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Abstract: As neural network becomes deeper, it becomes more capable of generating more powerful representation for 
a wide variety of tasks. However, deep neural network has a large number of parameters and easy to overfit 
the training samples. In this paper, we present a new regularization technique, called batch contrastive 
regularization. Regularization is performed by comparing samples collectively via contrastive loss which 
encourages intra-class compactness and inter-class separability in an embedded Euclidean space. To facilitate 
learning of embedding features for contrastive loss, a two-headed neural network architecture is used to 
decouple regularization classification. During inference, the regularization head is discarded and the network 
operates like any conventional classification network. We also introduce bag sampling to ensure sufficient 
positive samples for the classes in each batch. The performance of the proposed architecture is evaluated on 
CIFAR-10 and CIFAR-100 databases. Our experiments show that features regularized by contrastive loss has 
strong generalization performance, yielding over 8% improvement on ResNet50 for CIFAR-100 when trained 
from scratch. 

1 INTRODUCTION 

As neural networks (He et al., 2016; Zagoruyko et al., 
2016; Xie et al., 2017) become deeper over the years, 
it has become more adept at tackling more complex 
classification and detection tasks. However, deeper 
networks have a large number of parameters which 
makes it more prone to overfitting especially when 
trained on a small training set. Different 
regularization methods have been designed over the 
recent years to improve generalization performance. 
Widely used techniques include weight decay (Krogh 
et al., 1992), data augmentation (Shorten et al., 2019), 
and dropout (Srivastava et al., 2014). In general, these 
techniques inject random noise into the network 
(Srivastava et al., 2014) or data samples (Shorten et 
al., 2019) when training the network. One common 
feature of these techniques is that samples are treated 
individually. Although training is carried out in 
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batches, most computations (e.g., forward 
propagation, loss, regularization and propagation) are 
done with little interaction between the samples 
except for simple averaging at the end.  

Recently, batch loss regularization techniques 
(Wen et al., 2016; Huang et al., 2017; Zhao et al., 
2019) explores how to regularize a network 
collectively by tapping into the relationship between 
batch samples. Compared to the softmax loss (Figure 
1(a)) which learns separable decision boundaries, 
center loss (Wen et al., 2016) further encourages 
intra-class compactness (Figure 1(b)) by penalizing 
the distance between embedding features and their 
corresponding centers. Exclusive regularization 
(Zhao et al., 2019) additionally ensures that the 
centers are far apart by penalizing the angles between 
two neighbouring centers (Figure 1(c)). The 
generated features are more representative and 
discriminative.  
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Figure 1: Embedding features trained under various loss 
functions. (a) Softmax loss generates embedding features 
that are separable (b) Center loss (Wen et al., 2016) ensures 
intra-class compactness. (c) Exclusive regulation (Zhao et 
al., 2019) ensures both intra-class compactness and inter-
class separability using angular loss (d) Our proposed 
center contrastive loss uses the contrastive loss function in 
an euclidean embedding space. (e) Our proposed sample 
contrastive loss is similar to (d) except that the distance is 
computed between sample-pairs. 

Intra-class compactness and center separability 
apparently exhibit promising regularizing effect. 
Interestingly, some studies in perceptual learning 
(Mitchell et al., 2014; Mundy et al. 2007) show that 
the performance of human on categorization task can 
be enhanced when the stimuli are presented side by 
side so that the subject is given the opportunity for 
comparison. In (Mundy et al., 2007), human subjects 
were found to perform better at categorization tasks 
when two stimuli such as face pairs or checkerboard 
pattern pairs were presented simultaneously as 
opposed to successively. Interestingly, the ability to 
learn from comparison is potentially unique to 
human, not found in animal, which shows that 
learning from simultaneous samples represents a 
higher order of learning.  

In this paper, we novelly use contrastive loss to 
realize batch loss regularization. Contrastive loss has 
been widely adopted for distance metric learning. 
More importantly, features generated from 

contrastive loss has been shown to deliver superior 
performance for a multitude of tasks compared to 
softmax loss when the training set is small (Horiguchi 
et al., 2019). Hence, we posit that the network 
regularized by contrastive loss has good 
generalization property. We explore two different 
contrastive losses: (1) the center contrastive loss 
shown in Figure 1(d) which uses embedding feature 
centers as the reference point and (2) the sample 
contrastive loss shown in Figure 1(e) which is based 
on sample-pair distances.  

Our contribution are as follows. First, we propose 
a novel batch loss regularization method called batch 
contrastive loss. We devise two variants of batch 
contrastive loss to regularize the network. Second, 
our work is the first to seriously explore batch loss 
regularization for general classification. Previous 
works on batch loss regularization are limited to 
specific domain e.g., face recognition (Wen et al., 
2016; Zhao et al., 2019), or scene classification 
(Huang et al., 2017). In our experiments, our 
proposed method displays strong generalization 
performance for the CIFAR-100 dataset. Third, we 
use a two-headed network architecture in order to 
decouple regularization from classification. During 
inference, the regularization head is dropped and only 
the classification head remains. Lastly, we introduce 
bag sampling to guarantee that the classes in a batch 
are not under-represented. 

2 RELATED WORK 

As neural network becomes deeper, the huge number 
of parameters causes the network to become prone to 
overfitting especially when trained on a small 
targeted dataset, leading to poor generalization 
performance. To solve this problem, a number of 
powerful regularization techniques have been 
developed to overcome the problem. Classical 
methods include weight decay (Krogh et al., 1992), 
elastic net (Zou et al., 2005) and early stopping 
(Morgan et al., 1990). For modern neural networks, 
dropout (Srivastava et al., 2014; Wan et al., 2013; 
Tompson et al., 2015; DeVries et al., 2017; Ghiasi et 
al., 2018) and data augmentation (Krizhevsky et al., 
2012; Zhong et al., 2020 ; Cubuk et al., 2019) have 
gained wide adoption. 

Dropout (Srivastava et al., 2014) stochastically 
deactivates activations in the network during training. 
This causes the model to be simpler and discourages 
co-adaptation among feature detectors. Drop connect 
(Wan et al., 2013) further generalizes dropout by 
masking connections between neurons. Standard 
dropout techniques (Srivastava et al., 2014; Wan et 
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al., 2013) are effective for fully connected layers but 
not suited for convolutional layers which exhibits 
strong spatial correlation. Hence, spatial dropout 
(Tompson et al., 2015) drops an entire channel from 
the feature map while cutout (DeVries et al., 2017) 
and drop block (Ghiasi et al., 2018) mask out local 
and contiguous regions in the input layer and 
convolutional layer, respectively. Some dropout 
techniques are customized for particular architecture. 
For example, drop path (Larsson et al., 2016) drops 
sub-paths to prevent co-adaptation of parallel paths in 
a fractal architecture while stochastic depth (Huang et 
al., 2016) makes a residual network appear shallower 
by dropping some residual branches. Shake-shake 
(Gastaldi et al., 2017) uses a stochastic affine 
combination of parallel residual paths for ResNeXt 
(Xie et al., 2017). To generalize shake-shake 
regularization to single residual path architectures 
(He et al., 2016; Zagoruyko et al., 2016; Han et al., 
2017). ShakeDrop (Yamada et al., 2018) integrates 
shake-shake (Gastaldi et al., 2017) with stochastic 
depth (Huang et al., 2016) where the latter acts as a 
stabilization mechanism which is missing in single 
residual path networks. Recent dropout techniques 
has devised selective dropping schemes. For 
example, spectral dropout (Khan et al., 2019) drops 
less significant spectral component. Similar to spatial 
dropout, weighted channel dropout (Hou et al., 2019) 
drops a whole channel in a more judicious manner 
based on their strength of the activations.   

Another popular regularization technique is data 
augmentation (Shorten et al., 2019) where a variety 
of geometric and photometric transformations are 
applied on the image to increase the size and diversity 
of the data set. Krizhevsky et al., (2012) apply 
random cropping, horizontal reflection as well as 
color jittering. Algorithms such as cutout (DeVries et 
al., 2017) and random erasing (Zhong et al., 2020) 
augments the data by cutting out random regions from 
the input image. Sample pairing (Inoue et al., 2018) 
synthesize new image by mixing two images. 
Recently, more intelligent augmentation schemes 
have been proposed. AutoAugment (Cubuk et al., 
2019) and Fast AutoAugment (Lim et al., 2019) learn 
to augment by searching for data augmentation 
policies while DevVries et al. (2017) performs 
transformation in a learned feature space rather than 
the input space. 

Our proposed method belongs to an emerging 
family of regularization techniques called batch loss 
regularization which regularizes batch samples 
collectively. In the work by Wen et al. (2016), class 
centers are computed from the embedding features of 
the batch sample. Then, the center loss penalizes the 
Euclidean distance between batch samples and their 
corresponding centers to emphasize intra-class 
compactness. The model is jointly trained by center 

loss and the softmax loss. Huang et al. (2017) 
employs a similar formulation for aerial scene 
classification. Zhao et al. (2019) proposes exclusive 
regularization which further penalizes inter-class 
angular distance to enhance inter-class separability. 
In our current work, we explore using a different loss 
function based on batch contrastive loss to achieve 
both intra-class compactness and inter-class 
separability. 

3 BATCH CONTRASTIVE LOSS 

In this section, we formulate our proposed batch 
contrastive loss. The underlying idea is to regularize 
the network by comparing batch data. Given a batch 
data 𝑋 ൌ ሼ𝑥ଵ, … , 𝑥ேሽ  and its corresponding 
labels 𝑌 ൌ ሼ𝑦ଵ, … , 𝑦ேሽ , we use a ConvNet (c.f. 
Section 3) to extract two outputs: (1) the embedding 
features generated by the regularization head, 
henceforth referred to as contrastive features 𝐸 ൌ
ሼ𝑒ଵ, … , 𝑒ேሽ and (2) the probit outputs for each sample 
𝑆 ൌ ሼ𝑠ଵ, … , 𝑠ேሽ by the classification head. The former 
is used to regularize the network while the latter is the 
classification output of the network. The 
regularization head is only used during training and is 
discarded during inference. In the following sub-
sections, we introduce two versions of batch 
contrastive loss functions. The first regularizes batch 
samples with reference to the class centers whereas 
the second regularizes based on sample-pair 
distances.   

3.1 Center Contrastive Loss 

Our first contrastive regularization term learns the 
features and class centers that enforce intra-class 
compactness and inter-class separability. Distances 
are measured with respect to the class centers as 
reference points. The loss function is given as 
follows: 

ℒ஼ଵሺ𝐸, 𝑌, 𝐶ሻ ൌ 𝜆 ෍ฮ𝑒௜ െ 𝑐௬೔
ฮ

ଶ

ଶ
ே

௜ୀଵ

 

൅ 𝛽 ෍ ෍ max ቀ0, 𝑚 െ ฮ𝑐௝ െ 𝑐௞ฮ
ଶ

ଶ
 ቁ

௄

௞ୀ௝ାଵ

௄

௝ୀଵ

 

(1)

where the class centers 𝐶 ൌ ሼ𝑐ଵ, … , 𝑐௄ሽ are updated in 
each iteration based on the mean of the batch samples 
for each class . 𝑐𝑦𝑖

 is the actual class center for the 
contrastive feature 𝑒𝑖. The loss function is based on 
the classical contrastive loss function (Chopra et al., 
2005) which comprises two parts. The first part is the 
positive loss which penalizes the distance between 
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generated contrastive feature with their class centers. 
This encourages intra-class compactness and is 
similar in form to the center loss (Wen et al., 2016).  
The second part is the negative loss which pushes 
class centers apart by penalizing any two centers with 
distance less than the margin m. This promotes inter-
class separability. The relative strength of the positive 
and negative losses can be controlled by the 
hyperparameters 𝜆  and 𝛽 . A larger 𝜆  enhances the 
intra-class compactness whereas a larger 𝛽  imposes 
greater inter-class separability.  

Since the distances are computed relative to the 
class centers, we refer to Eq. (1) as the center 
contrastive loss. The proposed center-level 
contrastive regularization term is similar in form to 
Zhao et al. (2019). However, Zhao et al. (2019) uses 
an angular distance measure which disregards the 
magnitude of the embedding vectors. In contrast, our 
method employs the contrastive loss formulation 
(Chopra et al., 2005) which is based on straight-line 
distance in an Euclidean space. Contrastive loss has 
been popularly used for the task of metric learning but 
has never been used for batch loss regularization. 
Furthermore, Horiguchi et al. (2019) shows that it is 
more effective to use angular distance when 
comparing embedding features extracted from a 
softmax-based classifier. Since Zhao et al. (2019) 
employs the same features for computing softmax 
(classification) loss and exclusive (regularization) 
loss, it has naturally adopted the angular-based 
distance. Our network does not suffer from the same 
restriction due to a two-headed network design which 
decouples regularization from classification. In fact, 
Horiguchi et al. (2019) shows that the Euclidean 
distance is more effective for comparing features 
extracted from a distance metric-learning based 
learning classifier as implemented by the 
regularization head in our approach. More discussion 
on the network architecture can be found in Section 
3.3.   

3.2 Sample Contrastive Loss 

The cluster contrastive regularization proposed in the 
previous section is efficient, but it restricts each class 
to a single class center which may not be desirable for 
classes with high-intra-class variation. Furthermore, 
the cluster centers are dynamically updated in each 
iteration based on batch data and may not be 
representative of the whole dataset. Hence, we 
propose a second loss function which performs 
regularization at the sample level. It is based on the 
vanilla contrastive loss function. Recently, one-shot 
learning (Koch et al., 2015) uses Siamese network to 
learn using a single example of a new class. The 
network was pre-trained for some verification task 
using contrastive loss by comparing image pairs.  

 

Figure 2: Proposed two-headed network architecture. The 
body of the network generates the activation map. The 
regularization head is used. The classification head is a 
softmax classifier. For inference, the regularization head is 
dropped. 

Once optimized, the network is not only 
discriminative for the original classes it was trained 
on, but it generalizes well to learn entirely new 
classes with unknown distribution. Motivated by this 
observation, we adopt the contrastive loss as a 
regularization term to tap into the generalization 
capability of contrastive features. The sample 
contrastive loss is given as follows: 

ℒ஼ଶሺ𝐸, 𝑌ሻ ൌ ෍ ෍ ሾ𝜆𝟏൫𝑦௜ ൌ 𝑦௝൯ฮ𝑒௜ െ 𝑒௝ฮ
ଶ

ଶ
ே

௝ୀ௜ାଵ

ே
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൅ 𝛽 𝟏൫𝑦௜ ് 𝑦௝൯ max ቀ0, 𝑚 െ ฮ𝑒௜ െ 𝑒௝ฮ
ଶ

ଶ
ቁሿ 

(2)

𝟏ሺ∙ሻ is an indicator function that values to 1 when the 
condition is true and to 0 otherwise. The first term 
computes the distance for all positive pairs in the 
batch. The second term computes the negative loss 
which penalizes when the distance between any two 
negative samples are less than m. Since the distances 
are measured sample-wise, we refer to Eq. 2 as 
sample contrastive loss. 

Our work differs from the work Koch et al. (2015) 
in two important aspects. The system by Koch et al., 
(2015) is designed to function as a comparator. 
Hence, the constructed model is a bi-input model that 
expects two input samples even during inference and 
outputs the distance between them. In contrast, (i) we 
use contrastive loss for a different purpose, i.e., to 
regularize the training and (ii) our network remains as 
a uni-input model and receives single sample as input 
during inference. Hence, our method can be applied 
to any classification tasks and not confined to a 
comparative setup.  

Compared to center contrastive loss (Eq. 1), the 
sample contrastive loss (Eq. 2) incurs some 
computational overhead due to an exhaustive 
computation of pair-wise distances between sample 
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pairs in a batch, especially when a large batch size is 
used. The time complexity involved is O(N2). In our 
experiments, the training duration increases to 1.5 
times of the original training time for a batch size of 
16. However, this can be easily overcome by 
combining hashing and hard sampling (Hermans et 
al., 2017). An off-the-shelve nearest neighbour 
search, e.g., LSH (Indyk et al., 1998) can be used to 
find the hardest positive and hardest negative to 
compute the loss for each sample. The hardest 
positive and negative samples are then used to 
compute the triplet loss. Hard sampling has been 
shown to produce better performance and 
convergence rate. The runtime can thus be reduced to 
O(N). In our experiments, we simply compute the 
distance for all sample pairs. 

3.3 Model Architecture 

Figure 2 shows an overview of our network 
architecture. The proposed network is a two-headed 
network. The body of the network can be 
implemented by any current ConvNet architecture. Its 
function is to generate the features for the two heads. 
The regularization head converts the feature into a 
low-dimensional contrastive features (256-D) for 
regularizing the network via contrastive loss whereas 
the classification head is a softmax classifier to 
predict the label. The classification head uses softmax 
activation. No activation is imposed for the 
regularization head.  

Although Zhao et al. (2019) has similar design as 
ours, it uses the softmax-based feature (features 
extracted from a softmax classifier) to compute the 
angular loss. As mentioned, softmax-based features 
are more appropriately evaluated using angular 
distance. In contrast, our two-headed network design 
allows us to use the softmax-based feature for 
classification and contrastive-based feature (feature 
learnt from distance metric learning) for 
regularization. A previous study (Horiguchi et al., 
2019) has pit softmax-based feature against 
contrastive-based feature. It shows that the softmax-
based features perform better on classification, 
clustering and retrieval tasks when the size of the 
training set is large, but the contrastive-based feature 
becomes more competitive when the dataset is small. 
This lend strong support for using contrastive loss to 
regularize the network. For inference, the 
regularization head is dropped leaving only the 
classification head. Hence, our network remains as a 
uni-input model and works just like any other 
classification model during inference. 

 
 
 

3.4 Bag Sampling 

Special attention needs to be paid to sample selection. 
When sampling batch data, each class in a batch 
should be represented by at least 2 samples for 
contrastive regularization to be effective. However, 
this requirement will likely be violated when number 
of classes is larger than the batch size. For example, 
ImageNet has 1000 class whereas the typical bag size 
is from 4 to 256. To remedy the issue, we perform bag 
sampling. In this scheme, samples are organized into 
groups of k samples called bags. When sampling 
batch data for training, we sample in bags rather than 
individual samples. The samples in the bags are non-
overlapping except for the last one to ensure 
consistent batch size. Thus, one epoch in bag 
sampling performs almost the same number of 
forward propagations as one epoch in conventional 
sampling.  

3.5 Proposed Algorithm 

To measure classification performance, we use the 
cross entropy loss: 

ℒ௦ሺ𝑆, 𝑌ሻ ൌ െ
1
𝑁

෍ log 𝑠௬೔

ே

௜ୀଵ

 (3)

where 𝑠௬௜
 is the probit of the correct class for 

sample𝑥௜ . To train the network, we perform joint 
supervision of cross entropy loss and batch 
contrastive loss. The final loss is given as follows: 

ℒ ൌ ℒ௦ ൅ ℒ௖ (4)

where the contrastive loss ℒ௖  can be either  ℒ௖భ
 

or ℒ௖మ
. The training algorithm is summarized in 

Algorithm 1.  

Algorithm 1: Training algorithm with Batch 
Contrastive Regularization. 

Input: Training data ሼ𝑋, 𝑌ሽ 
Output: Trained network weights 𝑊  

1. Repeat for n epochs 
2.     Organize samples into bags  
3.     Repeat for each batch data 𝑋௕ (bag  

    sampling): 
4.       𝐸, 𝑆  model(𝑋௕)  
5.       Compute cluster centers 𝐶 from 𝐸 
6.      Compute contrastive loss ℒ௖ଵሺ𝐸, 𝑌, 𝐶ሻ  

       (Eq.1) or ℒ௖ଶሺ𝐸, 𝑌ሻ (Eq. 2) 
7.       Compute classification loss ℒ௦ሺ𝑆, 𝑌ሻ 

                     (Eq. 3) 
8.       Compute combined loss ℒ (Eq. 4) 
9.       Backpropagate and update 𝑊 

NCTA 2020 - 12th International Conference on Neural Computation Theory and Applications

372



4 IMPLEMENTATION DETAILS 

Network Architecture. ResNet (He et al., 2016) is 
employed as the backbone of our two-headed 
network. We use two networks with different depth, 
namely ResNet18 and ResNet50. The output of 
global pooling layer serves as input to the 
regularization and classification heads. Both the 
regularization head and classification has only one 
fully connected layer. The classification head uses 
softmax activation whereas the regularization has no 
activation. 

Experimental Settings. All images are resized to 
224x224. For data augmentation, we apply random 
crop, random horizontal flip and color jittering during 
training. We set the learning rate lr=0.1, =10-4 and 
the margin m=1.25. For , we set it to 0.550 for 
CIFAR-10 and 5.0 for CIFAR-100. The network is 
trained for 100 epochs using stochastic gradient 
descent with momentum set to 0.9. A learning rate 
schedule is used with decay = 0.1 and milestone = 
[50, 75]. Unless specified otherwise, for our methods, 
we use bag sampling with a bag size of 2 to sample 
the training set. All models are trained from scratch. 
In other words, we do not use any pre-training. The 
above settings are used to train both the ResNet18 and 
ResNet50 backbone network.  

Benchmark Algorithms. We compare our 
algorithms against the weight decay (Krogh et al., 
1992) which suppresses the parameters of the 
network 𝑊  through the L2 norm thus enforcing a 
simpler network.  

ℒ2 ൌ 𝛾 ෍ ‖𝑤𝑖‖2
2

௪೔∈ௐ

 (5)

The weight decay can also be combined with 
contrastive loss. 

ℒ ൌ ℒ௦ ൅ ℒ௖ ൅ ℒ2 (6)

We also compare our algorithm with another more 
recent regularization function. The center loss (Wen 
et al., 2016) is similar to our  center contrastive loss 
(Eq 1) except that it only considers intra-class 
compactness.  

Center Lossሺ𝐸, 𝑌, 𝐶ሻ ൌ ෍ฮ𝑒௜ െ 𝑐௬೔
ฮ

ଶ

ଶ
௠

௜ୀଵ

 (7)

Dataset. We evaluated on two datasets: CIFAR-
10 and CIFAR-100. CIFAR-10 has 10 distinct classes 
whereas CIFAR-100 has 100 classes. Each image 
contains only single object and has a size of 32  32 
pixels. Both datasets contain 50,000 training images 

and 10,000 test images. CIFAR-10 has around 5,000 
images per class for training whereas CIFAR-100 has 
only 500 images. In addition, some classes in CIFAR-
100 (e.g., maple, oak, palm, pine and willow) are 
visually similar and hence difficult to classify. 
Therefore, CIFAR-100 is a more challenging dataset 
compared to CIFAR-10 and needs more fine-grained 
classification.  

5 EXPERIMENTS 

Effectiveness of Batch Loss Regularization. First, 
we evaluate the effectiveness of different batch loss 
regularization techniques for regularizing networks. 
We compare our method against another batch loss 
regularization technique, namely center loss (Wen et 
al., 2016). Table 1 shows the experimental result.  

Table 1: Testing Accuracy of Batch Loss Regularization for 
ResNet18 (No Pre-Training). 

Method CIFAR-10 CIFAR-100 

CE 92.20% 69.68% 
CE + Center 93.00% (+0.80) 67.12% (-2.56)
CE + CL1 93.16% (+0.96) 73.78% (+4.10)
CE + CL2 93.18% (+0.98) 71.18% (+1.50)

* CE: Cross entropy loss (no regularization), Center: Center Loss 
(Wen et al., 2016), CL1: Center contrastive loss (proposed), CL2: 
Sample contrastive loss (proposed). 

* The numbers in the bracket indicates the improvement for the 
various regularization methods compared to the baseline (no 
regularization). 

For CIFAR-10, center contrastive loss (CL1) and 
sample contrastive loss (CL2) improve test accuracy 
to 93.16% (+0.96) and 93.18% (+0.98), respectively 
compared to the baseline test accuracy of 92.20%. 
This shows that both contrastive losses successfully 
regularize the network. The improvement is much 
more pronounced for CIFAR-100. The sample 
contrastive loss (CL2) improves the test accuracy 
from 69.68% to 71.18% (+1.50). The improvement 
for center contrastive loss (CL1) is bigger where the 
test accuracy improves to 73.78% (+4.1). The impact 
of regularization is more significant in CIFAR-100 
since it has a less samples per class compared to 
CIFAR-10. 

The performance of center loss (Wen et al., 2016) 
is noticeably not stable. Although delivering slight 
improvement for CIFAR-10 (+0.80), it is somehow 
surprising to see test accuracy drop from 69.86% to 
67.12% (-2.56) after applying center loss 
regularization for CIFAR-100. We offer several 
possible explanations. First, to reduce computational 
consideration, the centers are computed on batch 
samples rather than the whole data set. Since a bag 
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size of 2 is used in the experiments, and there is a 
relatively large number of classes (100 in CIFAR-
100), the cluster centers tend to fluctuate wildly from 
batch to batch. As a result, center loss regularization 
may have difficulty converging. A second plausible 
explanation is intra-class variability where the visual 
appearance of the samples for a class may be diverse 
and the assumption of a single class center may not 
be a good one for general classification tasks. This 
also explains why center loss (Wen et al., 2016) 
manage to deliver good regularization performance 
for face recognition - there is only one single visual 
category (face) and the within-class visual 
appearance is not diverse. In contrast, general object 
classification involves multiple classes and within-
class samples are more varied. 

Compared to center loss, both versions of 
contrastive loss improve test accuracy. This is 
apparently attributed to the negative distances which 
imposes inter-class separability. As mentioned, 
CIFAR-100 contains a lot of visually similar classes, 
e.g., maple, oak, palm, pine and willow. By imposing 
inter-class separability into the loss function, the 
network will be compelled to learn cluster centers are 
well separated in the embedding space. This in turn 
improves generalization performance. 

Effect of Network Depth.  Next, we evaluate the 
effect of network depth towards regularization 
performance. For this experiment, we use a deeper 
network namely ResNet50 and repeat the 
experiments in the previous section. Table 2 shows 
the test accuracies obtained from the network.  

Table 2: Testing Accuracy of Batch Loss Regularization for 
ResNet50 (No Pre-Training). 

Method CIFAR-10 CIFAR-100 

CE  89.62% 63.50% 
CE + Center  77.89% (-11.73) 67.81% (+4.31)
CE + CL1 86.45% (-3.17) 71.51% (+8.01)
CE + CL2 91.85% (+2.23) 71.92% (+8.42)

* CE: Cross entropy loss (no regularization), Center: Center Loss 
(Wen et al., 2016), CL1: Center contrastive loss (proposed), CL2: 
Sample contrastive loss (proposed). 

Compared to ResNet18 (Table 1), the test 
accuracy (without regularization) for ResNet50 drops 
from 92.20% to 89.62% for CIFAR-10 and from 
69.68% to 63.50% for CIFAR-100. This shows that 
overfitting is more severe for ResNet50. As a deeper 
network, ResNet50 contains around 25 million 
parameters, which is more than double than that of 
ResNet18 which has only around 11 million. This 
makes ResNet50 more difficult to train and prone to 
overfitting.  

For CIFAR-10, when center loss is applied, test 
performance drops sharply to 77.89%. Again, we 

attribute this to an unstable batch center and 
unrepresentative cluster center. For CL1, the 
performance also drops but not as much. This shows 
that the negative loss has offset the effect of the 
positive loss. Sample contrastive loss regularization 
improves test accuracy to 91.85% (+2.23). Here, we 
notice that the performance of CL2 consistently 
deliver better performance compared to the baseline 
in all our experiments for networks of different depth 
and dataset of different sizes. A decentralized method 
with no notion of a class center seems to provide more 
stable regularization in our case. 

For CIFAR-100, all three batch regularization 
techniques improves test accuracy performance 
significantly. With no regularization, test accuracy is 
63.50%. Both CL1 and CL2 see an improvement of 
more than 8%, registering a test accuracy of 71.51% 
(+8.01) and 71.92% (+8.42), respectively. This is 
extremely significant performance improvement. 
Again, center loss produces the least improvement. In 
summary, batch contrastive loss displays good 
generalization performance on a deeper network and 
smaller samples. 

Effect of Bag Sampling. Next, we evaluate the 
effect of bag sampling. We evaluated 3 different bag 
sizes: 0, 2 and 4. The experiment is conducted for 
CE+CL2 on CIFAR-10. A batch size of 16 is used. 
Note that when the bag size is 0, this is equivalent to 
disabling bag sampling. Table 3 shows the result of 
the effect of different bag size. 

Table 3: Effect of Bag Size in Bag Sampling (CE+CL2). 

Bag Size ResNet18 ResNet50 
0 92.76% 90.70%
2 93.18% 91.85%
4 91.19% 89.84%

* CE: Cross entropy loss, CL2: sample contrastive loss. 

Clearly, bag sampling improves regularization 
performance for our method. The optimal bag size is 
2. The test accuracy decreases when bag size 
increases to 4 for both ResNet18 and ResNet50. 
When the bag size increases, there are more positive 
pairs and less negative pairs. As shown previously, 
the performance of the positive loss (center loss) is 
not stable and consequently a bigger bag size has a 
negative impact on the performance of the system. 

Detailed Analysis. In this section, we investigate 
if the classes indeed benefit from the proposed batch 
contrastive regularization. To do this, we compare the 
performance of individual classes before and after 
applying sample contrastive regularization (CL2). 
Figure 3 shows the changes to the test accuracy after 
applying CL2 on ResNet50 for CIFAR-100. Classes  

NCTA 2020 - 12th International Conference on Neural Computation Theory and Applications

374



 

Figure 3: Changes to test accuracy for all classes after applying sample contrastive loss (CL2) of ResNet50 on the CIFAR-
100 dataset. Positive value means test accuracy improves after applying CL2 and vice versa. A huge number of classes 
benefits from contrastive loss regularization. (Not all class labels are displayed in x-axis due to space constraint. 

with values above the line y = 0 successfully 
improve their test accuracies and vice versa. Indeed, 
majority of the classes (87 out of 100) are above the 
line. Out of these, 20 classes improve their accuracies 
by more than 20%. This shows contrastive loss indeed 
successfully regularizes the network for a wide 
variety of classes.  

Next, we further analyze the result for class 
separability. Table 4 shows a partial confusion table 
for the 5 most improved classes. Note that there are 
100 test samples per class. 

Table 4: Partial Confusion Table for 5 Classes without 
Regularization (CE) and with Regularization (CE+CL2). 

Before applying contrastive loss, these classes are 
typically confused with one or two other dominant 
classes.  Noticeably, most are confused with hamster 
and lamp most likely due to their cluttered 

background. After applying the contrastive loss, the 
network no longer confuses these classes.  

Comparison to Weight Decay. In this section, 
we compare the performance of batch contrastive loss 
with weight decay (Krogh et al., 1992), or 
equivalently L2 regularization. L2 is a well-trusted 
technique that reduces overfitting by controlling the 
network complexity by controlling the network 
parameters. We repeat our experiments using L2 
regularization on CIFAR10. The proposed batch loss 
regularization can be additionally imposed on top of 
L2. We further run our experiment with a 
combination of both L2 + CL2. Table 5 shows the 
result for our experiments 

Table 5: Comparison with L2 Regularization on CIFAR-10 
(No Pre-Training). 

Method ResNet18 ResNet50
CE 92.20% 89.62% 
CE + CL2 93.18%  (+0.98) 91.85%  (+2.23)
CE + L2  94.95%  (+2.75) 94.54% (+5.33) 
CE + L2 + CL2 95.32% (+3.12) 94.63% (+5.70) 

* CE: Cross Entropy (no regularization), L2: weight decay (Krogh 
et al., 1992), CL2: sample contrastive loss (proposed). 

In the experiment, weight decay displays good 
regularization performance and even outperforms 
sample contrastive loss when considered separately. 
When the two regularization techniques are fused 
together, weight decay and the proposed contrastive 
loss compensate each and deliver better 
improvement. This shows that controlling the 
network complexity directly by suppressing the 
network parameter values still remains the most direct 
and effective way of regularizing the network. 
However, L2 regularization can benefit from 
additionally imposing the contrastive loss. 

Actual 
Class 

Prediction result 
Predicted Class CE CE+CL2 

Chair 

Chair  23 87 

Hamster  45 0 

Lamp 16 1 

Lawn Mover 
Lawn Mover 40 88 

Hamster 45 0 

Telephone 

Telephone 27 72 

Hamster 26 0 

Lamp 18 4 

Cockroach 

Cockroach 42 92 

Hamster 29 0 

Beetle 5 3 

Dinosaur 

Dinosaur 44 75 

Hamster 18 0 

Lamp 9 0 
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Convergence Rate. Lastly, we show the loss 
function of the cross entropy (CE) loss and sample 
cross entropy (CE+CL2) on ResNet50 network and 
CIFAR-100 dataset to evaluate their convergence 
rate. For CE + CL2, we only extract the CE 
component to be plotted. Figure 4 shows the two 
plots. Obviously, when the training is regulated by 
sample contrastive loss, the cross entropy loss 
converges faster compared to without regularization. 
However, the network then converges to roughly the 
same level after epoch 35. The same pattern is 
observed for all other experiments. 

 

Figure 4: The cross entropy loss for CE and CE+CL2 on 
ResNet50 and CIFAR-100 dataset. For CE+CL2, only the 
cross entropy loss component is used to plot the graph. With 
CL2 regularization, the cross entropy converges faster. 

6 CONCLUSION 

Deep networks have shown impressive performance 
on a number of computer vision tasks. However, 
deeper networks are more susceptible to overfitting 
especially when the number of samples per class are 
small. In this work we introduced batch contrastive 
loss to regularize the network by comparing samples 
in a batch loss. Our experiments show that batch 
contrastive loss has good generalization performance 
especially on deeper network and dataset with smaller 
number of samples per class. It also further reveals 
potential issue with the positive loss for general 
classification tasks which is a subject for future 
investigation. In the future, we plan to perform more 
evaluation to demonstrate that the technique 
generalize well to other datasets as well as tasks (e.g., 
video action classification). We will also look into the 
efficiency issues of contrastive loss.  
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