
Evolutionary Large-scale Sparse Multi-objective Optimization for
Collaborative Edge-cloud Computation Offloading

Guang Peng1, Huaming Wu2, Han Wu1 and Katinka Wolter1

1Department of Mathematics and Computer Science, Free University of Berlin, Takustr. 9, Berlin, Germany
2Center for Applied Mathematics, Tianjin University, Tianjin 300072, China

Keywords: Local-edge-cloud, Computation Offloading, Large-scale Multi-objective Optimization, Restricted Boltzmann
Machine, Contribution Score.

Abstract: This paper proposes evolutionary large-scale sparse multi-objective optimization (ELSMO) algorithms for col-
laboratively solving edge-cloud computation offloading problems. To begin with, a collaborative edge-cloud
computation offloading multi-objective optimization model is established in a mobile environment, where the
offloading decision is represented as a binary encoding. Considering the large-scale and sparsity property of
the computation offloading model, the restricted Boltzmann machine (RBM) is applied to reduce the dimen-
sionality and learn the Pareto-optimal subspace. In addition, the contribution score of each decision variable is
assumed to generate new offsprings. Combining the RBM and the contribution score, two evolutionary algo-
rithms using non-dominated sorting and crowding distance methods are designed, respectively. The proposed
algorithms are compared with other state-of-the-art algorithms and offloading strategies on a number of test
problems with different scales. The experiment results demonstrate the superiority of the proposed algorithms.

1 INTRODUCTION

With the development of mobile networks and the In-
ternet of Things (IoT), more and more complicated
and time-sensitive applications are being developed
for mobile devices (MDs), e.g., face recognition, aug-
mented reality and interactive gaming. Due to the
insufficient computing ability as well as the limited
battery power of MDs, the quality of service (QoS)
of these resource-intensive and delay-sensitive appli-
cations cannot be satisfied if they are handled lo-
cally. Fortunately, mobile cloud computing (MCC)
(Sahu and Pandey, 2018) and mobile edge computing
(MEC) (Mach and Becvar, 2017) have emerged for
solving these problems, where the complex comput-
ing tasks can be chosen to be offloaded to a central
cloud or an edge cloud.

In MCC, taking advantage of more powerful com-
puting capability in a cloud data center, the resource-
intensive tasks can be offloaded to a central cloud
to alleviate the limitation of computing capability in
MDs. Considering the central cloud may be a lit-
tle far away from MDs, it may cost more time for
transferring the tasks. MEC enables MDs to offload
tasks to servers located at the edge of the cellular
network, which reduces the latency of the commu-
nication between MDs and edge servers. Wu (Wu

et al., 2019) proposed a min-cost offloading partition-
ing (MCOP) algorithm inspired by graph cutting to
minimize the weighted sum of time and energy in
MCC/MEC. Based on his work, Sheikh (Sheikh and
Das, 2018) modeled the effect of parallel execution on
multi-site computation offloading in MCC and used
an existing genetic algorithm to solve the problem.
Their work focuses on the single-objective optimiza-
tion of offloading. Some other work used deep learn-
ing methods to solve offloading problems. Huang
(Huang et al., 2018) formulated the joint offloading
decision and bandwidth allocation as a mixed inte-
ger programming problem in MEC, and proposed a
distributed deep learning-based offloading (DDLO)
algorithm for generating offloading decisions. Yu
(Yu et al., 2020) devised a new deep imitation learn-
ing (DIL)-driven edge-cloud computation offloading
framework for minimizing the time cost in MEC net-
works. For deep learning methods, one important
concern is that the neural network may need a lot of
time to be trained, and the changing parameters in a
mobile environment can change the structure of the
network. On the other hand, multiple meta-heuristic
optimization algorithms have also gathered attention.
Xu (Xu et al., 2019) applied the evolutionary algo-
rithm NSGA-III (non-dominated sorting genetic al-
gorithm III) to deal with computation offloading over

100
Peng, G., Wu, H., Wu, H. and Wolter, K.
Evolutionary Large-scale Sparse Multi-objective Optimization for Collaborative Edge-cloud Computation Offloading.
DOI: 10.5220/0010145501000111
In Proceedings of the 12th International Joint Conference on Computational Intelligence (IJCCI 2020), pages 100-111
ISBN: 978-989-758-475-6
Copyright c© 2020 by SCITEPRESS – Science and Technology Publications, Lda. All rights reserved

big data for IoT-enabled cloud-edge computing. Guo
(Guo et al., 2018) designed a hierarchical genetic al-
gorithm (GA) and particle swarm optimization (PSO)
algorithm to solve the energy-efficient computation
offloading management problem.

However, the above methods especially traditional
evolutionary algorithms will encounter difficulties to
deal with large-scale computation offloading prob-
lems when there exists a large number of MDs hav-
ing a huge number of computation tasks. It is difficult
for the traditional evolutionary algorithms to search in
the whole high-dimensional space with limited pop-
ulation size and computational resources. In this
paper, the proposed computation offloading model
is treated as a multi-objective optimization problem
(MOP) and we focus on multi-objective optimization
evolutionary algorithms (MOEAs). For solving large-
scale MOPs, LMEA (Zhang et al., 2018) divided
the decision variables into convergence-related and
diversity-related variables and optimizes them by dif-
ferent strategies. LCSA (Zille and Mostaghim, 2019)
used a linear combination of population members to
tackle large-scale MOPs. LSMOF (He et al., 2019)
applies two reference points on a solution to search
for better solutions in the large-scale search space.
Although these MOEAs are tailored for large-scale
MOPs, they cannot be applied to MOPs with binary
decision variables and they are shown to be of low ef-
ficiency with a large number of function evaluations
(Tian et al., 2020b). Considering some large-scale
MOPs whose Pareto optimal solutions are sparse, the
literature (Tian et al., 2020a) used two unsupervised
neural networks, a restricted Boltzmann machine, and
a denoising autoencoder to learn a sparse distribution
and compact representation of the decision variables,
which is regarded as an approximation of the Pareto-
optimal subspace. In literature (Tian et al., 2020b),
a hybrid representation of solution is adopted to inte-
grate real and binary encodings, which can solve both
large-scale sparse benchmarks and four real applica-
tions well.

Following the above ideas, in this paper we set
up a collaborative edge-cloud computation offloading
large-scale sparse multi-objective optimization model
with binary encoding. Inspired from literature (Tian
et al., 2020a) and (Tian et al., 2020b), based on the di-
mensionality reduction and decision variable analysis
methods, two evolutionary large-scale sparse multi-
objective optimization algorithms are proposed and
compared to solve the large-scale offloading prob-
lems. Compared with other MOEAs and offloading
schemes, the proposed algorithms are competitive on
different large-scale test problems.

The rest of this paper is organized as follows. Sec-

tion 2 briefly introduces the brief background. The
local-edge-cloud offloading multi-objective optimiza-
tion model is presented in Section 3. The details of the
proposed algorithms are described in Section . The
experimental studies are discussed in Section 4. Fi-
nally, Section 6 summarizes and presents the conclu-
sion and future work.

2 BACKGROUND

In this section some background concepts are pro-
vided.

2.1 Multi-objective Optimization

A multi-objective optimization problem (MOP) can
be defined as follows:

min F(x) = (f1 (x) , f2 (x) , · · · , fm (x))T

subject to x ∈Ω⊆ Rn,
(1)

where Ω is the decision space and x is a solution;
F : Ω→ Θ ⊆ Rm denotes the m-dimensional objec-
tive vector and Θ is the objective space.

A solution x0 is said to Pareto dominate another
solution x1, denoted by x0 ≺ x1, if{

fi
(
x0
)
≤ fi

(
x1
)
, ∀i ∈ {1,2, · · · ,m}

f j
(
x0
)
< f j

(
x1
)
, ∃ j ∈ {1,2, · · · ,m} . (2)

A solution x0 is called a Pareto optimal solution,
if ¬∃x1 : x1 ≺ x0.

The set of Pareto optimal solutions is defined as
PS =

{
x0
∣∣¬∃x1 ≺ x0

}
.

The Pareto optimal solution set in the objective
space is called Pareto front (PF).

2.2 Restricted Boltzmann Machine

Restricted Boltzmann Machine (RBM) is a stochastic
neural network, which consists of an input layer and a
hidden layer, as shown in Fig. 1. The nodes in the two
layers are binary variables obeying binomial distribu-
tion. RBM can be used to reduce the dimensionality
through unsupervised learning. Given an input vector
x, the value of each node h j in the hidden layer is set
to 1 with a probability:

p(h j = 1 |x) = σ

(
a j +

D

∑
i=1

xiwi j

)
(3)

where a j is the basis, wi j is the weight, D is the di-
mensionality of input layer, σ(x) = 1/(1+ exp(−x))
is the sigmoid function. Through comparing the prob-
ability p(h j = 1 |x) with a uniformly distributed ran-
dom value in [0,1], the binary value of each node h j

Evolutionary Large-scale Sparse Multi-objective Optimization for Collaborative Edge-cloud Computation Offloading

101

can be obtained. In the same way, the reconstructed
value of each node x′i in the input layer is set to 1 with
a probability:

p
(
x′i = 1 |h

)
= σ

(
a′ j +

K

∑
j=1

h jwi j

)
(4)

where K is the dimensionality of hidden layer. Hinton
(Hinton, 2002) proposed the contrastive divergence
algorithm to train RBM, which aims to minimize the
reconstruction error between the reconstructed vector
x′ and the original input x by finding the suitable a, a′,
and w.

𝑥1

𝑥1

bias

bias

𝑥𝐷−1

𝑥𝐷

ℎ1

ℎ𝐾

𝑎
𝑎′

𝑤

Figure 1: RBM structure.

3 SYSTEM MODEL AND
PROBLEM FORMULATION

In this section, we consider a collaborative MEC and
MCC network with one edge cloud, one central cloud
and multiple mobile devices (MDs). Thus, the mo-
bile device can execute its computational tasks lo-
cally, or offload its tasks to the edge cloud server
through a wireless link and/or to the central cloud
server through wireless and backhaul links.

3.1 System Model

Fig. 2 presents the system model, which consists of
one edge cloud server, one central cloud server and
multiple MDs, denoted by a set N = {1,2, . . . ,N}.
The edge cloud server can be deployed into the base
station, which is closer to the MDs. The MDs can
communicate with the edge cloud with a wireless link,
whereas the edge cloud and the central cloud can be
interconnected through a wired link. Each MD has
multiple tasks, denoted by a set M = {1,2, · · · ,M}.
The size of m-th task of the n-th MD is denoted by
w(n,m). In each MD, these different tasks can choose
to be processed locally or offloaded to the edge cloud
server and the central cloud server. The offloading

decision is represented by two binary variables x1
(n,m)

and x2
(n,m).

On one hand, x1
(n,m) ∈ {0,1} denotes the offload-

ing decision for m-th task, which means:

x1
(n,m) =

{
0, if task is executed locally
1, if task is offloaded (5)

where x1
(n,m) = 0 denotes n-th MD decides to execute

the m-th task locally, x1
(n,m) = 1 indicates n-th MD de-

cides to offload m-th task to the edge cloud server or
central cloud server.

Once the m-th task is decided to be offloaded to
the cloud server, x2

(n,m) ∈ {0,1} represents the specific
offloading destination for the m-th task, which means:

x2
(n,m)=

{
0, if offloaded to edge cloud & x1

(n,m)= 1
1, if offloaded to central cloud & x1

(n,m)= 1
(6)

where x2
(n,m) = 0 denotes n-th MD decides to offload

m-th task to the edge cloud server, x2
(n,m) = 1 denotes

m-th task is offloaded to the central cloud server.
The detailed operations of local computing, edge

cloud computing and central cloud computing are il-
lustrated in Sections 3.2, 3.3 and 3.4, respectively.
The important notations used in this paper are listed
in Table 1.

MD 1 MD 2 MD N

M tasks M tasks M tasks

Edge cloud

Central cloudWireless

Wired

Figure 2: System model of computation offloading with het-
erogeneous cloud.

3.2 Local Computing Model

We first establish the local computing model when the
task is decided to be executed locally. The task exe-
cution time of mobile device can be calculated as:

T l(n,m) =
w(n,m)

fl
(7)

where fl denotes the task processing rate of local de-
vice.

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

102

Table 1: Important notations used in this paper.

Notation Description
w(n,m) The m-th task workload of the n-th MD
x1
(n,m) x1

(n,m) = 0 if m-th task is executed locally, x1
(n,m) = 1 if m-th task is offloaded to the cloud

x2
(n,m) x2

(n,m) = 0 if m-th task is offloaded to edge cloud, x2
(n,m) = 1 if m-th task is offloaded to central cloud

El(n,m) The energy consumption of the m-th task of the n-th MD
θl The local device energy consumption per unit of workload
T l(n,m) The execution time of the m-th task of the n-th MD
fl The task processing rate of the MD
T e

t (n,m) The transmission time of offloading m-th task to edge cloud via wireless link
b(n,e) The bandwidth between n-th MD and edge cloud
Ee

t (n,m) The energy consumption for transmission to the edge cloud
σ The energy consumption per unit of workload for transmission to the edge cloud
T e(n,m) The time delay of offloading the m-th task of the n-th MD to the edge cloud
fe The task processing rate of the edge cloud
Ee(n,m) The energy consumption of offloading the m-th task of the n-th MD to the edge cloud
θe The energy consumption per unit of workload of edge cloud
T c

t (n,m) The transmission time of offloading m-th task to central cloud via wireless link and wired link
b(e,c) The bandwidth between edge cloud and central cloud
Ec

t (n,m) The energy consumption for transmission to the central cloud
β The energy consumption per unit of workload for transmission to the central cloud
T c(n,m) The time delay of offloading the m-th task of the n-th MD to the central cloud
fc The task processing rate of the central cloud
Ec(n,m) The energy consumption of offloading the m-th task of the n-th MD to the central cloud
θc The energy consumption per unit of workload of central cloud

The energy consumption for executing m-task at
the n-th device can be calculated as:

El(n,m) = θlw(n,m) (8)

Where θl denotes the energy consumption per unit of
workload of local device.

Therefore, the total computation time and energy
consumption of the n-th MD can be expressed as:

T l(n) =
M

∑
m=1

(
1− x1

(n,m)

)
T l(n,m) (9)

El(n) =
M

∑
m=1

(
1− x1

(n,m)

)
El(n,m) (10)

3.3 Edge Cloud Computing Model

For the edge cloud computing model, the MDs can
communicate with the edge cloud via the cellular link.
When the task is decided to be offloaded to the edge
cloud, the MD needs to transmit the workload of the
task to the edge cloud and then to be processed. In
general, the time and energy consumption are often
neglected when the cloud servers return the comput-
ing results back to MDs, because the data size of feed-
back result is small (Bi and Zhang, 2018).

The transmission time for offloading the workload
to the edge cloud server can be calculated as:

T e
t (n,m) =

w(n,m)

b(n,e)
(11)

where b(n,e) denotes the bandwidth between n-th MD
and edge cloud.

The energy consumption for the transmission can
be given by:

Ee
t (n,m) = σw(n,m) (12)

where σ denotes the energy consumption per unit of
workload for transmission to the edge cloud server.

After the task is transmitted to the edge cloud, it
will be executed at the edge cloud server. The com-
putation delay of the whole process can be expressed
as:

T e(n,m) = T e
t (n,m)+

w(n,m)

fe
(13)

where fe denotes the task processing rate of the edge
cloud server.

The energy consumption of whole process can be
expressed as:

Ee(n,m) = Ee
t (n,m)+θew(n,m) (14)

where θe denotes the energy consumption per unit of
workload of edge cloud.

Evolutionary Large-scale Sparse Multi-objective Optimization for Collaborative Edge-cloud Computation Offloading

103

Therefore, the total computation time and energy
consumption of the n-th MD can be expressed as:

T e(n) =
M

∑
m=1

x1
(n,m)

(
1− x2

(n,m)

)
T e(n,m) (15)

Ee(n) =
M

∑
m=1

x1
(n,m)

(
1− x2

(n,m)

)
Ee(n,m) (16)

3.4 Central Cloud Computing Model

For the central cloud computing model, MDs can
communicate with the central cloud via wireless and
wired links. The central cloud servers can provide
more powerful computing capacity for the MDs, but
it might cause more delays for the transmission be-
tween MDs and the central cloud. The transmission
time and energy consumption for offloading the work-
load to the central cloud server can be calculated as:

T c
t (n,m) =

w(n,m)

b(n,e)
+

w(n,m)

b(e,c)
(17)

Ec
t (n,m) = σw(n,m)+βw(n,m) (18)

where b(e,c) denotes the bandwidth between edge
cloud and central cloud. β denotes the energy con-
sumption per unit of workload for transmission to the
central cloud server.

After the task is transmitted to the central cloud, it
will be executed at the central cloud server. The com-
putation delay and energy consumption of the whole
process can be expressed as:

T c(n,m) = T c
t (n,m)+

w(n,m)

fc
(19)

Ec(n,m) = Ec
t (n,m)+θcw(n,m) (20)

where fc denotes the task processing rate of central
cloud server, θc denotes the energy consumption per
unit of workload of central cloud.

Therefore, the total computation time and energy
consumption of the n-th MD can be expressed as:

T c(n) =
M

∑
m=1

x1
(n,m)x

2
(n,m)T c(n,m) (21)

Ec(n) =
M

∑
m=1

x1
(n,m)x

2
(n,m)Ec(n,m) (22)

3.5 Problem Formulation

The total computation time of executing all tasks can
be given by:

T =
N

∑
n=1

max
{

T l(n),T e(n),T c(n)
}

(23)

The total energy consumption of executing all tasks
can be given by:

E =
N

∑
n=1

(
El(n)+Ee(n)+Ec(n)

)
(24)

To summarize, we establish a local-edge-cloud
computation offloading two-objective optimization
model. Considering a large number of mobile devices
having different applications in the mobile environ-
ment, the offloading model is the large-scale MOP.

4 THE PROPOSED ALGORITHM

This section presents the details of two proposed al-
gorithms for solving the large-scale computation of-
floading problems.

4.1 The General Framework

The general frameworks of two proposed algorithms
are presented in Algorithm 1 and 2, respectively. In
both two algorithms, the non-dominated front num-
ber and crowding distance are calculated as the same
way in NSGA-II (Deb et al., 2002), which are also
the selection criteria in the environmental selection.
In ELSMO-1, the non-dominated solutions in the cur-
rent population are used to train a RBM, then the off-
spring solutions are generated from the mating pool.
The two parameters ρ and K are updated iteratively.
In ELSMO-2, the population initialization is differ-
ent from ELSMO-1, which analyzes the contribution
score of each decision variable. And the new off-
spring generation operation is conducted based on
the score. More details about the main operations in
ELSMO-1 and ELSMO-2 are presented in the follow-
ing sections.

4.2 The Proposed ELSMO-1

4.2.1 Offspring Generation

Before generating offspring solutions, all the non-
dominated solutions in the population are used to train
a RBM via the contrastive divergence algorithm. As
shown in Fig. 3, the original binary vectors can be
reduced the dimensionality by RBM, and the reduced
binary vectors can be also recovered. Since the non-
dominated solutions are used to train the RBM, it can
be seen that each solution can be mapped between the
Pareto optimal space and the original search space.

After obtaining the trained RBM, the binary tour-
nament selection mechanism is used to select Ñ par-
ents as the mating pool based on the non-dominated

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

104

Algorithm 1: Framework of ELSMO-1.

Input: The population size Ñ
Output: The final population P

1 P← Initialization
(

Ñ
)

;

2 [F1,F2, · · ·]← NondominatedSorting(P);
3 CrowdDis←CrowdingDistance(F1,F2, · · ·);
4 ρ← 0.5; // Ratio of offspring solutions

generated in the different search space
5 K← N; // Size of the hidden layer
6 while termination criterion not f ul f illed do
7 Train a RBM with K hidden neurons based

on non-dominated solutions in P;
8 P′← Select Ñ parents via binary

tournament selection in P ;
9 O←

O f f springGeneration(P,P′,ρ,K,RBM);
10 P← P∪O;
11 Delete duplicated solutions from P;
12 P← EnvironmentalSelection(P);
13 [ρ,K]←U pdateParameter (P,ρ) ;
14 end

Algorithm 2: Framework of ELSMO-2.

Input: The population size Ñ
Output: The final population P

1 [P,Score]← Initialization
(

Ñ
)

;

2 [F1,F2, · · ·]← NondominatedSorting(P);
3 CrowdDis←CrowdingDistance(F1,F2, · · ·);
4 while termination criterion not f ul f illed do
5 P′← Select 2Ñ parents via binary

tournament selection in P ;
6 O← O f f springGeneration(P′,Score);
7 P← P∪O;
8 Delete duplicated solutions from P;
9 P← EnvironmentalSelection(P);

10 end

0

1

0

1

0

1

0

1

0

RBM

Reduce

Recover

Binary

vector Reduced

binary

vector

Figure 3: Reduce and recover of solutions.

front number and crowding distance. Then two par-
ents are randomly selected from the mating pool and
single-point crossover and bitwise mutation operation
are used to generate two offspring solutions. The ratio
ρ determines the probability that the offspring solu-
tions will be generated in the Pareto-optimal subspace
by the trained RBM or generated in the original search
space. Specifically, if the probability ρ is larger than
a random value in [0,1], the binary vectors of parents
are reduced by Eq. (3) and the offspring solutions
are generated in the Pareto-optimal space, then the re-
duced offspring solutions are recovered by Eq. (4).
If the probability ρ is smaller than the random value,
the offspring solutions are generated in the original
search space without RBM.

4.2.2 Update Parameter

In ELSMO-1, there are two parameters needed to
be considered, the ratio of offspring solutions gener-
ated in the Pareto-optimal subspace or original search
space ρ and the size of the hidden layer K. The pa-
rameter ρ is updated iteratively, which is defined as
follows:

ρt+1 = 0.5×
(

ρt +
s1,t

s1,t + s2,t

)
(25)

where ρt is the value of ρ at the t-th generation and
ρ0 = 0.5. s1,t and s2,t denotes the number of suc-
cessful offspring solutions generated in the Pareto-
optimal subspace and in the original search space, re-
spectively. A successful solution means that it sur-
vives to the next population.

The sparsity of non-dominated solutions in the
current population reflects the setting value of K. Let
dec be a binary vector (the same dimensionality to
offloading problem dimension D) denoting whether
each variable should be nonzero, the probability of
setting deci to 1 is defined according to the non-
dominated solution set NP:

p(deci = 1 |NP) =
1
|NP| ∑

x∈NP
|sign(xi)| (26)

where if xi = 0 then |sign(xi)| equals 0 or |sign(xi)|
is equal to 1 otherwise. Through comparing the prob-
ability p(deci = 1 |NP) with a uniformly distributed
random value in [0,1], the value of deci is obtained.
Then the parameter K is defined as follows:

K = ∑deci (27)

Evolutionary Large-scale Sparse Multi-objective Optimization for Collaborative Edge-cloud Computation Offloading

105

4.3 The Proposed ELSMO-2

4.3.1 The Population Initialization

In ELSMO-2, the population initialization process in-
cludes two steps, i.e., calculating the scores of deci-
sion variables and generating the initial population.
First, the population Q is constituted by a D∗D iden-
tity matrix, where D denotes the number of deci-
sion variables. Then the non-dominated front num-
bers of the solutions in population Q are calculated
based on the non-dominated sorting method. The
non-dominated front number of the i-th solution in Q
can be regarded as the score of the i-th decision vari-
able. The higher score means the better quality of the
decision variable, so the value of the decision variable
is set to 1 with higher probability.

Afterwards, let a binary vector mask represent the
offloading decision. According to the scores of deci-
sion variables, the binary tournament selection mech-
anism is used to select the element in mask with a
better score and set the element to 1. In each solu-
tion, the number of rand ()×D elements are selected
to be set to 1 and other elements in mask are set to 0,
where rand () denotes a uniformly distributed random
value in [0,1]. In this way, the initialized population
with better convergence and diversity is obtained by
selecting decision variables with good quality.

4.3.2 The Offspring Generation

The binary tournament selection mechanism is used
to select 2Ñ parents as the mating pool based on the
non-dominated front number and crowding distance.
Then two parents p and q are randomly selected from
the mating pool to generate an offspring o each time.
The binary vector mask of o is first set to the same to
p, then two decision variables from the nonzero ele-
ments in p.mask∩q.mask are randomly selected with
probability 0.5, the decision variable in the mask of
o with a larger score is set to 0. Otherwise, select-
ing two decision variables from nonzero elements in
p.mask∩q.mask, the decision variable in the mask of
o with smaller score is set to 1.

Afterwards, one mutation operation is conducted
on the mask of o to retain diversity. Compare one ran-
dom probability distributed in [0,1] with 0.5, if the
probability is less than 0.5, randomly select two deci-
sion variables from the nonzero elements in o.mask,
and set the element with large score in o.mask to
0. Otherwise, randomly select two decision variables
from the nonzero elements in o.mask, and set the ele-
ment with a small score in o.mask to 1. The main idea
of the mutation operation is making decision variables

with better quality approach to 1, while decision vari-
ables with worse quality approach 0.

4.4 Computational Complexity

For the proposed algorithms, the major costs are the
iteration process in Algorithm 1 and 2. In ELSMO-
1, Step 7 needs O

(
ÑEDK

)
operations to train the

RBM, where Ñ is the population size, E is the num-
ber of epochs for training, D is the number of de-
cision variables, K is the hidden layer size. Step 8
needs O

(
Ñ
)

operations for the binary tournament se-

lection. Step 9 performs O
(

ÑDK
)

to generate off-

spring solutions. Step 12 performs O
(

M̃Ñ2
)

opera-

tions for the environmental selection, where M̃ is the
number of objectives. Step 13 needs O

(
ÑD
)

oper-
ations to update the parameters. To summarize, the
overall computational complexity at one generation
of ELSMO-1 is max

{
O
(

ÑEDK
)
,O
(

M̃Ñ2
)}

. In

ELSMO-2, Step 5 performs O
(

2Ñ
)

operations for

selecting mating pool. Step 6 needs O
(

ÑD
)

opera-
tions to generate offspring solutions. Step 9 performs
O
(

M̃Ñ2
)

operations for the environmental selection.
The overall computational complexity at one genera-
tion of ELSMO-2 is max

{
O
(

M̃Ñ2
)
,O
(

ÑD
)}

.
NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al.,

2001), SMS-EMOA (Hochstrate et al., 2007), and
EAG-MOEA/D (Cai et al., 2015) are four compared
algorithms selected in this paper. The computational
complexity of NSGA-II, SMS-EMOA and EAG-
MOEA/D is the same, i.e. O

(
M̃Ñ2

)
. The worst com-

putational complexity of SPEA2 is O
((

Ñ +N
)3
)

,

where N is the archive size.

5 EXPERIMENTAL STUDIES

In this section, we evaluate the performance of the
proposed algorithms and demonstrate the compared
results of different MOEAs and offloading strategies.

5.1 Experimental Settings

In the experiment, we set up the local-edge-cloud of-
floading environment. The number of mobile devices
is selected between 100 and 1000. The number of

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

106

independent tasks of each MD is M = 5. So the di-
mension of the offloading problem D is between 1000
and 10000. We set the energy consumption per unit
of workloads in local device, edge and central cloud
server θl = 3J/MB, θe = 1.5J/MB, and θc = 1J/MB,
respectively. The processing rates of local device,
edge and central cloud server are fl = 2MB/s, fe =
8MB/s, and fc = 12MB/s, respectively. The energy
consumption per unit of workloads for transmission
from local device to edge cloud server is a random
value within [0.4,0.6] J/MB, and the same measure
from edge to central cloud server is random value
within [0.3,0.5] J/MB. In addition, the bandwidth be-
tween the local device and edge server is chosen from
[80,100] Mbps, whereas the bandwidth between edge
cloud and central cloud is fixed b(e,c) = 150Mbps. We
assume that the workloads of tasks are randomly dis-
tributed between 10MB and 30MB. The related pa-
rameters and corresponding values are summarized in
Table 2.

To verify the performance of the proposed algo-
rithms, we compare the proposed algorithms with
other MOEAs and offloading schemes to solve
ten different large-scale offloading problems, which
means that the number of devices N = [100, 200, 300,
400, 500, 600, 700, 800, 900, 1000] and the dimen-
sion D = [1000, 2000, 3000, 4000, 5000, 6000, 7000,
8000, 9000, 10000]. The compared algorithms are
NSGA-II (Deb et al., 2002), SPEA2 (Zitzler et al.,
2001), SMS-EMOA (Hochstrate et al., 2007), and
EAG-MOEA/D (Cai et al., 2015). NSGA-II, SPEA2,
SMS-EMOA are three classical MOEAs which are
effective for MOPs, while EAG-MOEA/D is tailored
for combinatorial MOPs. For a fair comparison, the
population size of all algorithms is set to 50. The
number of function evaluations is set with values in
the interval from 6.0× 104 to 15× 104 for ten test
problems, and the interval of the number of func-
tion evaluations is 104. In NSGA-II, SPEA2, SMS-
EMOA, EAG-MOEA/D and ELSMO-1, the single-
point crossover and bitwise mutation are applied to
generate new offspring, where the probabilities of
crossover and mutation are set to 1.0 and 1/D, respec-
tively. The hypervolume (HV) (Zitzler et al., 2003) is
adopted as the metric to evaluate the performance of
the compared algorithms. The HV can reflect the per-
formance regarding both convergence and diversity.
The bigger the HV value, the better the performance
of the algorithm. For each test instance, each algo-
rithm is executed 30 times independently, and the av-
erage and standard deviation of the metric values are
recorded. The Wilcoxon rank sum test at a 5% signif-
icance level is used to compare the experimental re-
sults, where the symbol ’+’, ’−’ and ’≈’ denotes that

the result of another compared algorithm is signifi-
cantly better, significantly worse and similar to that
obtained by the proposed algorithm.

The other four compared offloading schemes are
Local Offloading Scheme (LOS), Edge Offloading
Scheme (EOS), Cloud Offloading Scheme (COS),
Random Offloading Scheme (ROS). LOS, EOS, and
COS represent that all applications are executed on
the local device, offloaded to edge and central cloud.
ROS denotes that the offloading decisions are gener-
ated randomly. To demonstrate the effectiveness of
different offloading schemes, the offloading gain of a
weighted sum of time and energy based on LOS is
defined as:

O f f loadingGain =
[
w× TLOS−To f f loading

TLOS
+(1−w)

×ELOS−Eo f f loading
ELOS

]
×100%

(28)
where TLOS and ELOS denote the time and energy
consumption of LOS, respectively. To f f loading and
Eo f f loading denotes the time and energy consumption
of other offloading schemes. w is the weight parame-
ter, which can be set by the decision-maker.

5.2 Comparison with Other MOEAs

Table 3 presents the HV metric values obtained
by NSGA-II, SPEA2, SMS-EMOA, EAG-MOEA/D,
ELSMO-1 and ELSMO-2 on ten test problems. The
proposed ELSMO-2 has achieved the best perfor-
mance on 9 of 10 test instances, while only EAG-
MOEA/D gets 1 of 10 best results for the rest of com-
pared algorithms. When the dimension is not so large
(i.e., 1000), the EAG-MOEA/D and ELSMO-2 can
obtain similar metric values. It can be observed that
ELSMO-2 has a clear advantage over other compared
algorithms with the increment of dimension.

Fig. 4, Fig. 5 and Fig. 6 show the final non-
dominated solution set with the medium HV value
obtained by NSGA-II, SPEA2, SMS-EMOA, EAG-
MOEA/D, ELSMO-1 and ELSMO-2 on offloading
problems with 1000, 5000, and 10000 binary vari-
ables. NSGA-II, SPEA2, SMS-EMOA can only get
a small part of the solutions in the Pareto front, which
may be worse when dealing with large-dimension
problems. EAG-MOEA/D is designed for combina-
torial problems, which can obtain good performance
compared with other classical algorithms NSGA-II,
SPEA2 and SMS-EMOA, whereas its diversity still
encounters difficulties for solving large-dimensional
offloading problems. ELSMO-1 seems to have the
best performance of diversity compared with the other
five algorithms, but the RBM may need more itera-
tions to be trained for improving the convergence. It

Evolutionary Large-scale Sparse Multi-objective Optimization for Collaborative Edge-cloud Computation Offloading

107

Table 2: Parameter values.

Parameter Value
The number of mobile devices N = [100,1000]
The number of independent tasks of each MD M = 5
The local energy consumption per unit θl = 3J/MB
The edge cloud energy consumption per unit θe = 1.5J/MB
The central cloud energy consumption per unit θc = 1J/MB
The processing rate of the local device fl = 2MB/s
The processing rate of the edge cloud server fe = 8MB/s
The processing rate of the central cloud server fc = 12MB/s
The energy consumption per unit for transmission from MD to edge cloud σ = [0.4,0.6]J/MB
The energy consumption per unit for transmission from edge to central cloud β = [0.3,0.5]J/MB
The bandwidth between n-th MD and edge cloud b(n,e) ∈ [80,100]Mbps
The bandwidth between edge and central cloud b(e,c) = 150Mbps
The workloads of all tasks w(n,m) ∈ [10,30]MB

Figure 4: The non-dominated solution set with the medium HV value obtained by NSGA-II, SPEA2, SMS-EMOA, EAG-
MOEA/D, ELSMO-1 and ELSMO-2 on the 1000-dimensional offloading problem.

is clear from the figures that ELSMO-2 can always get
better performance between convergence and diver-
sity no matter what the dimensional offloading prob-
lem.

5.3 Comparison with Other Offloading
Schemes

It has been observed that ELSMO-2 can get the best
non-dominated solution set in the Pareto front. The
non-dominated solution set can give the decision-
maker more choices. To further validate the perfor-
mance of ELSMO-2, we compare the offloading gain
between ELSMO-2 and EOS, COS and ROS based
on the LOS. According to the different quality of ser-

vice, the decision-maker may set different weights of
w for the tradeoff between time and energy. If the
decision-maker is sensitive to the time consumption,
it may set a larger weight for the time consumption, or
if the decision-maker focus is on energy performance,
it may set a larger weight for the energy consumption.

Fig. 7, Fig. 8 and Fig. 9 presents the offloading
gain of different offloading schemes under the differ-
ent weights on 1000-, 5000-, 10000-dimensional of-
floading problems. It can be seen that offloading is al-
ways beneficial compared with the only local offload-
ing scheme. And the proposed ELSMO-2 can always
get the best offloading gain compared with other of-
floading schemes under different weights on different
large-scale offloading problems. On the other hand,

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

108

Figure 5: The non-dominated solution set with the medium HV value obtained by NSGA-II, SPEA2, SMS-EMOA, EAG-
MOEA/D, ELSMO-1 and ELSMO-2 on the 5000-dimensional offloading problem.

Figure 6: The non-dominated solution set with the medium HV value obtained by NSGA-II, SPEA2, SMS-EMOA, EAG-
MOEA/D, ELSMO-1 and ELSMO-2 on the 10000-dimensional offloading problem.

ELSMO-2 takes an obvious advantage over other of-
floading schemes when w is becoming larger, which
means that ELSMO-2 can reduce the time delay more
efficiently. What’s more, compared with ROS, EOS
and COS can obtain a better offloading gain, which
also demonstrates that edge and cloud offloading can
improve performance for both time and energy con-
sumption.

6 CONCLUSION AND FUTURE
WORK

In this paper, two evolutionary large-scale sparse
multi-objective optimization (ELSMO) algorithms
are proposed and compared for solving heterogeneous
edge-cloud computation offloading problems. Con-
sidering the large-scale and sparsity properties of the
multi-objective offloading model, the RBM is used to
reduce the dimensionality and learn from the Pareto

Evolutionary Large-scale Sparse Multi-objective Optimization for Collaborative Edge-cloud Computation Offloading

109

Table 3: The average HV values obtained by NSGA-II, SPEA2, SMS-EMOA, EAG-MOEA/D, ELSMO-1 and ELSMO-2 on
offloading problems. Highlighted values corresponds to the best results according to the statistical tests.

Problem D NSGA-II SPEA2 SMS-EMOA EAG-MOEA/D ELSMO-1 ELSMO-2

Offloading1 1000 2.7834e-1 (1.60e-3) − 2.7353e-1 (1.75e-3) − 2.6961e-1 (1.64e-3) − 2.9834e-1 (3.45e-4) + 2.9541e-1 (8.36e-4) − 2.9800e-1 (8.96e-5)
Offloading2 2000 2.6303e-1 (1.80e-3) − 2.5928e-1 (1.20e-3) − 2.5669e-1 (9.36e-4) − 2.9564e-1 (9.80e-4) − 2.6861e-1 (2.92e-2) − 2.9761e-1 (1.73e-4)
Offloading3 3000 2.5533e-1 (1.70e-3) − 2.5192e-1 (9.69e-4) − 2.5123e-1 (1.44e-3) − 2.8934e-1 (3.76e-3) − 2.8580e-1 (2.07e-3) − 2.9442e-1 (3.48e-4)
Offloading4 4000 2.5263e-1 (1.10e-3) − 2.4856e-1 (7.96e-4) − 2.4805e-1 (7.14e-4) − 2.8371e-1 (3.79e-3) − 2.7427e-1 (1.89e-2) − 2.9761e-1 (1.73e-4)
Offloading5 5000 2.5009e-1 (1.09e-3) − 2.4757e-1 (6.41e-4) − 2.4656e-1 (8.32e-4) − 2.8441e-1 (1.35e-3) − 2.7836e-1 (3.87e-3) − 2.9161e-1 (3.14e-4)
Offloading6 6000 2.4780e-1 (6.85e-4) − 2.4587e-1 (6.99e-4) − 2.4483e-1 (4.67e-4) − 2.8219e-1 (2.73e-3) − 2.7564e-1 (2.51e-3) − 2.9018e-1 (2.00e-4)
Offloading7 7000 2.4759e-1 (1.04e-3) − 2.4493e-1 (1.59e-4) − 2.4391e-1 (2.20e-4) − 2.7632e-1 (5.08e-3) − 2.6431e-1 (1.77e-2) − 2.8837e-1 (5.94e-4)
Offloading8 8000 2.4542e-1 (6.92e-4) − 2.4373e-1 (7.42e-4) − 2.4254-1 (6.27e-4) − 2.7476-1 (5.20e-3) − 2.7134e-1 (1.67e-3) − 2.8626e-1 (8.37e-4)
Offloading9 9000 2.4439e-1 (4.68e-4) − 2.4325e-1 (3.76e-4) − 2.4218-1 (7.11e-4) − 2.7607e-1 (3.52e-3) − 2.6904e-1 (2.81e-3) − 2.8521e-1 (3.74e-4)

Offloading10 10000 2.4434e-1 (3.23e-4) − 2.4267e-1 (5.62e-4) − 2.4212-1 (3.56e-4) − 2.7024e-1 (7.04e-4) − 2.7013e-1 (2.49e-3) − 2.8359e-1 (1.17e-3)
+/−/≈ 0/10/0 0/10/0 0/10/0 1/9/0 0/10/0

Offloading Schemes0.0

0.1

0.2

0.3

0.4

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(a) D = 1000

Offloading Schemes0.0

0.1

0.2

0.3

0.4

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(b) D = 5000

Offloading Schemes0.0

0.1

0.2

0.3

0.4

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(c) D = 10000

Figure 7: Offloading gain of different offloading schemes for w = 0.2.

Offloading Schemes0.0

0.1

0.2

0.3

0.4

0.5

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(a) D = 1000

Offloading Schemes0.0

0.1

0.2

0.3

0.4

0.5

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(b) D = 5000

Offloading Schemes0.0

0.1

0.2

0.3

0.4

0.5

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(c) D = 10000

Figure 8: Offloading gain of different offloading schemes for w = 0.5.

Offloading Schemes0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(a) D = 1000

Offloading Schemes0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(b) D = 5000

Offloading Schemes0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Of
flo

ad
in

g
Ga

in

ELSMO-2
EOS
COS
ROS

(c) D = 10000

Figure 9: Offloading gain of different offloading schemes for w = 0.8.

optimal subspace. While the contribution score is
applied to select better decision variables to gener-
ate offspring. The proposed algorithms are compared
with other MOEAs and offloading schemes to solve
the test problems under different scales. The experi-

mental results demonstrate the effectiveness and effi-
ciency of the proposed algorithms.

In the future, some other efficient methods that
can reduce the dimensionality will be considered,
such as Principal Component Analysis (PCA) and

ECTA 2020 - 12th International Conference on Evolutionary Computation Theory and Applications

110

Autoencoder (AE). And also, the relationship be-
tween different decision variables will be investi-
gated.

REFERENCES

Bi, S. and Zhang, Y. J. (2018). Computation rate maxi-
mization for wireless powered mobile-edge comput-
ing with binary computation offloading. IEEE Trans-
actions on Wireless Communications, 17(6):4177–
4190.

Cai, X., Li, Y., Fan, Z., and Zhang, Q. (2015). An external
archive guided multiobjective evolutionary algorithm
based on decomposition for combinatorial optimiza-
tion. Evolutionary Computation IEEE Transactions
on, 19(4):508–523.

Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T. (2002).
A fast and elitist multiobjective genetic algorithm:
Nsga-ii. IEEE Transactions on Evolutionary Compu-
tation, 6(2):182–197.

Guo, F., Zhang, H., Ji, H., Li, X., and Leung, V. C. M.
(2018). An efficient computation offloading man-
agement scheme in the densely deployed small cell
networks with mobile edge computing. IEEE/ACM
Transactions on Networking, 26(6):2651–2664.

He, C., Li, L., Tian, Y., Zhang, X., Cheng, R., Jin,
Y., and Yao, X. (2019). Accelerating large-scale
multiobjective optimization via problem reformula-
tion. IEEE Transactions on Evolutionary Computa-
tion, 23(6):949–961.

Hinton, G. E. (2002). Training products of experts by min-
imizing contrastive divergence. Neural computation,
14(8):1771–1800.

Hochstrate, N., Naujoks, B., and Emmerich, M. (2007).
Sms-emoa: Multiobjective selection based on domi-
nated hypervolume. European Journal of Operational
Research, 181:1653–1669.

Huang, L., Feng, X., Feng, A., Huang, Y., and ping Qian, L.
(2018). Distributed deep learning-based offloading for
mobile edge computing networks. Mobile Networks
and Applications, pages 1–8.

Mach, P. and Becvar, Z. (2017). Mobile edge comput-
ing: A survey on architecture and computation of-
floading. IEEE Communications Surveys & Tutorials,
19(3):1628–1656.

Sahu, I. and Pandey, U. S. (2018). Mobile cloud comput-
ing: Issues and challenges. In 2018 International Con-
ference on Advances in Computing, Communication
Control and Networking (ICACCCN), pages 247–250.

Sheikh, I. and Das, O. (2018). Modeling the effect of paral-
lel execution on multi-site computation offloading in
mobile cloud computing. In Computer Performance
Engineering, pages 219–234.

Tian, Y., Lu, C., Zhang, X., Tan, K. C., and Jin, Y. (2020a).
Solving large-scale multiobjective optimization prob-
lems with sparse optimal solutions via unsupervised
neural networks. IEEE Transactions on Cybernetics,
pages 1–14.

Tian, Y., Zhang, X., Wang, C., and Jin, Y. (2020b). An
evolutionary algorithm for large-scale sparse multiob-
jective optimization problems. IEEE Transactions on
Evolutionary Computation, 24(2):380–393.

Wu, H., Knottenbelt, W. J., and Wolter, K. (2019). An effi-
cient application partitioning algorithm in mobile en-
vironments. IEEE Transactions on Parallel and Dis-
tributed Systems, 30(7):1464–1480.

Xu, X., Liu, Q., Luo, Y., Peng, K., Zhang, X., Meng, S.,
and Qi, L. (2019). A computation offloading method
over big data for iot-enabled cloud-edge computing.
Future Generation Computer Systems, 95:522–533.

Yu, S., Chen, X., Yang, L., Wu, D., Bennis, M., and Zhang,
J. (2020). Intelligent edge: Leveraging deep imita-
tion learning for mobile edge computation offloading.
IEEE Wireless Communications, 27(1):92–99.

Zhang, X., Tian, Y., Cheng, R., and Jin, Y. (2018). A
decision variable clustering-based evolutionary al-
gorithm for large-scale many-objective optimization.
IEEE Transactions on Evolutionary Computation,
22(1):97–112.

Zille, H. and Mostaghim, S. (2019). Linear search mecha-
nism for multi- and many-objective optimisation. In
EMO.

Zitzler, E., Laumanns, M., and Thiele, L. (2001). Spea2:
Improving the strength pareto evolutionary algorithm
for multiobjective optimization. volume 3242.

Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C. M.,
and Da Fonseca, V. G. (2003). Performance assess-
ment of multiobjective optimizers: An analysis and
review. IEEE Transactions on evolutionary computa-
tion, 7(2):117–132.

Evolutionary Large-scale Sparse Multi-objective Optimization for Collaborative Edge-cloud Computation Offloading

111

