
Automated DEMO Action Model Implementation using Blockchain
Smart Contracts

Marta Aparı́cio1,2, Sérgio Guerreiro1,2 and Pedro Sousa1,2,3

1Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisbon, Portugal
2INESC-ID, Rua Alves Redol 9, 1000-029 Lisbon, Portugal

3Link Consulting SA, Av. Duque de Avila 23, 1000-138 Lisbon, Portugal

Keywords: Blockchain, DEMO, DEMO Action Model, Ethereum, Smart Contract.

Abstract: Enterprise Ontology theory describes a well-founded method to model the essence of an organization in a co-
herent, comprehensive, consistent, and concise way. Enterprise Ontology can offer advantages in understand-
ing the essence of an organization and in using organization models as a starting point for building software
supporting organizations. The availability of ontological models that express the essence of an organization
becomes the fundamental element to support the correct implementation of Smart Contracts in the Blockchain
of that same organization. In this context, it is intended to automatically extract from the DEMO Action Model
the knowledge necessary to produce Smart Contracts in Blockchain. The advantage to be obtained is the reuse
of the modeling done ontologically in line with a correct implementation of the Smart Contracts. This research
feasibility is demonstrated through the well-known Rent-A-Car case.

1 INTRODUCTION

According to (Dietz and Hoogervorst, 2007) two dif-
ferent system notions exist, the teleological and the
ontological system notion. The teleological system
notion is about the function and the behavior of a
system. This notion can be visualized with a black-
box model. The ontological system notion, on the
other side, is about the construction and operation of
a system and can be modeled with a white-box model.
Both the teleological and the ontological system no-
tions are relevant for designing a system.

The starting point in designing a system is the us-
ing system (US). From the construction (white-box
model) of the US it can be determined the require-
ments for the object system (OS). These requirements
are, by nature, about the function and behavior of the
OS, thus in terms of the black-box model of the OS
(Dietz and Hoogervorst, 2007). If the design pro-
cessed by the system design process is specified as
an ontology, the process of engineering a system is
like the one shown in Figure 1. An ontology model
of a system is fully independent of the implementa-
tion, it only shows the essential features. A good ex-
ample of such ontology is the DEMO (Design & En-
gineering Methodology for Organizations) approach
to enterprise ontology, considering enterprises also as

Figure 1: The process of engineering a system (Dietz and
Hoogervorst, 2007).

systems (Dietz, 2006). The implementation model,
also known as Action Model, can straightforwardly
be implemented on the available technological plat-
form (Dietz and Hoogervorst, 2007). In software de-
velopment this model often is the source code in a
programming language like Solidity. Smart Contract
(SC) is an application of the Blockchain (BC) tech-
nology to create an independently verifiable, secure,
permanent, and fault-tolerant agreement designed for
satisfying common contractual conditions. Enterprise
organizations need to establish a level of trust among
their users purchasing products or services. That can

Aparício, M., Guerreiro, S. and Sousa, P.
Automated DEMO Action Model Implementation using Blockchain Smart Contracts.
DOI: 10.5220/0010147602830290
In Proceedings of the 12th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2020) - Volume 2: KEOD, pages 283-290
ISBN: 978-989-758-474-9
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

283



be accomplished via a SC agreement. The availabil-
ity of ontological models that express the essence of
an organization becomes the fundamental element to
support the correct implementation of SCs in the BC
of that same organization. In this context, it is in-
tended to automatically extract from the DEMO Ac-
tion Model the knowledge necessary to produce SCs
in BC. The advantage to be obtained is the reuse of
the modeling done ontologically in line with a correct
implementation of the SCs.

There are some works that relate ontology and
BC, such as Understanding the BC Using Enter-
prise Ontology (de Kruijff and Weigand, 2017), and
Exploring a Role of BC SCs in Enterprise Engi-
neering (Hornáčková et al., 2019). The intersec-
tion between SCs and Ontology, is seen as a great
opportunity since an ontology-based BC will have
an enhanced interpretability, when compared with a
more traditional way of development and manage-
ment (Kim and Laskowski, 2016). However, there
is no clear mapping between Enterprise Ontology
and BC. These statements lead to the following re-
search questions: What is the correspondence be-
tween Blockchain Smart Contracts and DEMO Action
Model? and How can we generate DEMO Action
Model from Blockchain Smart Contracts?

2 BACKGROUND

2.1 Demo Theory

Dietz uses the ψ− theory to construct a methodology
providing an ontological model of an organization,
i.e. a model that is coherent, comprehensive, consis-
tent, and concise, and that only shows the essence of
the operation of an organization model. This method-
ology is called Design and Engineering Methodology
for Organizations (DEMO). DEMO has been widely
accepted in both scientific research and practical ap-
pliance (Andrade et al., 2018). In DEMO, an enter-
prise is seen as a system of people and their relations,
authority and responsibility. The usage of a strongly
simplified models that focus on people forms the ba-
sis of DEMO. By using a language that is common in
the enterprise, the understanding of such models are
guaranteed, even though they’re abstract and have a
conceptual nature. The core concept of DEMO is a
transaction, fully based on the ψ− theory.

According to ψ− theory, in the standard pattern
of a business transaction exists two actor roles, the
initiator and the executor. The obtained fact when
performing a business transaction, is originated by
the collaboration of production and coordination acts.

These acts contain three phases each one with specific
steps. (1) The Order phase that contains the request
(rq); promise (pm); decline (dc); quit (qt) steps. (2)
The Execution phase that contains only the execution
(ex) step. (3) The Result phase that contains the states
(st); reject (rj); accept (ac) steps. The following four
steps are present in every transaction and represent the
happy flow: request, promise, state, accept.

2.2 Blockchain

(Nakamoto, 2009) described BC as an architecture
that gives participants the ability to perform electronic
transactions without relying on trust. What makes this
possible it that, each block contains some data, the
hash of the block and the hash of the previous block.
The data that is stored inside a block depends on the
type of BC, but normally stores the details of mul-
tiple transactions, each with an identification for the
sender, the receiver and the asset. A block also has a
hash that identifies its content and it’s always unique.
If something is changed inside a block, that would
cause the hash to change. That’s why hashes are very
useful to detect changes in blocks. The hash of the
previous block effectively creates a chain of blocks
and it’s this technique that makes a BC so secure.

However, the hashing technique is not enough,
with the high computational capacity that exists today,
where a computer as the capacity of calculate hun-
dreds of thousands of hashes, per second (Aparı́cio.
et al., 2020). To mitigate this problem, BC has a con-
sensus mechanism called Proof-of-Work. This mech-
anism slows down the creation of new blocks since, if
a block is tempered the Proof-of-Work of all the pre-
vious blocks has to be recalculated. So, the security
of BC comes from its creative use of hashing and a
Proof-of-Work mechanism. As long as a majority of
CPU power is controlled by nodes that are not cooper-
ating to attack the network, they’ll outpace attackers.
Of course, its distributive nature also adds a level of
security, since instead of using a central entity to man-
age the chain, BC uses a peer-to-peer network where
anyone can join. Information is broadcast on a best ef-
fort basis, and nodes can leave and rejoin the network
at will, accepting the longest Proof-of-Work chain as
proof of what happened while they were gone.

2.3 Smart Contracts

In the context of BC, in particular second-generation
BC, SCs are just like contracts in the real world. The
only difference is that they are completely digital, in
the sense that they are both defined by software code
and executed or enforced by the code itself automat-

KEOD 2020 - 12th International Conference on Knowledge Engineering and Ontology Development

284



ically without discretion. The trust issue is also ad-
dressed, once Smart Contrats are stored on a BC, they
inherit some interesting properties: immutable and
distributed. Being immutable means that once a SC
is created, it can never be changed again. So, it isn’t
possible to tamper the code of the contract. Being dis-
tributed means that the output of the contract is vali-
dated by every node on the network. So, a single node
cannot force the behavior of the contract since it is de-
pendent of the other nodes. Like all algorithms SCs
may require input values, and only act if certain pre-
defined conditions are met. When a particular value
is reached the SC changes its state and executes the
functions, that are programmatically predefined algo-
rithms, automatically triggering an event on the BC.
If false data is inputed to the system, then false results
will be outputed (Bahga and Madisetti, 2016).

3 RELATED WORK

There have been attempts at raising the level of ab-
straction from code-centric to model-centric SCs de-
velopment. The different approaches tried so far, can
be divided into three: the Agent-Based Approach,
the State Machine Approach and the Process-Based
Approach. The Agent-Based Approach described by
(Frantz and Nowostawski, 2016) proposes a modeling
approach that supports the semi-automated translation
of human-readable contract representations into com-
putational equivalents in order to enable the codifica-
tion of laws into verifiable and enforceable computa-
tional structures that reside within a public BC. They
identify SC components that correspond to real world
institutions, and propose a mapping using a domain-
specific language in order to support the contract
modeling process. The concept Grammar of Institu-
tions (Crawford and Ostrom, 1995) is used to decom-
pose institutions into rule-based statements. These
statements are then compiled in a structured formal-
ization. In this case, the statements are constructed
from five components, abbreviated to ADICO. The
Attributes describing an actor’s characteristics or at-
tributes. The Deontic describing the nature of the
statement as an obligation, permission or prohibi-
tion. The AIm describing the action or outcome that
this statement regulates. The Conditions describing
the contextual conditions under which this statement
holds. And the Or else describing consequences as-
sociated with non-conformance. Using these com-
ponents, statements on the execution of the SC are
made. The statements are then linked by the structure
of Nested ADICO (Boella et al., 2013), a variant of
ADICO in which the institutional functions are linked

by the operators AND, OR, and XOR to create a sim-
ple set of prescriptions. The set of prescriptions is
then transformed into a contract skeleton which has
to be finished manually. Furthermore, it is argued
that the Grammar of Institutions invites non-technical
people to the SC development process.

The State Machine Approach is based on the ob-
servation that SCs act as state machines. A SC is in
an initial state and a transaction transitions the con-
tract from one state to the next. The possibility of
SCs as state machines is also described in the Solid-
ity specification. (Mavridou and Laszka, 2018) show
that the transformation of the Finit State Machine to
Solidity is partly automated, since to ensure Solidity
code quality, some manual coding might be necessary
or added though plugins.

For Process-Based Approaches, both DEMO and
Business Process Model and Notation (BPMN) are
well established for modelling business processes.
(Weber et al., 2016), describes a proposal to sup-
port inter-organizational processes through BC tech-
nology. Captured in BPMN, large parts of the control
flow and business logic of inter-organizational busi-
ness processes can be compiled from process mod-
els into SCs that ensure that the joint process is cor-
rectly executed. So-called trigger components allow
the connection of these inter-organizational process
implementations to Web services and internal process
implementations. These triggers serve as a bridge be-
tween the BC and enterprise applications. Basically,
Weber et al. developed a technique to integrate BC
into the choreography of processes in order to main-
tain trust. The BC enabled to store the status of pro-
cess execution across all involved participants, as well
as to coordinate the collaborative business process ex-
ecution. Validation was made against the ability to
distinguish between conforming and non-conforming
traces. (Garcı́a-Bañuelos et al., 2017) presents an op-
timization for (Weber et al., 2016). In this work, to
compile BPMN models into a SC in Solidity Lan-
guage, the BPMN model is first translated into a re-
duced Petri Net. Only after this first step, the re-
duced Petri is compiled into a Solidity SC. Compared
to (Weber et al., 2016) this work (Garcı́a-Bañuelos
et al., 2017) managed to decrease the amount paid
of resources and achive a higher throughput. Cater-
pillar, first presented in (Pintado, 2017) and further
discussed in (Pintado et al., 2018), is an open-source
Business Process Management System (BPMS) that
runs on top of the Ethereum BC. Like any BPMS,
Caterpillar supports the creation of instances of a pro-
cess model (captured in BPMN) and allows users
to track the state of process instances and to exe-
cute tasks thereof. The specificity of Caterpillar is

Automated DEMO Action Model Implementation using Blockchain Smart Contracts

285



that the state of each process instance is maintained
on the Ethereum BC, and the workflow routing is
performed by SCs generated by a BPMN-to-Solidity
compiler. Caterpillar implements a comprehensive
mapping from BPMN to Solidity. Given a BPMN
model (in standard XML format), it generates a SC
(in Solidity), which encapsulates the workflow rout-
ing logic of the process model. Specifically, the SC
contains variables to encode the state of a process in-
stance, and scripts to update this state whenever a task
completes or an event occurs. Caterpillar supports not
only basic BPMN control flow elements (i.e. tasks
and gateways), but also includes advanced ones, such
as sub-processes, multi-instances and event handling.
Lorikeet (Tran et al., 2018), on other hand can au-
tomatically create well-tested SC code from specifi-
cations that are encoded in the business process and
data registry models based on the implemented model
transformations. The BPMN translator can automat-
ically generate SCs in Solidity from BPMN models
while the registry generator creates Solidity SC based
on the registry models. The BPMN translator takes an
existing BPMN business process model as input and
outputs a SC. This output includes the information
to call registry functions and to instantiate and exe-
cute the process model. The registry generator takes
data structure information and registry type as fields,
and basic and advanced operations as methods, from
which it generates the registry SC. Users can then de-
ploy the SCs on BC. This work builds up on already
seen works, such as (Garcı́a-Bañuelos et al., 2017)
(Weber et al., 2016), for the BPMN translation algo-
rithms.

4 PROPOSED SOLUTION

As explained by Alex Norta in (Norta, 2017), refer-
encing a crowdfunding project that was hacked as it
contained security flaws, resulting in a considerable
monetary loss. “The incident shows it is not enough to
merely equip the protocol layer on top of a Blockchain
with a Turing-complete language such as Solidity to
realize smart-contract management. Instead, we pro-
pose in this keynote paper that is crucial to address
a gap for secure smart-contract management pertain-
ing to the currently ignored application-layer devel-
opment”. A solution to this referred problem would
be to generate SCs automatically, which would add a
level of security.

4.1 Solution Hypotheses

The concept of data independence designates the
techniques that allow data to be changed without
affecting the applications that process it (Markov,
2008). It is the ability to modify a scheme definition
in one level without affecting a scheme definition in a
higher level. It is believe that a similar separation is
highly needed for SCs, in order to achieve the goals
set in this work. DEMO is based on explicit specified
axioms characterized by a rigid modeling methodol-
ogy, and is focused on the construction and operation
of a system rather than the functional behavior. It
emphasizes the importance of choosing the most ef-
fective level of abstraction during information system
development, in order to establish a clear separation
of concerns. The adoption of the Distinction Axiom
of Enterprise Ontology, presented in section 2.1, is
proposed as an ontological basis for this separation.

In a first approach to the problem, it is believed
that, for the Datalogical Layer a SC can be defined as
a piece of code contained on a node of the BC. For
the Infological layer a SC is enforced by a set of rules
implemented on the BC through code. And lastly, for
the Essential layer, the SC is a contract in which the
commitment fulfillment is completely or partially per-
formed automatically in BC. This step allows to de-
fend Ontology, and in particular DEMO, as a good
way towards a model-driven approach in regards to
the automatic generation of software artifacts.

Figure 2: Proposed Solution Architecture, original figure
from (Guerreiro, 2012).

KEOD 2020 - 12th International Conference on Knowledge Engineering and Ontology Development

286



4.2 Solution Architecture

This work start with a believe that a DEMO transac-
tion is represented as a contract in a BC. The contract
has its own address, internal storage, attributes, meth-
ods and it is callable by either an external actor or
another contract, as mentioned in section 2.3. This is
the functionality needed to represent a DEMO trans-
action. They implemented the execution of DEMO
transactions according to the DEMO Machine (Skot-
nica et al., 2017) and associated theories. Now, this
present work argues that the SCs automated genera-
tion could be done directly form the Action Model
with no need for the generation of the remaining
DEMO models. It believes that the structure and con-
tent of a SC can be directly mapped to each action
rule. Since that by creating the action rules it is also
being created the logic on which the SCs operate.

In fact, the action rules contain all the decomposed
detail of the above models, the basis of the DEMO
methodology is exactly the Action Model, as can be
seen in Figure 2. The Construction Model speci-
fies the construction of the organization, specifies the
identified transaction types and the associated actor
roles, as well as the information links between the ac-
tor roles and the information banks. By occupying the
top of the triangle it is suggested that is the most con-
cise model. The Process Model contains, for every
transaction type in the Construction Model, the spe-
cific transaction pattern of the transaction type. And,
also contains the causal and conditional relationships
between transactions. The Process Model is put just
below the Construction Model in the triangle because
it is the first level of detailing of the Construction
Model, namely, the detailing of the identified trans-
action types. The Action Model specifies the action
rules that serve as guidelines for the actors in dealing
with their agenda. The Action Model is put just be-
low the Process Model in the triangle because it is the
second level of detailing of the Construction Model,
namely, the detailing of the identified steps in the Pro-
cess Model of the transaction types in the Construc-
tion Model. At the ontological level of abstraction
there is nothing below the Action Model. The Fact
Model is put on top of the Action Model in figure 2
because it is directly based on the Action Model; it
specifies all object classes, fact types, and ontologi-
cal coexistence rules that are contained in the Action
Model.The Action Model is in a very literal sense the
basis of the other aspect models since it contains all
information that is (also) contained in the Construc-
tion Model, Process Model, and Fact Model; but in
a different way. These models have as if a zoom in
(Action Model) zoom out (Construction Model) rela-

tionship between each other. The Action Model is the
most detailed and comprehensive aspect model.

4.3 Generate DEMO Action Model
from Blockchain Smart Contracts

In this section, the implementation of the Action
Rules of the Action Model is proposed by means of
SCs. This is enabled by the ability of SCs within
the scope of BC technology to describe complex al-
gorithms by using the Turing-complete programming
language.

Solidity is a high-level programming language to
implement SCs specially design for the Ethereum Vir-
tual Machine (EVM). Solidity was chosen because it
is developed under Ethereum and it is the most used
language for SCs for EVM. The building block in So-
lidity is a contract which is similar to class in object-
oriented programming. Contract contains persistent
data in state variables, functions to operate on this
data and it also supports inheritance. Contract can
further contain function modifiers, events, struct types
and other structures to allow implementation of com-
plex contracts and full usage of EVM and BC capa-
bilities. A SC written in Solidity can be created ei-
ther through an Ethereum transaction or by another
already running contract, just like an instance of a
class would be create. Either way the contract code
is than compiled to the EVM bytecode, new transac-
tion is created holding the code and deployed to BC,
returning the address of the contract for further inter-
action.

The proposed mapping not only takes advantage
of the intrinsic properties of BC technology but also
takes advantage of some design patterns for SCs in
the Ethereum Ecosystem (Wöhrer and Zdun, 2018).

Contracts often act as a state machine, which
means that they have certain stages in which they be-
have differently or in which different functions can be
called. A function call often ends a stage and tran-
sitions the contract into the next stage, this is known
as the State Machine common pattern. Through the
DEMO theory, it is known that actors interact by
means of creating and dealing with C-facts. Since
these contracts will model interactions it seems fit to
model C-facts into stages, this stages are implemened
as Enums. Enums are a way to create a user-defined
type in Solidity, for this particular application seven
stages, coresponding to the coordination facts: Ini-
tal; Requested; Promissed; Declined; Declared; Ac-
cepted; Rejected. The initial stage was created with
the assumption that the deployment of a contract by
someone doesn’t mean they want to immediately start
the transactions. Function Modifiers can automati-

Automated DEMO Action Model Implementation using Blockchain Smart Contracts

287



cally check a condition prior to executing a function.
So to guard against incorrect usage of the contract
functions a dedicated function modifier will check if
a certain function can be called in a certain stage. The
DEMO theory defines C-acts as acts in a business
conversation, so these will be modeled as functions
that can only be called by a certain address in a certain
stage of the contract. To implement the guard of ac-
cess to the functions the Restricting Access common
pattern was implemented, through function modifiers
once again. The P-act by the same logic is imple-
mented through a function modifier that is only called
in functions that represent the coordination act de-
clare. The function modifier that represents the P-act
will emit an event corresponding to the P-fact, as a
production fact is the result of performing a produc-
tion act. To summarize, Table 1 shows the proposed
correspondence.

Table 1: Correspondence between Solidity SCs and DEMO
AM concepts.

DEMO component Solidity
C-act Enum
C-fact Funtion
P-act Funtion Modifier
C-fact Event

5 CASE STUDY: RENT-A-CAR

In this section, the implementation of the Action
Model of a well-known case in the enterprise ontol-
ogy is attempted. The case Rent-A-Car is an exercise
in producing the essential model of an enterprise that
offers the usufruct of tangible things: Rent-A-Car is a
company that rents cars to customers. At (Dietz and
Mulder, 2020) all four aspect models (CM, AM, PM,
and FM) are presented. Together they constitute a co-
herent whole that offers full insight into and overview
over the essence of car rental companies. The pro-
duced action rules can directly be transformed into
executable computer code.

As a starting point a generic Transaction contract
was created, from which all other transactions derive.
contract Transaction {

enum C_facts {
Inital,
Requested,
Promissed,
Declined,
Declared,
Accepted,
Rejected}

C_facts public c_fact = C_facts.Inital;

address payable public initiator;
address payable public executor;

event p_fact(address _from, bytes32 _hash);
modifier p_act(){

bytes32 hash =
keccak256(abi.encodePacked(now));
emit p_fact(msg.sender, hash);
_;}

modifier atCFact(C_facts _c_fact) {
require(

c_fact == _c_fact,
"Function cannot be called
at this time.");

_;}
modifier onlyBy(address _account) {

require(
msg.sender == _account,
"Sender not authorized.");

_;} }

As discussed in Section 4.3 the c-facts are repre-
sented through an enum, with the seven stages con-
sidered as the coordination facts. The initiator and
executioner are represented through each of their ad-
dresses. The p-act() is represented by a function mod-
ifier that emits the p-fact event. At last, the atCFact()
and onlyBy(), are respectively modifiers of the com-
mon patterns State Machine and Restricting Access.

After defining the parent contract, for each of the
transaction kinds of the Rent-A-Car case a contract is
created. The idea would be for the client to deploy the
RentalCompleting SC into the BC, after that he would
be able to request that same transaction.
contract RentalCompleting is Transaction{

struct Rental {
uint256 stratingDate;
uint256 endingDate;
uint256 maxRentalDuration;
uint256 drivingLicenseExpirationDay;
...}

//other defined facts

Rental public rental;
//other declared facts

constructor() public{
initiator = 0x5c80...; //rentACar
executor = msg.sender; //client

rental.maxRentalDuration = 10;
//other initialized facts

}
...

At the requestRentalCompleting the truth division
of the assess part of ARS-1 is implemented through
the build-in function require(). After all the re-
quired check and initializations the state of the re-

KEOD 2020 - 12th International Conference on Knowledge Engineering and Ontology Development

288



questRentalCompleting contract is changed to Re-
quested.
function requestRentalCompleting

(uint256 _startingDate,
uint256 _endingDate,
uint256 _drivingLicenseExpirationDay)
public

atCFact(C_facts.Inital)
onlyBy(executor) {

require(_endingDate
>= _startingDate);
//checks of truth division
...

c_fact = C_facts.Requested; }

At the promiseRentalCompleting the contract De-
positPaying is created. The DepositPaying contract
must be deployed at the returned address. Note that in
this particular case at the end of the function the state
is not updated to Promissed as this will only be done
at the acceptInvoicePaying funtion of the InvoicePay-
ing contract as showed in the PSD at (Dietz and Mul-
der, 2020).
function promiseRentalCompleting() public

atCFact(C_facts.Requested)
onlyBy(initiator)
returns (address) {

DepositPaying depositPaying =
new DepositPaying(address(this));

return address(depositPaying); }

Only at the requestDepositPaying the With clause
of the action clause of the response part of ARS-1 is
implemented through the build-in require() function.
contract DepositPaying is Transaction {

RentalCompleting rentalCompleting;

//constructor

function requestDepositPaying
(uint256 _rq_depositAmount) public
atCFact(C_facts.Inital)
onlyBy(executor) {

RentalCompleting.CarGroup memory cG
= rentalCompleting.rental();
require(_rq_depositAmount
== cG.standardDepositAmount);
c_fact = C_facts.Requested; }

After the promiseDepositAmount, the declareDe-
positAmount implements once again a common pat-
tern in solidity, the Withdrawal from Contracts as
this is the recommended method of sending funds.
Only the declareDepositAmount and declareInvoice-
Paying implement this pattern. Also note that this
must be a payable function and p-act() modifier must
be present.

For a better understanding of the sequence sys-
tematization table 2 is presented.0

Table 2: Sequence systematization of Rental-A-Car case.

RentalCompleting
rq with clause of event part (ARS-1)
pm

DepositPaying
rq with clause of response part (ARS-1)
pm
da
ac truth division of assess part (ARS-2)

CarTaking
rq with clause of response part (ARS-3)
pm
da
ac truth division of assess part (ARS-4)

...
InvoicePaying

rq with clause of response part (ARS-7)
pm
da
ac truth division of response part (ARS-8)

RentalCompleting
da
ac

6 CONCLUSIONS

The research presented in this paper is both timely
and relevant as (van Wingerde and Weigand, 2020) re-
search confirms an apparent synergy between artifact-
centric process modeling and SCs. SCs essentially
consist of two elements, programmable logic and data
storage. With these two elements, organizations may
model business logic and data models of their shared
processes. One of BC’ main objectives is to handle
this massive amount of complex contractual agree-
ments and transactions that are nowadays created.
Also, intends to free parties that are dependent upon
third parties to manage and enforce those contractual
agreements. However, non-technical people, that do
not comprehend software code are once again depen-
dent on a third party to write them contracts. The low
level of semantics of software code makes it challeng-
ing to have a high level of comprehension and rea-
soning, which makes it more prone to errors. There
are already some research towards raising the level
of abstraction from code-centric to model-centric SCs
development. To address this problem we propose a
conceptual mapping between Solidity Concepts and
DEMO Action Model concepts, this proposition can
be seen as a way to implement DEMO Action Model.
However this work didn’t considered optimization as
an issue to resolve, for that reason this must be consid-
ered as a future work. Although this work presents a

Automated DEMO Action Model Implementation using Blockchain Smart Contracts

289



verification of the research presented though the Rent-
A-Car case a future work to consider would be re-
lated to its validation. Besides testing the mapping
proposed in a more sizable sample of Action Models
would be of great importance.

ACKNOWLEDGEMENTS

This work was supported by the European Com-
mission program H2020 under the grant agreement
822404 (project QualiChain) and by national funds
through Fundação para a Ciência e a Tecnologia
(FCT) with reference UIDB/50021/2020 (INESC-
ID).

REFERENCES

Andrade, M., Aveiro, D., and Pinto, D. (2018). Demo based
dynamic information system modeller and executer.
pages 383–390.

Aparı́cio., M., Guerreiro., S., and Sousa., P. (2020). To-
wards an automated demo action model implementa-
tion using blockchain smart contracts. In Proceedings
of the 22nd International Conference on Enterprise
Information Systems - Volume 2: ICEIS,, pages 762–
769. INSTICC, SciTePress.

Bahga, A. and Madisetti, V. (2016). Blockchain platform
for industrial internet of things. Journal of Software
Engineering and Applications, 09:533–546.

Boella, G., Elkind, E., Savarimuthu, B. T. R., Dignum, F.,
and Purvis, M. K. (2013). Prima 2013: Principles and
practice of multi-agent systems. In Lecture Notes in
Computer Science.

Crawford, S. E. S. and Ostrom, E. (1995). A grammar
of institutions. American Political Science Review,
89(3):582–600.

de Kruijff, J. and Weigand, H. (2017). Understanding the
blockchain using enterprise ontology.

Dietz, J. (2006). Enterprise Ontology—Theory and Method-
ology.

Dietz, J. and Hoogervorst, J. (2007). Enterprise ontology
and enterprise architecture–how to let them evolve
into effective complementary notions. GEAO Journal
of Enterprise Architecture, 2(1):121–149.

Dietz, J. L. and Mulder, H. B. (2020). Enterprise Ontol-
ogy: A Human-Centric Approach to Understanding
the Essence of Organisation. Springer Nature.

Frantz, C. K. and Nowostawski, M. (2016). From in-
stitutions to code: Towards automated generation of
smart contracts. In 2016 IEEE 1st International Work-
shops on Foundations and Applications of Self* Sys-
tems (FAS*W), pages 210–215.

Garcı́a-Bañuelos, L., Ponomarev, A., Dumas, M., and We-
ber, I. (2017). Optimized execution of business pro-
cesses on blockchain.

Guerreiro, S. (2012). Enterprise dynamic systems control
enforcement of run-time business transactions using
demo: principles of design and implementation. Insti-
tuto Superior Técnico-Universidade Técnica de Lis-
boa, Lisboa.

Hornáčková, B., Skotnica, M., and Pergl, R. (2019). Explor-
ing a role of blockchain smart contracts in enterprise
engineering. In Aveiro, D., Guizzardi, G., Guerreiro,
S., and Guédria, W., editors, Advances in Enterprise
Engineering XII, pages 113–127, Cham. Springer In-
ternational Publishing.

Kim, H. and Laskowski, M. (2016). Towards an ontology-
driven blockchain design for supply chain provenance.

Markov, K. (2008). Data independence in the multi-
dimensional numbered information spaces.

Mavridou, A. and Laszka, A. (2018). Designing Secure
Ethereum Smart Contracts: A Finite State Machine
Based Approach, pages 523–540.

Nakamoto, S. (2009). Bitcoin: A peer-to-peer elec-
tronic cash system. Cryptography Mailing list at
https://metzdowd.com.

Norta, A. (2017). Designing a smart-contract application
layer for transacting decentralized autonomous orga-
nizations. In Singh, M., Gupta, P., Tyagi, V., Sharma,
A., Ören, T., and Grosky, W., editors, Advances in
Computing and Data Sciences, pages 595–604, Sin-
gapore. Springer Singapore.

Pintado, O. (2017). Caterpillar: A blockchain-based busi-
ness process management system.

Pintado, O., Garcı́a-Bañuelos, L., Dumas, M., Weber, I.,
and Ponomarev, A. (2018). Caterpillar: A business
process execution engine on the ethereum blockchain.

Skotnica, M., van Kervel, S. J. H., and Pergl, R. (2017).
A demo machine - a formal foundation for execution
of demo models. In Aveiro, D., Pergl, R., Guizzardi,
G., Almeida, J. P., Magalhães, R., and Lekkerkerk, H.,
editors, Advances in Enterprise Engineering XI, pages
18–32, Cham. Springer International Publishing.

Tran, A. B., Lu, Q., and Weber, I. (2018). Lorikeet: A
model-driven engineering tool for blockchain-based
business process execution and asset management. In
BPM.

van Wingerde, M. E. M. and Weigand, H. (2020). An onto-
logical analysis of artifact-centric business processes
managed by smart contracts. In 2020 IEEE 22nd
Conference on Business Informatics (CBI), volume 1,
pages 231–240.

Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev,
A., and Mendling, J. (2016). Untrusted business pro-
cess monitoring and execution using blockchain. In
La Rosa, M., Loos, P., and Pastor, O., editors, Busi-
ness Process Management, pages 329–347, Cham.
Springer International Publishing.

Wöhrer, M. and Zdun, U. (2018). Design patterns for
smart contracts in the ethereum ecosystem. In 2018
IEEE International Conference on Internet of Things
(iThings) and IEEE Green Computing and Commu-
nications (GreenCom) and IEEE Cyber, Physical and
Social Computing (CPSCom) and IEEE Smart Data
(SmartData), pages 1513–1520.

KEOD 2020 - 12th International Conference on Knowledge Engineering and Ontology Development

290


