and their respective
sizes may vary. To address this,

⌈√
N
⌉

runs were
made and the clustering maximizing the total inter-
cluster distance d̄ was selected. Assume that clusters
C j and C j′ with j 6= j′ have respectively

∣∣C j
∣∣ and

∣∣C j′
∣∣

elements each. Equation (12) is the inter-cluster dis-
tance d j, j′ between them:

d j, j′
4
=

1∣∣C j
∣∣ ∣∣C j′

∣∣ ∑
w∈C j

∑
w′∈C j′

h
(
w,w′

)
(12)

Adding the inter-cluster distance for every distinct
pair of clusters ( j, j′) yields d̄ as shown in equation
(13). Maximizing d̄ means that clusters are more dis-
cernible and therefore clustering is more clear.

d̄
4
= ∑

( j, j′)
d j, j′ (13)

4https://gdpr.eu

Figure 2 shows the clustering achieving the max-
imum d̄. Observe there are only 14 clusters instead
of the maximum 16. Moreover, there is one relatively
large cluster followed by three groups of sizes two,
three, and four respectively. However, only the three
largest clusters have more than 10% of the original
data points, whereas four clusters have a percentage
size less than 5%. The similarity matrix Fg contains
the normalized metric values only for data points of
the same cluster. Data points of different clusters
are assumed to have zero similarity. Note that every
dataset contains the netizens participated to this sur-
vey to ensure that there is a core truth in them.

3.6 Non-linear Kernel for Twitter

The final component of the tailored Twitter version of
the general trust scheme of equation (3) is the final
non-linear kernel T (·). The particular selection is the
sigmoid function of equation (14):

T (u;β1)
4
=

1
1+ exp(−β1u)

(14)

The particular selection has a number of attractive
properties including the following:
• It has a domain which is similar to U , the standard

interval used in this work. Still translation and
scaling are in order as will be explained below.

• Its derivative is also smooth and thus the mapping
to the final trust score has no discontinuities.

• It has close ties to the signal estimation field.
Specifically it has a natural interpretation as a bit
estimator in the presence of white noise.

In the preceding equation the argument u is the linear
combination of the individual and group trust scores
as explained earlier:

u
4
= wifi [ j]+wbFg [¬ j; j]T fi [¬ j] (15)

The first derivative of the sigmoid function has the
following recursive form which allows higher order
derivatives to be expressed as polynomials of the orig-
inal function as shown in equation (16):

∂T (u)
∂u

= β1T (u)(1−T (u)) (16)

The dependence of the derivative on both the current
value T (u) and 1−T (u) is what keeps the kernel val-
ues bounded as they are opposing factors.

Since |T (u)| ≤ 1 it immediately follows that the
derivative is close to zero when u is close to ±5/β1
whereas for any intermediate values it holds that:∣∣∣∣∂T (u)

∂u

∣∣∣∣ ≤ β1 (17)
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Table 3: Sentiment per topic.

News Sports Cinema Music Technology
Positive 94.32% 72.53% 68.03% 58.74% 57.21%
Negative 5.68% 7.47% 31.97% 41.26% 42.79%

This implies that the maximum increase rate of
T (u) is bounded and controlled. Therefore, it can be
adjusted to any particular scenario as appropriate.

4 EXPERIMENTS

4.1 Results

For the construction of the datasets we relied on the
Twitter API together with Twitter4j5, a Java based li-
brary. The tweets were progressively collected from
01/06/2019 to 01/06/2020. Table 4 contains informa-
tion about them. In the experiments the following
classification methods, which were readily available
in the MLlib library, were used:

• Naive Bayes is perhaps the simplest classifier
(Jiang et al., 2019; Chen et al., 2020).

• Logistic regression is a very common binary clas-
sification scheme (Sur and Candès, 2019; Wu
et al., 2019; Denoeux, 2019).

• Support vector machine (SVM) is a fairly so-
phisticated classifier where the minimum distance
between classes is guaranteed to be maximized
(Wang and Chen, 2020; Shen et al., 2019; Chen
et al., 2019).

These datasets consisting of English tweets were col-
lected from trending topics using topic sampling:

• Terror Dataset: The first one responds to a dis-
cussion topic about a social situation with dura-
tion in time and very different activity levels from
time to time.

• US Election Dataset: This dataset reflects a dis-
cussion topic regarding the elections as well as the
two candidates with quite linear activity in time.

• Harvey Dataset: The third topic deals with an
emerging tragic event. The related discussion has
a bursty activity for the first few days but then
fades to very low activity levels.

In order to evaluate the model of equation (3) per-
formance each classifier-dataset combination was ex-
ecuted ten times. Although the respective sizes of
the training and testing segments were constant, each
time their contents were random in order to ensure

5http://twitter4j.org
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Figure 3: Time for the naive Bayes.
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Figure 4: Time for the logistic regression.

a fair assessment. The values of accuracy, precision,
recall, and F1 score was the arithmetic mean of the re-
spective results. These figures were obtained directly
by the MLlib for its classifiers.

Figures 3, 4, and 5 contain the total execution time
in seconds for the model of equation (3). Each point
is derived by the arithmetic mean of ten executions.
To see the scaling patterns, a fraction of each dataset
was given to the model. From these figures it can be
clearly seen that the SVM variant is the slower of the
three but achieves higher accuracy. The logistic re-
gression is quicker but only at the expense of lower
accuracy, whereas the naive Bayes is very fast but the
accuracy is even lower.
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Table 4: Dataset Features.

Topic Tweets Keywords
Terror 285.000 terrorist, terror, attack
US Elections 410.000 donald, trump, joe, biden
Harvey 920.000 Category 4, harvey, hurricane

Table 5: Scores for the terror dataset.

Classifier Accuracy Precision Recall F1 score
Naive Bayes 97.7% 36.1% 50.9% 42.3%

Logistic Regression 98.2% 40.6% 11.8% 18.3%
Support Vector Machine 98.3% 50.3% 17.9% 26.4%

Table 6: Scores for the US election dataset.

Classifier Accuracy Precision Recall F1 score
Naive Bayes 97.9% 36.9% 49.5% 42.3%

Logistic Regression 98.2% 31.4% 11.2% 16.5%
Support Vector Machine 98.3% 55.6% 19.1% 28.3%

Table 7: Scores for the Harvey dataset.

Classifier Accuracy Precision Recall F1 score
Naive Bayes 99.2% 15.9% 53.9% 28.1%

Logistic Regression 99.7% 22.2% 7.2% 10.9%
Support Vector Machine 99.8% 52.6% 10.2% 17.1%
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Figure 5: Time for the SVM.

4.2 Recommendations

In view of the results presented earlier in this section
as well as of the recommendations given in the sci-
entific literature, it is generally recommended that the
following best practices be put in place when estimat-
ing Twitter trust levels:

• Since Web trust is a human trait, efforts should
be made in order to involve humans in the general
trust evaluation process. Still this has to be as non-
invasive as possible. Moreover, the implications

of the “Who watches the watchmen?” (Quis cus-
todies ipsos custodes?) question should be very
carefully considered.

• Alternative ML models should be trained with the
same data in order to gain insight into the activ-
ity patterns of trusted accounts. This is especially
true since trolls and fake news farms continue to
adapt to the digital countermeasures against them.

• When in doubt and in high risk cases, insert a hu-
man in the decision loop. This may be tedious
or slow but eventually it is more accurate if the
human operator has the proper data available. To
this end, although outside the scope of this confer-
ence paper, data summarization and visualization
techniques can help.

5 FUTURE WORK DIRECTIONS

This conference paper focuses on the computation
over Spark of the trustworthiness of a massive num-
ber of Twitter accounts. A novel general Web trust
model is proposed based on a combination of on-
line individual activity attributes and that of the ac-
tivity of similar accounts. Three large English tweet
datasets obtained from topic sampling using trending
topics served as benchmarks. The proposed approach
achieved high accuracy values. Moreover, out of
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the three alternative ML models available and based
on the aforementioned performance metrics the SVM
outperforms both the logistic regression and the naive
Bayes, while out of the latter two the logistic regres-
sor fares much better.

Regarding future research work, the scalability is-
sues emerging from applying the proposed approach
to much larger datasets should be investigated. Re-
search may well cover some of the numerous applica-
tions of Web trust, which include fake news discovery,
viral marketing, branch loyalty, or massive online fact
checking for political campaigns.
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