
Comparative Analysis between the k-means and Fuzzy c-means
Algorithms to Detect UDP Flood DDoS Attack on a SDN/NFV

Environment

João Ribeiro de Almeida Neto a, Layse Santos Souza b and Admilson de Ribamar Lima Ribeiro c

Department of Computing, Federal University of Sergipe (UFS), São Cristóvão, Brazil
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Abstract: Distributed Denial of Service (DDoS) attacks are a growing issue for computer networks security and have
become a serious network security problem. Environments based on Software Defined Networking (SDN) and
Network Function Virtualization (NFV) offers the ability to program a network and allows dynamic creation of
flow policies. Allied to that, clustering algorithms can be used to classify and detect DDoS. This paper presents
a study and an analysis of two unsupervised machine learning algorithms used to detect DDoS attacks in an
SDN/NFV simulated environment. The results obtained by the two algorithms include an accuracy rate of
99% and the k-means algorithm was 33% faster than fuzzy c-means, which demonstrates its effectiveness and
scalability.

1 INTRODUCTION

Distributed Denial-of-Service (DDoS) is a significant
issue in Network Security for data centers (Patgiri
et al., 2018). Those attacks are capable of causing
massive disruption in any information communica-
tion technology (ICT) infrastructure (Bawany et al.,
2017). According to recent analysis, DDoS attacks
doubled in frequency in a period of just six months
(Newman, 2019).

DDoS is a specialized form of attack that takes
place into a widely distributed environment, through a
coordinated anonymous identification of the attackers
and their infected malware. The first step is to create
the bot army, either through malware injection or by
infiltration.

Once the army is infiltrated, an anonymous at-
tacker sends commands to a controller, which passes
on the information to the army. Such action even-
tually results in the army sending request packets to
the target system, thereby stealing its resources and
pulling them away from the active zone.

The features of software based traffic analysis and
centralized control over the network of Software De-
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fined Networking (SDN), allows cloud administrators
detecting and reacting to the DDoS attacks more ef-
fectively (Bhushan and Gupta, 2019).

NFV has been proposed to innovate in service de-
livery by virtualizing functions previously performed
by specific hardware appliances. Virtualized network
functions, which compose the service chain, are the
basic elements to achieve the complete virtualization
of service delivery. Dynamic composition of services
make such task even harder than in legacy networks
but easier with SDN.

SDN and NFV (Network Function Virtualization)
concepts are considered complementary, sharing the
goal of accelerating innovation inside the network by
allowing programmability, and altogether changing
the network operational model through automation
and a real shift to software based platforms (Kreutz
et al., 2014).

Signature-based matching is a widely used tech-
nique that can be used for intrusion detection and has
high accuracy (Vigna et al., 2004). However, this
technique does not adapt to new scenarios in a satis-
factory way, since there is a need for frequent updat-
ing of signatures. In addition, developing and main-
taining an updated signature database can be costly
and impractical. For this reason, the use of anomaly-
based technique may be more interesting in dynamic
environments. It uses pattern recognition to clas-
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sify data based on statistical information (Yuan et al.,
2010). In addition, it is possible to use machine
learning to develop applications that detect network
anomalies, especially unsupervised machine learning
techniques. They can be a viable alternative, since the
system itself separates network traffic into different
categories without the need for a supervisor (Suresh
and Anitha, 2011).

In this context, this paper shows a technique to de-
tect DDoS attacks on a SDN/NFV environment with
the implementation of two different unsupervised ma-
chine learning algorithms to improve network secu-
rity. This is a preliminary study and the goal of such
an experiment is to effectively detect DDoS attacks
and compare the accuracy and efficiency of the de-
scribed algorithms.

This paper is divided and organized as follows.
Section II presents related work. Section III displays
the proposed architecture. Section IV describes the
experiments. Section V exposes the results. Finally,
Section VI brings out conclusions and future work.

2 RELATED WORKS

Duy et al. present a statistical mechanism based on
detecting DDoS attacks in the SDN environment us-
ing the entropy metric, considering the profile differ-
ences of the host function to suspect the sub-attack
state and, as well, the time factor information gather-
ing activities (Duy et al., 2018) .

Mutu et al. demonstrate how SDN responsiveness
to UDP flood attacks can be measured, by creating
switches at the switch level using the percentage of
traffic and an amplification rate (Mutu et al., 2015).

Preamthaisong et al. lecture the enhanced DDoS
detection using genetic algorithms combined with
SDN decision trees. The types of attacks generated
were TCP SYN flood, UDP flood, ICMP flood and
TCPKill. They also evaluated the performance of the
algorithms to analyze network traffic (Preamthaisong
et al., 2019).

Nugraha et al. demonstrate a new network based
approach to impact analysis for SDNs. To do that,
they adopted qualitative and quantitative approaches,
took three types of DDoS attacks (ICMP, UDP and
TCP Syn Flood) into consideration, calculated the im-
pact of those in the entire network and identified the
most impacted component (Nugraha et al., 2019).

Wei et al. exposed an UDP flood DDoS attack,
demonstrated the proposal to successfully subvert the
attack to a SDN functionality and exhibited a defense
mechanism that can effectively reduce the damage
caused by UDP flood attack (Wei et al., 2016).

Although Duy et al. paper had great contributions,
it did not use SDN to manage network resources ob-
serving the depletion of UDP bandwidth. Besides
that, NFV was not used to develop network func-
tions separating them in microservices and machine
learning to analyze the performance and accuracy of
the two algorithms used to detect DDoS attacks (Duy
et al., 2018).

Regardless Mutu et al. proposed a responsive
mechanism to UDP attacks in SDN using actuating
triggers at the switch level, they did not work with ma-
chine learning and the NFV environment (Mutu et al.,
2015).

While the study proposed by Nugraha et al. focus
on analyze the impact of DDos attacks, we use unsu-
pervised machine learning algorithms to detect UDP
Flood DDoS attack in a SDN/NFV environment with
a microservices architecture. Also, analyze the per-
formance and accuracy of these algorithms (Nugraha
et al., 2019).

Preamthaisong et al. and Wei et al. papers
had great contributions to detecting DDoS attacks in
SDN networks, but none of them worked with the
NVF environment or had a microservice architecture
(Preamthaisong et al., 2019) (Wei et al., 2016).

Considering those points, this work has a goal
to study and analyze the accuracy and efficiency of
unsupervised machine learning algorithms to detect
DDoS attacks in a SDN network and work with NFV
and microservices architecture.

3 PROPOSED ARCHITECTURE

Despite of their widespread adoption, current net-
works are complex and hard to manage, due to control
and data plans being bundled inside networking de-
vices to, vertically integrated, reducing flexibility and
hindering innovation (Esch, 2014).

SDN is an emerging networking paradigm that
aims to change the limitations of current networks
(Esch, 2014). Its architecture is based on decoupling
data and a control plan, routing decisions are flow-
based, control logic is moved to an external entity and
the network is programmable through software ap-
plications (eg, Firewall, IDS, Routers) (Kreutz et al.,
2014).

SDN architecture can be exploited to improve net-
work security by providing a system for monitoring
and analyzing traffic or detecting anomalies. Appli-
cations can run on the controller and a new or updated
security policy can be propagated across the network
in the form of flow rules (Scott-Hayward et al., 2013).
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SDN offers a favorable environment for the imple-
mentation of network functions virtualization (ETSI,
2017). NFV allows the development of network func-
tions via software and they are executed on general
purpose hardware, previously they are implemented
on specific hardware. It is possible to develop and test
services on the same infrastructure, reducing devel-
opment costs and time to market availability (Bonfim
et al., 2019).

Microservices are small and autonomous services
that work together making application development,
integration and maintenance much easier (Newman,
2015). Such architecture allows the separation of
monolithic systems into smaller components that can
be deployed, updated and disposed of independently.
These small, independent services, work together and
can be integrated with SDN and NFV to break down
network functions from underlying hardware func-
tions (Newman, 2015) (Dragoni et al., 2017).

Based on that, we propose a NFV/SDN architec-
ture to allow the deployment of network services on
demand, showed in Figure 1. It comprises three lay-
ers: Application, Control and Infrastructure. Appli-
cation Layer consists of network services. Control
Layer has a global view of computer and network re-
sources. Infrastructure Layer is composed of various
networking equipment which forward network traffic.

Figure 1: Proposed Architecture.

In general, a DDoS attack aims to prevent legit-
imate users from accessing a target system or ser-
vice by overloading the system’s resources (Mahjabin
et al., 2017). There are two types of DDoS attack de-

tection (L. Dali, 2015):

• Signature-based detection: this approach is gener-
ally used based on rules or filters to detect known
and stored attacks within the database, otherwise
limitation is a new undetected attack;

• Anomaly-based detection: this approach works
towards behavior, in other words, to detect a new
attack it is necessary to train the typical behavior
of the network.

Microservices integration with SDN and NFV at-
tests to an improvement in security, in particular, the
detection of anomaly-based DDoS attacks. Anomaly-
based detection uses the baseline concept of network
behavior and machine learning can be used to predict
behavior that leaves that baseline (Sahoo et al., 2018).

Basically, classification systems are either super-
vised or unsupervised, depending on whether they as-
sign new inputs to one within a finite number of dis-
crete supervised classes or unsupervised categories,
respectively (Xu and Wunsch, 2005).

A supervised machine learning algorithm needs a
previous classification of data for training the algo-
rithm. The unsupervised approach does not need pre-
vious classification and data with similar characteris-
tics are grouped.

In unsupervised classification, called clustering or
exploratory data analysis, no labeled data are avail-
able. The goal of clustering is to separate a finite un-
labeled dataset into a finite and discrete set of “nat-
ural,” hidden data structures, rather than provide an
accurate characterization of unobserved samples gen-
erated from the same probability distribution (Xu and
Wunsch, 2005).

4 EXPERIMENTS

For the conduction of the proposed experiments, a
physical host, running Windows 10 operating sys-
tem, equipped with an Intel Core i7-4500U proces-
sor, 8GB of RAM and a 240GB SSD was used. Vir-
tual machines were created with VirtualBox hypervi-
sor in version 6.0. VM01, a virtual machine running
Ubuntu 16.04 operating system, configured with 3GB
of RAM, 1 CPU and 20GB of HD was used in all
three experiments.

The SDN controller chosen was POX, is an open
source controller for developing SDN applications.
POX Controller provides an efficient way to im-
plement the OpenFlow protocol which is the com-
munication protocol between the controllers and the
switches (Kaur et al., 2014). The OpenFlow protocol
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was proposed to standardize the communication be-
tween the switches and the software-based controller
in an SDN architecture (McKeown et al., 2008). The
Flow Table characterizes the flows received and six
information in it were chosen as features to elaborated
dataset, packet count, byte count, duration sec, dura-
tion nsec, tp src and tp dst. The description of each
of them can be seen in Table 1.

Table 1: Chosen Features.

Feature Description
packet count Number of packets in a flow
byte count Number of bytes in a stream
duration sec Time the flow was active in sec-

onds
duration nsec Time the flow was active in

nanoseconds
tp src TCP Source Port
tp dst TCP Destination Port

The experiments were simulated on Mininet, a
standard network emulation tool for SDN environ-
ment. It allows the creation of a virtual hosts network,
a simple system with switches, controller and links.
We used a topology in Mininet with one switch and
10 hosts and created a synthetic dataset for the experi-
ments. For that, we developed two scripts, one to gen-
erate random normal TCP, UDP, and ICMP traffic and
another to generate the UDP Flood attack. We used
the Scapy to create the scripts, a powerful tool for
generating, scanning, sniffing, attacking, and forging
packages, allowing programmers to create and send
customized packages to meet their requirements. Be-
sides that, we developed a component for the POX
Controller that stores the statistics of Flow Table for
a current data stream in a .csv file. Then, both scripts
were executed separately and the component created
two files including normal and attack traffic samples.
The samples were marked correctly with the nor-
mal and anomalous labels and merged. The dataset
contains 8,820 samples, 6,282 of normal traffic, and
2,538 of malicious traffic.

We used Docker Container for experiments. It is
a container virtualization platform that facilitates the
creation and administration of isolated environments.
Docker makes it possible to package an application
or even an environment inside a container, thus mak-
ing it portable for any other host that has Docker in-
stalled. It has advantages such as speed, boot time,
resources saving, the understanding of how container
processes are carried out within the host and the possi-
bility of uploading several containers simultaneously
while consuming fewer resources of virtual or physi-
cal hardware (Mouat, 2015).

Besides Docker, Containernet (Peuster et al.,
2016) was also used. It enables the use of the NFV
concept and allows adding and removing containers
from an emulated network at runtime, which is not
possible in Mininet (Peuster et al., 2016). There is
the possibility of on demand installation, without the
need to install new equipment, develop and test ser-
vices on the same infrastructure, cutting down devel-
opment costs and time to market availability (Bonfim
et al., 2019).

We studied and analyzed two machine learning
unsupervised clustering algorithms, fuzzy c-means
and k-means, working in anomaly-based detection of
UDP Flood DDoS attack.

Fuzzy c-means have been used very successfully
in many applications, such as pattern recognition
(Ming-Chuan and Don-Lin, 2001). It is used to ana-
lyze several input data points based on distance, thus,
its structure allows data to belong to two or more clus-
ters, which are formed according to the distance be-
tween data points and the cluster centers (Velmurugan
and Santhanam, 2010).

K-means clustering is the well-known technique
of unsupervised learning (Kumari et al., 2016). It is
used to classify a given set of data through a certain
number of clusters. A cluster refers to a collection
of data points aggregated due to certain similarities
(Velmurugan and Santhanam, 2010).

Three experiments were carried out: making the
model and do tests using test dataset, detection in an
SDN environment and detection in an SDN/NFV en-
vironment oriented to microservices. In the last two
experiments, network monitoring and management
was made based on the assumption that it would be
compromised, that is, the botnet would have already
been formed and hosts would already have been in-
fected.

4.1 Experiment A

The purpose of this experiment is to create a model
of both algorithms and test it. To support them, the
scikit-learn library was used, a simple and efficient
tool for predictive data analysis. K-means algorithm
is natively present on it but, in order to use fuzzy c-
means, it was necessary to install a pip package pro-
viding it (Dias, 2019). The dataset cited in section
4 was divided in two, one half was used for train-
ing and the other half for testing. The mass of data
used for training had 4,410 samples divided in 3,141
samples with normal traffic and 1,269 samples with
malicious traffic. To prove the effectiveness of the
algorithms, the other half of the original dataset was
used, which was called as test dataset. Data was pre-
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processed using the sklearn.preprocessing package,
because, in general, machine learning algorithms ben-
efit from data standardization. MinMax scaler was the
pre-processing method used in this experiment. It is a
method that transforms resources by scaling each one
to a specific interval. In addition, it scales and trans-
lates each resource individually, so that belongs to the
specified interval in the training set, for example, be-
tween zero and one.

4.2 Experiment B

In this experiment we only focus on the SDN environ-
ment. We created a star topology with one switch and
four hosts (h1, h2, h3 and h4) in Mininet. The host
h4 was the victim and we used a script to generate
random traffic (ICMP, TCP and UDP) and another to
generate the UDP flood attack traffic. Besides that, we
created a component for the POX Controller for per-
forming flow classification, as illustrated in Figure 2.
Through the statistics monitor of the component, the
flow features are extracted and then the flow classifier
will arrange the flow as normal or anomalous. If the
flow is normal, it is installed and will run normally, if
not, an anomalous flow alert is triggered.

Figure 2: POX Component Proposed.

4.3 Experiment C

In this experiment the SDN/NFV environment was
used, implementing microservices. Figure 3 presents
a component diagram which is a static view of how
the system was implemented and which components
are used in proposed architecture to detect UDP flood
DDoS attacks. The environment consists of a VM
host, a POX Controller that runs directly on the VM
host and a containerized environment, where vir-
tual network services will be executed. For that, it
was necessary to install the Containernet tool, which
includes the Docker Container and Mininet tools.
Within the Docker Container, the following virtual
network microservices were created: flow classifier, a
network host with normal traffic generator and a net-
work host with anomalous traffic generator. For this
experiment, we created four network hosts. Host h1,

which generated normal network traffic between all
hosts. Host h2 that was the victim and received the
DDoS attacks and hosts h3 and h4, which generated
traffic attack for h2. In addition, there was also a flow
classifier.

Figure 3: Component Diagram.

5 RESULTS

The metrics used to analyze fuzzy c-means and k-
means algorithms in the experiments were: preci-
sion, recall, f1-score and support, which are present
in the package sklearn.metrics.precision recall fs-
core support. Each of the metrics is described in Ta-
ble 2.

Table 2: Metrics chosen.

Metric Description
Precision tp / (tp + fp), tp is the number

of true positives and fp the num-
ber of false positives. The preci-
sion is intuitively the ability of
the classifier not to label as pos-
itive a sample that is negative

Recall tp / (tp + fn), tp is the number of
true positives and fn the number
of false negatives. The recall is
intuitively the ability of the clas-
sifier to find all the positive sam-
ples

F1-score Harmonic average of the preci-
sion and recall

Support Number of occurrences of each
class in y true

In addition, the following metrics were used: ac-
curacy and execution time of the algorithm. Accu-
racy is a statistical value that determines the algo-
rithm’s proximity to its ideal. If its value is 1, it means
that the algorithm has no error and classifies data per-
fectly. Below is the accuracy formula (1). To calcu-
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late it, the accuracy score method, also present in the
sklearn.metrics package, was used. To measure exe-
cution time, the time module in Python was used.

Accuracy =
CorrectClassi f ications

TotalSamples
(1)

5.1 Experiment A

For Experiment A, pre-processing to the test dataset
was performed using the MinMaxScaler scaler. Af-
ter using the created model, fuzzy c-means and k-
means algorithms obtained precision, recall, f1-score
and support values, as shown in Table 3.

Table 3: Metrics for fuzzy c-means.

Precision Recall F1-score Support
0 1.00 1.00 1.00 3141
1 1.00 1.00 1.00 1269
Avg/
Total

1.00 1.00 1.00 4410

As can be seen in Figure 4, both algorithms had
a 99.98% accuracy rate, that is, it revealed that both
of them have a satisfactory accuracy in detecting such
type of attack.

Figure 4: Accuracy in experiment A.

In this scenario, fuzzy c-means algorithm had 0.61
seconds of execution time. K-means algorithm, took
0.44 seconds to be completed, as it can be seen in Fig-
ure 5. K-means algorithm proved to be 0.17 seconds,
or 27.86% faster than fuzzy c-means.

5.2 Experiment B

All metrics, except execution time, were the same in
Experiments A and B. For Experiment B, fuzzy c-
means algorithm execution time was 1.25 seconds.
As for the k-means algorithm, it was 1.09 seconds, as
can be seen in Figure 6. K-means algorithm proved
to be 0.16 seconds faster, or 12.8% faster. The execu-
tion time is the simples arithmetic mean of the time of

Figure 5: Time to process in experiment A.

1,000 predictions. This scenario might have increased
due to the execution of the classification method had
competed for processing resources on the machine
with the POX Controller process, since the classifi-
cation took place in the controller.

Figure 6: Time to process in experiment B.

5.3 Experiment C

All metrics, except execution time, were the same in
Experiments A, B and C. For Exercise C, the execu-
tion time for fuzzy c-means algorithm was 0.03 sec-
onds. As for k-means algorithm, it was 0.02 seconds,
as can be seen in Figure 7. K-means algorithm turned
out to be 0.01 seconds faster, which makes its execu-
tion 33.33% faster. The execution time is the simples
arithmetic mean of the time of 1,000 predictions. This
scenario may have been greatly reduced by the fact
that the execution of the classification method was
performed in a specific container.

6 CONCLUSION

During the experiment we encountered some chal-
lenges and among them we noticed the impossibil-
ity of classifying all flows sequentially in the envi-
ronment of Experiment C, which used the concept of
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Figure 7: Time to process in experiment C.

NFV and microservices. That was due to the fact that
the call to the classifier occurs through POST/HTTP.
For that, we used a Python library called requests, to
make the request, while on the server side we used
FLask, which is a web framework written in Python
and based on the WSGI library. When making calls to
the classifier endpoint in an uninterrupted sequential
manner with each flow that reaches the controller, the
API requests collapses and stops working. That is, it
is as if the DDoS attack was also affecting requests
library. Thus, in order to carry out the experiment, it
was necessary to classify only a few samples of flows.

The experiments have proved to be effective in de-
tecting UDP Flood DDoS attacks, using booth fuzzy
c-means and k-means algorithms. We obtained sat-
isfactory results for all the metrics studied: precision,
recall, f1-score, support, accuracy and execution time.

As future work, we intend to research datasets cre-
ated from SDN/NFV environments and use them for
cross-validation of the proposed approach, since in
this work we use synthetic dataset and traffic. Also,
we intend to research how to use real traffic in a sim-
ulated network or to use a real controlled network for
validation and testing. As also, research on different
machine learning libraries to compare them. Besides
that, use another strategy of extracting statistics to be
compared with the one explored in this work, in order
to analyze its overall performances in architecture. As
a chosen strategy, the POX component web.webcore
could be used together with the webservice module
from openflow.webservice, which exposes some in-
formation between them and the flow statistics. In
addition, there is the possibility of using some cache
solution that stores the flows that reach the POX Con-
troller, in order to solve the problem found in the re-
quests library. Furthermore, it could be analyzed the
advantages and disadvantages of this scenario with
caching, since traffic analysis will not take place on-
line.
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